The present invention relates to wireless communications, and more particularly, to a simple yet highly reliable compression connector for an RF cable or jumper that comprises a two-piece inner conductor.
Compression connectors provide an extremely reliable connection that prevents Passive Intermodulation Distortion (PIM) while providing for an easy installation process. Conventional compression connectors have a basket-like inner conductor receptacle that has fingers that actively engage the cable's inner conductor during the compression process. Although this is effective in forming a reliable connection, it requires considerable mechanical infrastructure within the connector to effect the connection. The additional mechanical infrastructure increases the complexity, cost, and materials required to produce the compression connector.
These are just some of the disadvantages associated with compression connectors currently in use.
An aspect of the present invention involves a compression connector for an RF cable. The compression connector comprises a connector body having an inner surface; a threaded clamp configured to translate within the connector body; a contact cone having an outer surface that engages with the inner surface of the connector body; an insulator disposed within the connector body, the insulator having a disk shape with an outer surface that engages with the inner surface of the connector body, and a rear face that engages with a forward face of the contact cone, the insulator further having an aperture disposed at the center of the disk shape; and a two piece inner conductor, the two piece inner conductor having an interface component and a contact component, wherein the contact component has a passive inner conductor basket and a cylindrical portion disposed within the aperture of the insulator, and wherein the interface component has an opening that engages with the cylindrical portion of the contact component, and wherein the two piece inner conductor forms a slot that holds the two piece inner conductor in rigid contact with the insulator.
In an embodiment, a compression connector comprises a connector body having a first end and an opposing second end and comprising an inner surface and a threaded clamp located proximate the second end. The threaded clamp is at least partially positioned within the connector body and configured to slide relative to the connector body. A contact cone is positioned within the connector body in a direction towards the first end relative to the threaded clamp. The contact cone comprises an outer surface configured to engage with the inner surface of the connector body. An insulator configured to contact the inner surface of the connector body is positioned proximate the contact cone and defines an aperture. An inner conductor comprises a contact component and an interface component. The contact component comprises an inner conductor basket and a cylindrical portion extending from the conductor basket that is at least partially positioned within the aperture of the insulator. The interface component defines an opening configured to engage the cylindrical portion of the contact component. When a cable is installed at the second end of the connector body, the contact component, the interface component, and the insulator are held together such that they form a rigid three-piece assembly.
A more particular description of the invention briefly summarized above may be had by reference to the embodiments, some of which are illustrated in the accompanying drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. Thus, for further understanding of the nature and objects of the invention, references can be made to the following detailed description, read in connection with the drawings in which:
The following discussion relates to various embodiments of a passive, two-piece inner conductor for a compression connector. It will be understood that the herein described versions are examples that embody certain inventive concepts. To that end, other variations and modifications will be readily apparent to those of sufficient skill in the field. In addition, a number of terms are used throughout this discussion in order to provide a suitable frame of reference with regard to the accompanying drawings. These terms such as “forward”, “rearward”, “rear”, “inner”, “outer”, and the like are not limited to these concepts, except where so specifically indicated. In addition, the drawings are intended to depict salient features of the inventive device for use in a compression connector. Accordingly, the drawings are not specifically provided to scale and should not be relied upon for scaling purposes.
Still referring to
The reliability of the connection between the inner cable conductor 120, the contact component 105b, and the interface component 105a is further assured by the rigidity of the combination of the contact component 105b, the interface component 105a, the insulator 125, and the contact cone 115. The rigidity is formed or established after installation of cable 117 onto the connector 100, in which a manual or pneumatic press may be used to apply a force to the outer surface of clamp 137 in a direction toward the contact cone 115. The resulting translation of the clamp 137 causes the corrugated outer conductor 140 of the cable 117 to fold at interface 147. The force further results in the contact cone 115 applying pressure on insulator 125.
Rigidity is maintained by a press fit formed by interface component 105a and contact component 105b around insulator 125, forming a rigid three-piece assembly between these three components. A frictional press fit between contact component 105b and interface component 105a further maintains the rigidity of this three-piece assembly. Additionally, frictional contact (press fit) between the contact cone 115 and the connector body 135 inhibits the insulator 125 from shifting around after installation of the cable 117 onto the connector 100.
Also illustrated in
Referring to
While the present invention has been particularly shown and described with reference to certain exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention that can be supported by the written description and drawings. Further, where exemplary embodiments are described with reference to a certain number of elements, it will be understood that the exemplary embodiments can be practiced utilizing either less than or more than the certain number of elements.
This application claims priority under relevant portions of 35 U.S.C. § 119 to U.S. Patent Application 62/879,748, filed Jul. 29, 2019 under relevant portions of 35 U.S.C. § 111 and 37 C.F.R. §§ 1.51 and 1.53, the entire contents of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US20/44052 | 7/29/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62879748 | Jul 2019 | US |