Underground systems such as underground transportation systems conventionally employ many electrical and mechanical subsystems to maintain operation. For example, underground transportation systems (e.g., subways, trains) typically incorporate ventilation subsystems, power subsystems, control subsystems, and the like. Many of these subsystems typically fail or at least operate poorly or inefficiently when in contact with water, whether from environmental or man-made causes.
Ventilation subsystems, for example, typically operate to remove gases and particles from the air and to maintain operating temperatures of the underground transportation system. In this manner, the quality of breathable air underground and the operating temperatures are maintained at acceptable levels for the passengers and the technical requirements of the subsystems, respectively. If air quality is not maintained at an acceptable level, then passengers and operators of the underground transportation system may be negatively affected. Similarly, if the operating temperatures are not maintained at an acceptable level, then subsystems may fail, malfunction, and/or operate inefficiently. Therefore, ventilation of underground air is critical to maintain optimal conditions for underground transportation systems.
Rain, for example, may temporarily cause flooding in underground transportation systems. Similarly, water from fire hydrants on the surface may also flood underground transportation systems. Such water may cause pooling of water on, near, or over certain components of subsystems, causing failures, malfunctions, and/or inefficiencies of such subsystems.
Water typically enters underground transportation systems via ventilation grates on sidewalks and roads. MTA New York City Transit, for example, has between 30,000 to 40,000 ventilation grates. Conventionally, water entering ventilation grates has been removed via pumps. Such pumping can be inadequate in times of surface flooding due to heavy rain.
Therefore, it may be desirable to reduce and/or restrict water from entering underground transportation systems via vents. It may also be desirable to control the flow of water from the surface to underground transportation systems to maintain operating conditions and to reduce the need for water pumps.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the drawings:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, each of which are explicitly contemplated and made part of this disclosure.
This disclosure is generally drawn to methods, systems, devices and/or apparatus related to reducing and/or restricting water from entering underground systems. Specifically, the disclosed methods, systems, devices and/or apparatus relate to reducing and/or restricting water from entering underground systems via vents based on the weight of the water, while not restricting ventilation airflow. In some examples, a mechanical closure device may be disposed in a vent shaft. The mechanical closure device may open and close based on the amount (and, therefore, the weight) of water passing through the vent shaft. While this disclosure may be applicable to any underground system, for brevity, this disclosure only discusses some example underground transportation systems in detail.
Example flood protection system 100 depicts door 120 coupled to reservoir 130 via a linkage member 135, which may be pivotably coupled to a door flange 140 via a pivoting mechanism 145. In some examples, reservoir 130 may be directly coupled to door 120 via a pivoting mechanism.
Reservoir 130 may collect water that enters through frame 110. In some examples, water may be channeled from frame 110 into reservoir 130. As water is collected in reservoir 130, the weight of such water may cause a downward force to be applied on door 120. This force may cause the door to pivot between a first position (e.g., as depicted in
In some examples (such as depicted in
In some examples, door 120 may be curved and/or may have a crown such that water is directed away toward an outer portion of door 120.
As water 290 enters frame 210 through grating 270, water 290 may be directed by gutter(s) and/or channel(s) 214 as it flows toward the bottom of frame 210. Water 290 may be channeled through frame weep hole 212 into reservoir 230 at a certain flow rate (i.e., first flow rate).
In some examples, reservoir 230 may include a reservoir debris shield (e.g., screen) to restrict and/or block debris from entering reservoir 230. Example debris may include manmade materials (e.g., cigarette butts), organic materials (e.g., tree leaves), and the like.
Reservoir 230 may include a reservoir weep hole 232. As water 290 collects in reservoir 230, a portion of water 290 exits reservoir 230 via reservoir weep hole 232. Water 290 exiting reservoir weep hole 232 may exit reservoir 230 at a certain rate (i.e., second flow rate). If the first flow rate (i.e., flow rate of water exiting frame weep hole 212) exceeds the second flow rate (i.e., flow rate of water exiting reservoir weep hole 232), reservoir 230 will fill with water 290. In some examples, water 290 exiting reservoir weep hole 232 may fall into the vent shaft 215.
As reservoir 230 fills with water 290, the weight of water 290 causes a force that pulls door 220 downward. As door 220 is pulled downward, door 220 may pivot about a pivoting mechanism 225. In this manner, the weight of water 290 in reservoir 230 causes door 220 to transition from an open position to a closed position. In some examples, the center of gravity of door 220 may shift, causing door 220 to transition from an open position to a closed position.
In some examples, the flow rate of water 290 exiting frame weep hole 212 is greater than the flow rate of water 290 exiting reservoir weep hole 232. When the flow rate of water 290 exiting frame weep hole 212 is greater than the flow rate of water 290 exiting reservoir weep hole 232, reservoir 230 empties slower than frame 210 empties. This allows reservoir 230 to remain full as long as water 290 continues to exit frame 210. In this manner, if water 290 is flowing at a high rate into frame 210, door 220 may remain closed because reservoir 230 remains heavy enough to keep door 220 in the closed position (i.e., reservoir 230 collects and temporarily retains enough water 290 to weigh down door 220). As a flood event subsides, the weight of reservoir 230 subsides, and reservoir 230 causes door 220 to transition from a closed position to an open position.
As water 390 enters frame 310 through grating 370, water 390 may be directed by gutter(s) and/or channel(s) 314 as it flows toward the bottom of frame 310. Water 390 may be channeled through frame weep hole 312 into reservoir 330 at a certain flow rate (i.e., first flow rate).
Reservoir 330 may include a reservoir weep hole 332. As water 390 collects in reservoir 330, a portion of water 390 exits reservoir 330 via reservoir weep hole 332. Water 390 exiting reservoir weep hole 332 may exit reservoir 330 at a certain rate (i.e., second flow rate). If the first flow rate (i.e., flow rate of water exiting frame weep hole 312) exceeds the second flow rate (i.e., flow rate of water exiting reservoir weep hole 332), reservoir 330 will fill with water 390. In some examples, water 390 exiting reservoir weep hole 332 may fall into the vent shaft 315.
As reservoir 330 fills with water 390, the weight of water 390 causes a force that pulls door 320 downward. As door 320 is pulled downward, door 320 may pivot about a pivoting mechanism 325. In this manner, the weight of water 390 in reservoir 330 causes door 320 to transition from an open position to a closed position. In some examples, the center of gravity of door 320 may shift, causing door 320 to transition from an open position to a closed position.
In some examples, the flow rate of water 390 exiting frame weep hole 312 is greater than the flow rate of water 390 exiting reservoir weep hole 332. When the flow rate of water 390 exiting frame weep hole 312 is greater than the flow rate of water 390 exiting reservoir weep hole 332, reservoir 330 empties slower than frame 310 empties. This allows reservoir 330 to remain full or near full as long as water 390 continues to exit frame 310. In this manner, if water 390 is flowing at a high rate into frame 310, door 320 may remain closed because reservoir 330 remains heavy enough to keep door 320 in the closed position (i.e., reservoir 330 collects and temporarily retains enough water 390 to weigh down door 320). As a flood event subsides, the weight of reservoir 330 subsides, and reservoir 330 causes door 320 to transition from a closed position to an open position.
In
Reservoir 430 may include a reservoir weep hole 432. As water 490 collects in reservoir 430, a portion of water 490 may exit reservoir 430 via reservoir weep hole 432. In some examples, water 490 exiting reservoir weep hole 432 may fall into the vent shaft 415.
In some examples, the flow rate of water 490 exiting frame weep hole 412 is greater than the flow rate of water 490 exiting reservoir weep hole 432. When the flow rate of water 490 exiting frame weep hole 412 is greater than the flow rate of water 490 exiting reservoir weep hole 432, reservoir 430 empties slower than frame 410 empties. This allows reservoir 430 to remain full (or near full) as long as water 490 continues to exit frame 410. In this manner, if water 490 is flowing at a high rate into frame 410, door 420 may remain closed because reservoir 430 remains heavy enough to keep door 420 in the closed position (i.e., reservoir 430 collects and temporarily retains enough water 490 to weigh down door 420). As a flood event subsides, the weight of reservoir 430 subsides, and reservoir 430 causes door 420 to transition from a closed position to an open position.
As water 490 exits reservoir 430, the weight of water 490 is reduced, thus causing a lesser force to pull door 420 downward. As the weight of water 490 is reduced, door 420 may pivot about a pivoting mechanism 425. In this manner, the reduced weight of water 490 in reservoir 430 causes door 420 to transition from a closed position to an open position. In some examples, the center of gravity of door 420 may shift, causing door 420 to transition from a closed position to an open position.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5460462 | Regan | Oct 1995 | A |
6217756 | Martinez | Apr 2001 | B1 |
6623209 | Waters, Jr. | Sep 2003 | B1 |
6726402 | Martinez | Apr 2004 | B1 |
7101114 | Waters, Jr. | Sep 2006 | B1 |
7497644 | Cohen | Mar 2009 | B1 |
8033753 | Waters, Jr. | Oct 2011 | B2 |
20070215212 | Demeniuk | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2005061201 | Mar 2005 | JP |
Entry |
---|
Floodbreak—Flood Control for Vent Shafts, www.floodbreak.com/?id=243—date retrieved Jul. 30, 2012, 1 pg. |
Self Closing Flood Barrier—Passive Flood Device—Global Flood Defense, www.globalfloods.com/selfclosingfloodbarrier.aspx—date retrieved Jul. 30, 2012, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20140241804 A1 | Aug 2014 | US |