Information
-
Patent Grant
-
6760454
-
Patent Number
6,760,454
-
Date Filed
Friday, August 4, 200024 years ago
-
Date Issued
Tuesday, July 6, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Tarolli, Sundheim, Covell & Tummino L.L.P.
-
CPC
-
US Classifications
Field of Search
US
- 381 110
- 381 111
- 381 92
- 455 411
- 455 106
- 455 88
- 455 412
- 455 418
- 455 419
- 455 420
- 455 413
- 340 1031
- 340 1041
- 340 1051
- 340 1042
- 340 572
- 340 552
- 340 42616
- 367 198
- 367 197
- 367 199
- 701 4
- 704 273
- 704 275
- 307 101
- 307 102
- 307 105
-
International Classifications
-
Abstract
A voice-activated microphone and transceiver system includes an interrogator unit for transmitting a signal, receiving a modulated signal, and demodulating the modulated signal such that the difference between the transmitted signal and the modulated signal correspond to a unique sound wave signal. An acoustically driven microphone unit is also included for receiving the signal from the interrogator unit, modulating the signal with the sound wave signal, wherein the sound wave signal contains instructions for controlling an electronic device, and transmitting the modulated signal back to the interrogator unit for analysis by a signal processor.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an integrated microphone and transceiver system that allows voice-activated control of computer driven devices using a passive and wireless interface.
2. Description of the Prior Art
As the number of systems that are computer controlled increases, so too increases the need for more sophisticated approaches to controlling such systems. In particular, there is a need for voice-activated control of computer systems. For example, in automobile control systems, a driver's voice could be used to activate or deactivate accessories including, but not limited to, radios, headlights, cabin lights, windshield wipers and cellular phones. And, by controlling such accessories using voice-activation, a driver's hands would be freed up to operate the steering wheel, thus allowing the driver to more easily focus on the conditions of the road. Additionally, voice activation could be used in homes or similar environments to unlock doors, turn on and off lights, turn on and off appliances, etc. Conventional techniques for controlling computer systems are generally less effective, since they require manual intervention on the part of the system user. And, in those cases where control is carried out by voice activation, problems related to recognizing a voice in the presence of ambient noise and problems related to providing power to the microphone unit still exist. Problems related to recognizing a voice in the presence of ambient noise typically exist when the source of an operator's voice is located distant from the computer or the operator is situated in a noisy environment. For example, in the noisy interior of a car, recognition of a driver's voice is difficult unless the microphone is located close the driver's mouth. And, while both wired and wireless microphones are currently available, each presents problems related to powering the microphone. For example, wired microphones require costly wires that typically run through a car's body to the seatbelt, and frequent retracting of the seatbelt can eventually sever the wires. On the other hand, wireless microphones require batteries, and consumers are reluctant to replace batteries regularly since generally the equipment in a car's interior requires no such similar maintenance over the life of the car.
Thus, an integrated microphone and transceiver system for providing voice activated control of a computer system using a passive and wireless interface that does not require battery power is highly desirable.
SUMMARY OF THE INVENTION
The preceding and other shortcomings of the prior art are addressed and overcome by the present invention that provides a voice-activated microphone and transceiver system for providing sound wave activated control of an electronic device system. The system includes an interrogator unit for transmitting a signal pulse, receiving a modulated signal pulse, and demodulating the modulated signal pulse such that the delay between the transmitted signal pulse and the modulated signal pulse corresponds to a unique sound wave signal that is used to control the electronic device. A acoustically driven microphone unit is also included for receiving the signal pulse from the interrogator unit, modulating the signal pulse with the sound wave signal, wherein the sound wave signal contains instructions for controlling an electronic device, and transmitting the modulated signal pulse back to the interrogator unit for analysis by a signal processor.
In an alternate embodiment of the present inventions, an optical signal is transmitted from an optical interrogator unit and is received and reflected by an optical microphone unit. The optical signal is modulated in amplitude in response to the air pressure of a voice sound wave signal in the area surrounding the microphone unit and reflected back toward the interrogator source where a voice signal processor unit eventually processes it.
BRIEF DESCRIPTION OF THE DRAWINGS
Reference is now made to the following description and attached drawings, wherein:
FIG. 1
is a mechanical diagram of a surface acoustic wave (SAW) microphone unit in accordance with an embodiment of the present invention;
FIG. 2
is a block diagram of an embodiment of a SAW interrogator unit in accordance with an embodiment of the present invention;
FIG. 3
is a mechanical diagram of a SAW microphone unit including levers in accordance with an alternate embodiment of the present invention;
FIG. 4
is a schematic diagram of a capacitor microphone unit in accordance with an alternate embodiment of the present invention;
FIG. 5
is schematic diagram of a crystal microphone unit in accordance with an alternate embodiment of the present invention;
FIG. 6
is a block diagram of a capacitor or crystal interrogator unit in accordance with an alternate embodiment of the present invention;
FIG. 7
is a mechanical diagram of an optical microphone unit in accordance with an alternate embodiment of the present invention;
FIG. 8
a
is a graphical illustration of an optical microphone grating mechanism having a pattern of alternating clear and opaque regions each having a width W in accordance with the
FIG. 7
embodiment of the present invention;
FIG. 8
b
is a graphical illustration of a first optical microphone grating in an W/2 offset position above a stationary second optical microphone grating;
FIG. 8
c
is a graphical illustration of the first optical microphone grating in an W/2 offset position above the stationary second optical microphone grating, providing zero light transmission;
FIG. 8
d
is a graphical illustration of the first optical microphone grating in an W/2 offset position above the stationary second optical microphone grating, providing maximum light transmission; and
FIG. 9
is a block diagram of an optical interrogator unit in accordance with an alternate embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
A system for providing voice-activated control of an electronic device is illustrated.
Generally, a signal pulse, such as a radio frequency (RF) signal pulse, is transmitted from an interrogator unit to a microphone unit. The microphone unit receives the signal pulse and modulates the transmitted signal pulse with a sound wave corresponding to a voice sound wave signal. The modulated signal is produced as a RF echo where the sound pressure from a voice in the air surrounding the microphone unit modulates the RF echo's delay or ringing frequency. Afterwards, the microphone unit retransmits the modulated version of the signal to the interrogator unit, where the voice signal is detected and later processed by a voice signal processor unit.
Alternatively, an optical signal is transmitted from an optical interrogator unit and is received and reflected by an optical microphone unit. The optical signal is modulated in amplitude in response to the air pressure of a voice sound wave signal in the area surrounding the microphone unit and reflected back toward the interrogator source where a voice signal processor unit eventually processes it.
For purposes of describing the preferred embodiments of the present invention, the present invention is illustrated using voice activation to control automobile systems. However, it is important to note that the present invention is not limited to providing control for a particular computer system or electronic device. In fact, the present invention can be utilized to provide voice-activated control of any computer-based system, including, but not limited to automobile systems and home systems (e.g. unlocking doors, turning on and off lights, appliances etc.). The present invention can also be utilized to provide access to secured systems, for example, those systems that grant access to a user only upon recognition of a uniquely identifiable voice signal command.
Referring to
FIG. 1
, in a first embodiment of the present invention, a microphone unit
10
, herein further referenced as a surface acoustic wave (SAW) microphone unit, is illustrated including a housing
12
, a thin flexible SAW element
14
mounted within the housing
12
, an antenna (or alternatively multiple antennas)
16
attached to the SAW element
14
through the housing
12
and a diaphragm cover
18
that seals the opening of the housing
12
. The SAW microphone unit
10
is preferably mounted on the driver's seatbelt, or, alternatively, to increase the microphone unit's reception sensitivity, multiple microphone units can be mounted on the driver's seatbelt. The housing
12
is preferably an approximately 0.1 inch thick ceramic package that includes feedthroughs and printed RF traces (not shown). The SAW element
14
is preferably a single-transducer SAW delay line device formed from an approximately 4 mil (0.004 inch) thick lithium niobate (LiNbO
3
) piezoelectric crystal, but may alternatively be a SAW resonator device. The antennas
16
are shown in
FIG. 1
as wire dipole antennas, but the antennas
16
may alternatively include patch, loop, or other small antennas that are suitable for RF frequency use.
The SAW element
14
, illustrated in
FIG. 1
as a SAW delay line, provides a delayed echo of an applied RF signal burst. In particular, the SAW delay line includes an interdigital metal film transducer (not shown) that consists of two groups of interdigital electrode fingers separated by a gap area (not shown). When activated by a burst of RF radiation near the center frequency of the SAW transducers, each group of transducer fingers sends surface acoustic waves both left and right along the surface of the delay line crystal
14
. Such activation occurs as a result of the dipole antenna
16
receiving a transmitted RF signal produced by an interrogator unit oscillator (described below) at the same center frequency as the SAW transducers. Absorbers (not shown) suppress the waves moving to the ends of the delay line crystal
14
and the waves moving to the center of the crystal
14
reach the opposite group of electrodes several microseconds after the initial RF tone burst. There, the waves are reconverted to a RF tone burst that is retransmitted from the microphone unit antenna
16
as a delayed echo of the RF burst signal received from the interrogator unit.
The SAW device's
14
delay is modified in proportion to the surface strain on the crystal, therefore, the transmitted pulse delay of the SAW delay line
14
can be modulated by a sound wave signal, here, a driver's voice. In particular, the surface strain results from a force applied through a push rod
20
from the diaphragm
18
, which is forced up and down by the air pressure of the ambient sound in the air surrounding the microphone
10
. The diaphragm
18
converts the pressure produced by the sound wave of the driver's voice into the force. The force is then transmitted via the push rod
20
to the free end
22
of the SAW delay line
14
, which is mounted as a cantilever beam at the base of the housing
12
. The beam flexes the SAW delay line
14
, which causes mechanical strain on the crystal surface. As a result, the delay of the SAW delay line
14
varies with the air pressure at the microphone unit
10
generated by the driver's voice.
Because the SAW delay line
14
is designed to create a delayed echo at the two interdigital electrodes in the single transducer, the SAW delay line
14
is able to retransmit the delayed version of the RF signal burst out the antenna
16
. The delayed signal, now modulated with the driver's voice, is received by a receive antenna located in the interrogator unit where, as described below, it is demodulated by the interrogator unit as a representation of the driver's voice.
Referring to
FIG. 2
, an interrogator unit
26
, herein further referenced as a SAW interrogator unit, includes a surface acoustic wave (SAW) oscillator
28
, a RF transmit switch
30
, a transmit antenna
32
, a receive antenna
36
, a RF receive switch
38
, and a voice signal processor (voice vocoder)
48
. The solid path lines in
FIG. 2
represent electrical pathways. For purposes of illustrating the preferred embodiment, the SAW interrogator unit
26
is preferably mounted in the dashboard or sun visor of an automobile where it measures the air pressure at a SAW microphone unit (see, e.g.,
FIG. 1
at numeral
10
) by sending the microphone unit an RF signal pulse burst and receiving back the burst's delayed echo. A sequence of transmitted signal pulse bursts and received signal echo bursts is repeated many times per second such that the air pressure generated by a driver's voice at the SAW microphone unit is measured often enough by the SAW interrogator unit
26
, for example, approximately 500,000 time per second, that the measurements provide an accurate representation of the sound of the driver's voice.
More particularly, the SAW oscillator
28
is provided having the same center frequency, here 915 MHz, as the SAW delay line device
14
located in the SAW microphone unit
10
shown in FIG.
1
. The SAW oscillator
28
generates a continuous RF signal
27
that is applied to the RF transmit switch
30
. Simultaneously, a digital count down divider
34
counts positive pulses of the SAW oscillator's RF signal
27
until the number of pulses reaches 915. Once the number of pulses reaches 915, the digital count down divider
34
actuates the RF switch
30
, at numeral
35
, to pass a time-gated burst
33
of the SAW oscillator's RF signal
27
to the transmit antenna
32
, and the count down divider
34
is reset to start counting again. One microsecond later, the receive RF switch
38
is actuated by a delayed signal
41
from the digital count down divider
34
to receive a time-gated signal echo burst
43
from the receive antenna
36
. The digital count down divider delay
31
is set at one microsecond so that the receive RF switch
38
receives the delayed, sound-modulated signal echo burst
43
transmitted from the SAW microphone unit
10
and not the earlier more powerful time-gated signal burst
33
transmitted to the SAW microphone unit
10
. The SAW microphone unit
10
returns the signal echo bursts
43
as modulated signals having delays that are proportional to the instantaneous pressure of the air surrounding the microphone unit, as created by the sound of the driver's voice.
The RF receive switch
38
gates the signal echo burst
43
and the gated signal
45
is applied by the RF receive switch
38
to a low noise amplifier
40
that amplifies the gated signal echo burst
45
. The amplified signal
47
is then passed through a SAW band pass filter
42
to remove out-of-band noise and interference that would otherwise produce undesired noise in the voice signal received from the SAW microphone unit
10
and later processed by the voice vocoder
48
. The center frequency of the SAW band pass filter
42
is preferably set to be the same as the frequency of the SAW oscillator
28
. Since the bandwidth of the SAW bandpass filter
42
must pass the spectrum of the modulated radio echo
43
from the microphone unit, the bandwidth is made as narrow as practically possible, but not less than 20 kHz. And, because of the narrow bandwidth of the SAW bandpass filter
42
, out-of-band noise and interference are largely eliminated so that the difference in phase between the RF signal
27
and a returned signal echo burst
43
can be accurately measured.
Referring still to
FIG. 2
, the phase of the amplified signal echo burst
47
is measured against the phase of the continuous RF signal
27
via a phase detecting multiplier
44
. The phase change that is measured at the multiplier
44
is a consequence of the change in delay of the SAW microphone unit's RF echo as a result of the voice that modulated the original signal burst
33
. The phase signal
49
at the output of the multiplier
44
is applied to a low pass filter
46
, preferably a 10 KHz filter, that removes unwanted high frequency components from the phase signal
49
and converts the phase signal
49
into a smoothly varying voltage signal
51
corresponding to the sound of the driver's voice. The voltage signal
51
is sent to the signal processor unit
48
where, using conventional voice recognition techniques, the signal processor
48
interprets the voltage signal
51
as the driver's voice command and uses the command to electrically control a particular device, for example, an automobile windshield wiper.
Referring to
FIG. 3
, in an alternate embodiment of the present invention, a microphone unit
50
utilizing a lever element
52
to mechanically increase the acoustic sensitivity of the SAW microphone unit
50
is shown. As previously described, the air pressure from a voice sound wave located in the area surrounding the microphone unit
50
creates an initial force against a diaphragm
54
. But here, the diaphragm
54
, via a first push rod
56
, applies the force to the free end
58
of the lever
52
while the opposite end
60
of the lever
52
is constrained from moving by a fulcrum
62
or similar device. Located at the underside of the lever
52
, at a point approximately ⅕th as far from the fulcrum
62
as the first push rod
56
, is a second push rod
64
which transfers 5 times more force to the free end of the SAW element
66
. This additional force increases the flex of the SAW element
66
which in turn proportionally changes the delay of the RF echo, thereby increasing the sensitivity of the microphone unit
50
to the driver's voice. And, as described in
FIG. 1
, sound waves representing the driver's voice are reconverted to a RF tone burst that is retransmitted from the microphone unit antenna
67
as a delayed echo of the RF burst signal received from the interrogator unit. It is important to note that the use of a single lever, as shown in
FIG. 3
, can be extended to the use of several levers. For example, by using two levers, a first lever can provide a force multiplication factor equal to five that is then applied to a second lever, which also provides a force multiplication factor equal to five. Thus, increasing the total force pressing against the surface of the SAW element
66
by a factor of twenty-five.
Referring to
FIG. 4
, in accordance with another embodiment of the present invention, a capacitor microphone unit
68
is shown. The capacitor microphone unit
68
includes a capacitor microphone
70
, an inductor
72
and an antenna
74
(shown as a wire dipole antenna).
The capacitor microphone
70
is a capacitor in which a first plate
76
moves toward and away from a second plate
78
in response to the pressure of sound in the surrounding air. In its most basic form, the first plate
76
is a passively mounted diaphragm that seals the opening of a microphone unit housing (not shown) and the second plate
78
is rigidly fixed in position relative to the back of the microphone housing. Since the first plate
76
moves with the sound wave, the capacitance of the microphone
70
likewise varies with that of the sound wave. Thus, the capacitor microphone
70
indicates changes in the instantaneous pressure of the air by corresponding changes in capacitance.
The inductor
72
and the capacitor microphone
70
are combined in a parallel resonant circuit
80
. Since the capacitance of the microphone
70
changes with the sound wave, as described above, the circuit's
80
resonant frequency also changes with the sound wave. The resonant circuit
80
is connected to the antenna
74
, such that when a short and broadband RF burst is received by the antenna
74
having a resonant frequency near that of the resonant circuit
80
, the RF burst is applied to the resonant circuit
80
where an alternating current at the received frequency builds up in the circuit
80
, thereby storing energy. Once the received burst stops transmitting, the alternating current continues to re-radiate (“ring”) from the antenna
74
until the stored energy is depleted. Since the re-radiated signal's frequency is set at the resonant frequency of the resonant circuit
80
, the frequency provides an indication of the instantaneous acoustic pressure on the capacitor microphone's
68
diaphragm as a result of a voice wave signal. Consequently, a capacitor/crystal interrogator unit, like that described below in
FIG. 6
, can measure the “ringing” frequency and convert the measurement to one associated with the instantaneous pressure caused by a voice creating a force on the microphone's
70
diaphragm.
Referring to
FIG. 5
, in accordance with another embodiment of the present invention, a crystal microphone unit
82
is shown. The crystal microphone unit
82
includes a varying capacitor
84
, an inductor
86
, an antenna
88
, a piezoelectric (“crystal”) microphone
90
, a blocking capacitor
92
and a RF choke
94
. Similar to the capacitor microphone unit
68
illustrated in
FIG. 4
, the crystal microphone unit
82
contains a parallel resonant circuit
96
containing the fixed inductor
86
and the varying capacitor
84
, here a varactor, that modulates the resonant frequency of the parallel resonant circuit
96
. Also, similar to the capacitor microphone unit
68
illustrated in
FIG. 4
, the parallel resonant circuit
96
is connected to the antenna
88
.
Like the capacitor resonant circuit
80
shown in
FIG. 4
, the crystal circuit's
96
resonant frequency varies with the changes in the surrounding air pressure due to the sound of a driver's voice. However, unlike the capacitor of the capacitor microphone unit's resonant circuit
80
(see FIG.
4
), the capacitor of the crystal resonant circuit
96
is provided as a varactor
84
. The varactor
84
is a known semiconductor device having capacitance that is adjusted by applying a direct current (DC) or low frequency bias. Here, the microphone
90
, preferably a conventional crystal microphone, generates the bias voltage. A crystal microphone
90
is preferred because of its high output voltage and high impedance, which provides superior sensitivity when, used with the high-impedance varactor
84
.
The RF choke
94
is provided to prevent the crystal microphone's
90
capacitance from interfering with the ringing resonant frequency of the resonant circuit
96
, and the blocking capacitor
92
is provided to prevent the microphone unit's
82
output voltage from being shorted out by the inductor
86
.
Referring to
FIG. 6
, in accordance with another embodiment of the present invention, a capacitor/crystal interrogator unit
98
, having similar components and operation as the interrogator unit
26
shown in
FIG. 2
except for the inclusion of a two micro second delay
100
within a digital count down divider
99
and a phased lock loop (PLL)
110
preferably having a 0.1 millisecond (ms) time constant, is shown. And, instead of measuring the sound pressure of a voice located at a SAW microphone unit like that shown in
FIGS. 1 and 3
, the wireless capacitor/crystal interrogator unit
98
measures the sound pressures at a capacitor or crystal microphone unit like those described in
FIGS. 4 and 5
above.
Similar to the SAW interrogator unit shown in
FIG. 2
, the capacitor/crystal interrogator unit
98
transmits a short RF burst
113
(e.g., 1 microsecond burst) generated by gating the continuous signal output
111
of an oscillator
112
. The short RF burst
113
is transmitted to a capacitor or crystal microphone unit, via a transmit antenna
114
, where it may be modulated with a voice sound wave signal. The modulated RF burst is received by a receive antenna located in the microphone unit, which excites the microphone unit resonant circuit storing energy in an alternating current at the radio frequency. When the interrogator's transmitted burst
113
stops, the stored energy in the microphone unit's resonant circuit continues as an alternating current at the microphone unit's own resonant frequency, which retransmits a “ringing” radio signal out its antenna as it loses energy.
Referring still to
FIG. 6
, the ringing radio signal transmitted out the microphone unit's antenna is received at the interrogator unit receive antenna
116
as a plurality of RF echo burst signals
117
. The signals
117
are each time-gated and amplified by a RF receive switch
115
and a low noise amplifier
119
, respectively. And, unlike the interrogator unit illustrated in
FIG. 2
, the signals
117
are demodulated from the frequency modulated echo of the capacitor or varactor microphone. To accomplish this, a phase locked loop
110
creates a narrowband continuous signal
121
that represents the average frequency and phase of the sequence of frequency-modulated echoes
117
from the microphone. The phase of this average signal
121
will vary along with the frequency of the echoes
117
, since the echoes
117
are initially in phase with the transmitted signal
113
, but then shift in phase over time due to their different frequencies. Thus, the phase of the signal
121
at the output of the phase locked loop
110
, when compared to the continuous signal
111
of the SAW oscillator
112
, is a measure of the pressure at the microphone and the multiplier (phase detector)
129
creates a voltage signal
123
corresponding to this phase. The voltage signal
123
, after low pass filtering at the filter
111
, becomes the audio signal
125
representing the sound heard at the microphone that is analyzed at the voice vocoder
127
.
Alternatively, the interrogator unit
98
, instead of transmitting short RF bursts
113
, could transmit a continuous signal, and the receiving capacitor or crystal microphone unit could receive signals from the interrogator unit on one polarization and retransmit the modulated signal on another polarization. Thus, the microphone unit could differentiate between a signal received from the interrogator unit and its own transmitted signal. The amplitude of the received signal, as described in previous embodiments, would vary with the sound wave pressure in the air surrounding the microphone unit, depending on how close or far the microphone (capacitive or varactor) resonance was in frequency from the interrogator unit's transmitted frequency.
Referring to
FIG. 7
, in accordance with another embodiment of the present invention, an optical microphone unit
120
, is shown. The optical microphone unit
120
includes a sealed housing
122
, a transparent diaphragm
124
mounted in an opening of the housing
122
, a lower optical grating
128
, an upper optical grating
126
, and an array of small corner cubes
130
.
In the present embodiment, the air-pressure from the sound of the driver's voice pushes and pulls the diaphragm
124
in a vertical motion. The force from this pressure is then converted from vertical to horizontal pressure by a bent lever
132
, which pivots against a notched bracket
134
. The lever
132
is held in place by a tab
136
protruding from the bottom of the diaphragm
124
. Spring tension in the spring clip
138
applies a force to the optical grating
126
, tending to push the grating
126
to the left. Pushing the grating
126
in this manner insures that when the diaphragm
124
moves up and down, the bent lever
132
stays in contact with the diaphragm
124
, a fulcrum positioning notch
131
in the notched bracket
134
, and the upper optical grating
126
. When a top portion of the bent lever
132
is pushed downward, a lower portion of the lever
132
moves to the left, allowing the spring clip
138
to push the upper optical grating
126
to the left while maintaining contact between the upper optical grating
126
and the bent lever
132
.
Referring to
FIG. 8
, because the lower grating
128
is fixed, when the upper grating
126
is displaced by the air pressure and linkage of the driver's voice sound wave, the degree of light blockage by the combination of the two gratings (
126
,
128
) changes accordingly. In particular, referring to
FIG. 8
a
, the pair of gratings (
126
,
128
), each containing a pattern of alternating transparent and opaque lines, modulate the amplitude of transmitted light by changing the fraction of the combined pattern which is opaque. Depending on the position of the moving grating, the transmission ranges from approximately 0% to 50%. As shown in
FIG. 8
b
, the gratings (
126
,
128
) are adjusted, for example, by shifting the moving grating
126
to the right, such that in the absence of sound, they are displaced by w/2 from each other with a transmission of approximately 25%, where w equals the width of an opaque line or transparent line in the grating (e.g., w=0.001 inches). As shown in
FIG. 8
c
, if the pressure of the driver's sound wave displaces the moving grating
126
one line width (w) farther to the right than the stationary grating
128
, the transmission is reduced gradually down to 0%. And, as shown in
FIG. 8
d
, if the pressure of the driver's voice shifts the moving grating
126
so that the opaque lines in the grating
126
are directly above the opaque lines in the grating
128
, the transmission is increased up to a maximum of 50%. Thus an advantageous rest position of the upper grating
126
in the absence of sound would be displaced w/2 left or right from the lower grating
128
, so that transmission was 25%. In this rest position, a sound wave would be able to continuously vary optical transmission with pressure changes in both directions up to a maximum of 50% and down to a minimum of 0%.
Referring again to
FIG. 7
, light from an optical microphone interrogator unit, in
FIG. 9
described below, passes through a diaphragm
124
and shines on the pair of gratings (
126
,
128
). The diaphragm
124
is preferably transparent, but may alternatively be mostly opaque except for a transparent window region. The instantaneous position of the upper grating
126
determines how much light passes through the grating pair (
126
,
128
). Light that passes through the grating pair (
126
,
128
) is reflected by the array of corner cubes
130
located at the base of the microphone unit housing
122
. The array of corner cubes
130
reflect the light in such a manner that the light reflects back through the gratings (
126
,
128
) and into the interrogator unit. By converting the amplitude of the reflected light to a voltage using a photodetector, the optical microphone interrogator unit, as described in detail below, can recover an electrical audio signal corresponding to the sound detected at the microphone unit
120
.
Referring to
FIG. 9
, an optical microphone interrogator unit
150
is illustrated including an oscillator
152
or alternatively a pulse generator, a laser or modulated light emitting diode (LED)
154
in the near infrared (IR) range, a photodetector and amplifier element
156
, a multiplier
158
, a low pass filter (LPF)
160
and a signal processor
162
. The interrogator unit
150
is preferably mounted in the dashboard of a car where it is visible to the driver's seatbelt optical microphone unit.
The oscillator
152
produces a 20 kHz signal
153
that powers the near-infrared (IR) light emitting diode (LED)
154
so that the LED
154
, herein further referenced as a synchronous detector, transmits 20,000 pulses per second of light
155
. The 20 kHz signal
153
is also fed to the multiplier
158
as reference for detecting received light. A modulated version of the optical signal pulse
155
is later returned from the optical microphone unit where the light
163
is received and amplified by the photodetector and amplifier unit
156
. The amplified signal
157
is applied to the multiplier
158
where it is synchronously detected to improve its signal-to-noise ratio, thus eliminating all unwanted light signals not modulated at a frequency corresponding to the oscillator's
152
center frequency. The low pass filter
160
, preferably a 10 KHz filter, converts the amplitude modulated signal
159
to a smooth voltage signal
161
that is the electrical audio signal corresponding to the sound of the driver's voice. As in previous embodiments, the signal
161
is sent to the signal processor unit
162
where, using conventional voice recognition techniques, the signal processor
162
interprets the electrical audio signal as that corresponding to the driver's voice commands.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described above.
Claims
- 1. A system for providing sound wave activated control of an electronic device, comprising:an interrogator unit for generating a signal and transmitting a pulse of the signal, for receiving a modulated signal, for determining a difference between the signal and the modulated signal corresponding to a sound wave signal containing instructions for controlling the electronic device, and for controlling the electronic device using the instructions of the sound wave signal; and an acoustically driven microphone unit spaced from the interrogator unit, the acoustically driven microphone unit receiving the signal pulse from the interrogator unit, modulating the signal pulse with the sound wave signal to form the modulated signal and transmitting the modulated signal to the interrogator unit.
- 2. A system as recited in claim 1, wherein the signal is a continuous radio frequency (RF) signal.
- 3. A system as recited in claim 1, wherein the interrogator unit comprises a surface acoustic wave (SAW) oscillator for generating the signal.
- 4. A system as recited in claim 1, wherein the interrogator unit comprises a transmit radio frequency (RF) switch for gating the signal thereby forming the signal pulse.
- 5. A system as recited in claim 1, wherein the interrogator unit comprises a transmit antenna for transmitting the signal pulse to the microphone unit.
- 6. A system as recited in claim 1, wherein the interrogator unit comprises a receive antenna for receiving the modulated signal from the microphone unit.
- 7. A system as recited in claim 1, wherein the interrogator unit comprises a receive radio frequency (RF) switch for gating the modulated signal.
- 8. A system as recited in claim 1, wherein the interrogator unit comprises a digital countdown divider for counting positive pulses of the signal until the number of pulses reaches a predetermined value and, where the predetermined value is reached, actuating the transmission of the signal pulse to the microphone unit and, upon the expiration of a predetermined delay, actuating the receipt of the modulated signal from the microphone unit.
- 9. A system as recited in claim 1, wherein the interrogator unit comprises a low noise amplifier for amplifying the modulated signal.
- 10. A system as recited in claim 1, wherein the interrogator unit comprises a surface acoustic wave (SAW) band pass filter for removing out-of-band noise and interference from the modulated signal.
- 11. A system as recited in claim 1, wherein the interrogator unit comprises a multiplier for measuring the difference between the continuous signal and the modulated signal and generating the sound wave signal corresponding thereto.
- 12. A system as recited in claim 11, wherein the interrogator unit comprises a low pass filter for removing high frequency component from the sound wave signal and generating a voltage signal corresponding thereto.
- 13. A system as recited in claim 12, wherein the voltage signal is a smoothly varying voltage signal.
- 14. A system as recited in claim 12, wherein the interrogator unit comprises a signal processor unit, the signal processor unit receiving the voltage signal and interpreting the voltage signal as the instructions for controlling the electronic device.
- 15. A system as recited in claim 14, wherein the signal processor unit is a voice vocoder.
- 16. A system as recited in claim 1, wherein the acoustically driven microphone unit comprises a surface acoustic wave (SAW) element for producing the modulated signal as a delayed echo burst of the signal pulse, the delayed echo burst generated by a force applied to a surface of the surface acoustic wave element, the force resulting from a pressure of a sound wave in the air surrounding the microphone unit.
- 17. A system as recited in claim 16, wherein the surface acoustic wave (SAW) element is a delay line.
- 18. A system as recited in claim 16, wherein the acoustically driven microphone unit comprises a diaphragm for absorbing the pressure of the sound wave in the air surrounding the microphone unit.
- 19. A system as recited in claim 18, wherein the acoustically driven microphone unit comprises a first pushrod disposed between the diaphragm and the surface acoustic wave element, the first pushrod transferring the pressure absorbed by the diaphragm into the force applied to the surface of the surface acoustic wave element.
- 20. A system as recited in claim 19, wherein the acoustically driven microphone unit further comprises a lever disposed between the diaphragm and the surface acoustic wave element, the lever absorbing the sound wave pressure on the diaphragm at the first pushrod; anda second pushrod disposed between the lever and the surface acoustic wave element, the second pushrod transferring the pressure absorbed by the lever to the surface of the surface acoustic wave element, the transferred pressure increasing the force applied to the surface of the surface acoustic wave element by a factor of M in response thereto.
- 21. A system as recited in claim 1, wherein the acoustically driven microphone unit comprises an antenna for receiving the signal pulse from the interrogator unit and transmitting the modulated signal to the interrogator unit.
- 22. A system as recited in claim 21, wherein the antenna is an antenna selected from the group consisting of dipole antenna, patch antenna, and loop antenna.
US Referenced Citations (6)