The present teachings relate generally to antennas. More specifically, the present teachings relate to patch antennas for receiving and/or transmitting an electromagnetic signal preferably in microwave range.
Radio frequency (“RF”) units such as transponders usually include a patch antenna. A patch antenna primarily consists of a flat sheet of metal, called a patch, arranged in such a way as to be electrically resonant over a larger sheet of metal, called a ground plane.
The antenna may be scaled to a physically smaller size by adding dielectric between the patch and the ground plane. As an example, a GPS patch antenna (L/2=190 mm) can fit onto a 25×25 mm substrate with a dielectric constant of 20.
In many applications it is desirable to have well-defined antenna characteristics. It may hence be desirable to have a well-defined medium between the patch antenna and the ground plane. Such antennas typically become narrow-banded and thus the thickness and properties of the dielectric become important for maintaining the antenna resonant frequency. One way to do so is to use a substrate with well-defined electrical properties. In this case the patch can be realized on one side of the substrate and the ground plane realized on the opposite side of the substrate.
In master thesis “Design of a circularly polarized patch antenna for satellite communications in L-band” by G. A. Soleto Bazán (URI: http://hdl.handle.net/2099.1/11708) several types of Microstrip antennas (“MAS”) and different excitation techniques, or feeds, for such antennas were discussed.
A disadvantage of probe or coaxial type feed is that it usually requires a conductor traversing through the thickness of the substrate, for example, by drilling.
An aperture coupled feed can be an alternative to a probe feed especially when conductive electrical connection with the patch is not feasible or not desired, however a disadvantage can be that the slot type apertures require space or substrate area. As substrates with well defined electrical or microwave properties are usually expensive, it is desirable to reduce their size or area as much as possible. In addition, the aperture slots cause discontinuities in the ground plane surface. The problem is further aggravated when multiple feeds, such as dual-orthogonal feeds, are desired, for example, for achieving circular polarization of the patch antenna.
According to an object of the present teachings a patch antenna arrangement with well-defined electrical properties can be provided.
According to further an object of the present teachings a patch antenna arrangement that can reduce the substrate area used by the feed can be provided.
According to another object of the present teachings a patch antenna arrangement that reduces intrusions in the ground plane due to feed can be provided.
The present teachings will now be discussed more in detail using the following drawings illustrating the aspects of invention by way of examples. The figures are not necessarily drawn to scale.
On a second surface 112, on the opposite side of the first substrate 101, a ground plane 130 is realized, also in a conductive layer. The material of the conductive layer in which the ground plane 130 is realized may be same as the material in which the patch antenna 105 is realized, but it can also be a different material. The patch antenna 105 and the ground plane 130 are however conductively isolated from each other. The ground plane 130 has an opening 135 where the conductive layer is absent, hence some portion of the second surface 112 is exposed due to the opening 135.
The patch antenna arrangement 100 also comprises a second substrate 102. A third surface 121, or a side of the second substrate 102, directly faces the second surface 112. The figure shows a small gap between the surface of the ground plane 130 and the third surface 121, however these surfaces could even be in contact. As the second substrate 102 is conductively isolating, such contact is not detrimental to the desired electrical properties. A small air-gap will modify the effective dielectric constant for the feeding circuit, and may introduce a minor change in electrical parameters such as microstrip impedance, whereas the properties of the patch antenna are nearly maintained.
On a fourth surface 122, or the opposite side of the second substrate 102, conductive tracks, for example for mounting circuitry are placed. For example, one side of an SMD component 150 is shown soldered with a solder bump 156 to a first conductive track 126 attached on the fourth surface 122. The other side of the SMD component 150 is shown soldered to a conductive track connected to a capacitive feed 125. As can be seen, the capacitive feed 125 is formed at an end portion of the conductive track, on the other end of which track the SMD component 150 is shown soldered. The conductive track is shown as a metal layer in the figure, but it can also be a wire or any other type of connecting means connecting the end portion 125 to the component 150. The capacitive feed 125 or the end portion has a capacitive coupling 145 with the patch antenna 105. The capacitive coupling 145 is essentially proportional to the visible overlap area between the capacitive feed 125 and the patch antenna 105. By visible overlap area, it is meant the area of overlap between the capacitive feed layer 125 and the patch antenna layer 105 within the area of the opening 135 in the ground plane 130. A person skilled in the art understands what is meant by the overlap area in context of a capacitance. The capacitive coupling is essentially inversely proportional to the spacing between the overlapping portion of the feed layer 125 and the overlapping portion of the patch antenna 105. The spacing between the overlapping layers will essentially be the sum of thicknesses of the first substrate 101 and the second substrate 102 respectively. In reality, the thickness will also include any gap between the first substrate 101 and the second substrate 102, more specifically the distance between the second surface 112 and the third surface 121, which includes the thickness of the ground plane layer 130, however since the conductive layers are usually appreciably thinner as compared to the thickness of a substrate, the latter is dominant in deciding the capacitance value. In addition, the capacitive coupling 145 is also dependent on the medium sandwiched between the overlapping portion of the feed layer 125 and the patch antenna layer 105. More specifically, the coupling 145 is dependent on the resultant dielectric constant between the overlap area. In this case it will include contributions to the resultant dielectric constant by the first substrate 101 and the second substrate 102. In reality, there will also be contribution by the gap 135 (typically air), but in most cases the dielectric constants of the substrate materials will be dominant.
The first substrate 101 and the second substrate 102 are preferably microwave substrates. The substrates 101 and 102 could be made from the same material, or from different microwave suitable materials. The substrates are preferably made of alumina, but can also be made of quartz or other ceramics. The relative dielectric constant of the substrate materials is preferably larger than 3. More preferably, the relative dielectric constant is greater than 6. In another embodiment, the relative dielectric constant is around 20. The second substrate 102 is shown with a smaller thickness than the first substrate, however it may not always be the case. Arrangement as shown can be used for example, for reducing the distance between the feed 125 and the patch 105. This will also make the substrate sandwich thinner, however, both substrates 101 and 102 may even have similar thickness. The thicknesses are selected according to the antenna parameters desired. Substrate thicknesses readily available may be another parameter in deciding the other design parameters, for example to prevent requiring custom made substrate thickness(es), which may have impact on the price. The first substrate thickness can for example, be around 1 mm and the second substrate thickness around 0.63 mm. A skilled person will understand that thickness of the first substrate is chosen according to the antenna design. A thinner substrate means narrower bandwidth of the antenna and vice-versa. The thickness can hence be selected as suitable for antenna characteristics, such as bandwidth requirements.
Also on the fourth surface 122, additional other conductive profiles can be seen stacked with connection points shown as solder bumps 186. Said other conductive profiles can be used for at least resiliently clamping the first substrate 101 to the second substrate 102. For example, as shown, conductive wires 185 are soldered to these other profiles by using solder bumps 186. At least some of the conductive wires 185 can also be used for making electrical connection to a PCB or motherboard 180. For example, some of the conductive wires 185 may be used to transferring low-frequency or baseband signals between the electronics 150 on the microwave substrates and the motherboard 180.
The motherboard 180 can be a single layer PCB or a multi-layer PCB. Another advantage of the present teachings can be that the circuitry that does not require placement on a special substrate can be placed on the PCB 180. Usually the per area cost of the PCB 180 is lower than the per area cost of the substrates 101 or 102, such that non-critical circuitry can be placed on the PCB 180 to reduce the overall area of the substrates 101 and 102. Substrate critical circuitry such as microwave circuitry can for example be placed on the fourth surface 122. Some of the aspects that allow tighter density of components on the fourth surface 122 will be apparent in the following figures.
In an alternative way (not directly shown in figures here), the second substrate may be replaced by a dielectric layer deposited on top of the ground plane layer 130 on the second surface 112. Such a dielectric layer typically has a thickness of 35 um, but it may have other thicknesses according to the fabrication process chosen. The fabrication process is commonly a hybrid process, but other processes may be chosen according to requirements. The dielectric layer is typically deposited as a dielectric composition that produces in a hermetic film or layer when the substrate(s) is(are) fired. The dielectric composition, which is usually screen printed on the substrate, typically comprises suitable ceramic and glass compounds. Tracks such as those for forming the capacitive coupling feed 125, and for mounting circuitry such as one or more components 150, tracks 126, other printable/depositable/lithographically generated components, etc. may be placed as another metal layer on top of the dielectric layer. The dielectric layer and the another metal layer may also be deposited or printed using a thick-film process. A disadvantage of this alternative embodiment could be that at least one additional processing step is required on the first substrate 101 as compared to an embodiment with two substrates, for example that shown in
As will be appreciated in this case, as shown in
A short circuit between the pad 165 and the ground plane 130 may be avoided, for example, by making the periphery of the pad 165 slightly smaller as compared to the periphery of the opening 135. As will be understood, while dimensioning the opening 135 with respect to the pad 165, it can be prudent to take into account the alignment tolerances between the first substrate 101 and the second substrate 102, for example, to prevent an undesired connection between the ground plane 130 and the pad 165. Alternatively, or in combination, a thin dielectric layer may be placed between the first substrate 101 and the second substrate 102 before sandwiching them, for isolating the pad 165 from the ground plane 130. This may be advantageous, for example, if the periphery of the opening 135 needs to be kept smallest possible for example, for minimizing intrusions in the ground plane 130. In this case, the periphery of the pad 165 may even be larger than that of the opening 135, without these being shorted as the thin dielectric layer will be isolating. In this case however, the overall thickness of the arrangement may slightly increase, the increase corresponding to the thickness of the thin dielectric layer and possibly further due to the third surface 121 not resting against the ground plane 130. In this embodiment, the second substrate 102 may even be made larger than the first substrate such that an additional PCB or motherboard 180 is avoided. The second substrate 102 may even be made as a multilayered PCB. In cases where a separate PCB 180 is required anyway, the second substrate 102 may still be made larger than the first substrate 101. In this case, the clamps 185 may for example, be soldered either on the third surface 121, or the fourth surface 122 using through holes in the second substrate 102, or even be soldered on both the third surface 121 and also on the fourth surface 122 using through holes in the second substrate 102. In another embodiment, the second substrate 102 may even be a flexible PCB. A skilled person will understand that a similar embodiment with the second substrate 102 replaced by a dielectric layer, for example as discussed previously, deposited on top of the ground plane 130 is possible here as well, although in this case since the dielectric layer is deposited upon the first substrate 101, the size of the dielectric layer remains within the periphery of the first substrate 101.
In further a variation (not shown in figures), instead of being realized on the third surface 121, the capacitive coupling pad 165 may be realized on the second surface 112, in the same layer as the ground plane 130. In this case, the coupling pad 165 is surrounded by the ground plane 130, but the pad 165 still conductively isolated from the ground plane 130, for example by a trench between the ground plane and the coupling pad 165. In such a case, the end of the via 161 that extends towards the third surface 121 can be provided with a solder bump or other resilient connecting means that establishes a conductive connection between the pad 165 and the via 161 once the antenna arrangement is assembled. Other resilient means can be a spring based mechanism, conductive foam, or such. In case when using solder bumps, the antenna may be assembled, for example by providing heat to the solder bump connected to the via 161 whilst the solder bump is held in contact with the pad 165 such that the solder bump melts and establishes a soldered connection between the pad 165 and the via 161. This variation is discussed in context of the arrangement equivalent to that shown in
Now referring to
The patch antenna 105 is shown in dashed lines as it is located on the first surface 111 which is the lower most surface in
The openings 135a and 135b essentially circular in profile and are used for allowing orthogonal feeding of the patch antenna 105 using the corresponding feeds or end portions 125a and 125b. The feeds, the first feed 125a and the second feed 125b are connected to their corresponding tracks, the first track 225a and the second track 225b respectively. The feeds or end portions are preferably larger than their respective tracks such that any visible overlap of the tracks with the ground plane is minimum—hence the capacitive coupling is being dominated by the end portions. The tracks 225a and 225b connect to the associated microwave circuitry (not shown in
It can further be stated that even though feeds 125a and 125b and their corresponding openings 135a and 135b are shown as circular in shape in
Reverting to
In practical manufacturing, the alignment between different layers as well as between the first substrate and the second substrate will need to have some tolerance. In other words, it is hard to manufacture a large volume of substrates or devices where each layer and/or substrates are perfectly aligned with respect to each other. As discussed previously, the capacitive coupling 145 depends upon the overlapping portion of the feed layer 125 and the patch antenna layer 105. More specifically referring to
In most cases it is preferable to have the ground plane 130 extending beyond the footprint of the patch antenna 105, for example to prevent back radiation. It is often desirable that the size of the ground plane 130 is twice the size of the patch 105. In reality it will also depend on how the patch 105 and the ground plane 130 are aligned with respect to each other.
The skilled person will also appreciate that the embodiments explained in this disclosure can be combined with each other to realize an antenna arrangement according to specific requirements. Discussion of an embodiment separately does not mean that the embodiment cannot be used with the rest of the examples or other embodiments presented herein.
References herein to prior art do not constitute an admission that such publications constitute part of the common general knowledge in the art in any country. The word “comprise”, and any variants thereof such as “comprising” and “comprises”, as used in the present disclosure including accompanying claims, are used in an inclusive sense, i.e., so as not to preclude the presence or addition of further features, except where the context requires otherwise due to explicit language or necessary implication.
To summarize, the present teachings relate to an antenna arrangement comprising a first substrate. The first substrate comprises a first surface and a second surface. The first surface and the second surface are the opposite sides of the first substrate. The antenna arrangement also comprises a second substrate. The second substrate comprises a third surface and a fourth surface. The third surface and the fourth surface are the opposite sides of the second substrate. The antenna arrangement also comprises a patch antenna being realized in a first electrically conductive material attached to the first surface. The antenna arrangement further comprises a ground plane being realized in a second electrically conductive material attached to the second surface, and at least two feeds realized in a third electrically conductive material arranged to be attached at least partially to the fourth surface. The patch antenna is arranged with respect to the ground plane so as to form a resonant antenna. The first substrate and the second substrate are configured to be held in close proximity or in contact such that the third surface is facing the second surface, and each of said at least two feeds are having an individual corresponding opening in the ground plane for capacitively coupling each of said at least two feeds to the patch antenna. The footprint of each of said at least two feeds is smaller than footprint of its corresponding opening in the ground plane, thereby resulting in the footprint or periphery of each of the at least two feeds being essentially enclosed within the footprint or periphery its corresponding opening, in the antenna arrangement. The feeds are preferably orthogonal feeds. The footprint is preferably essentially circular, but it can also be of any other shape, such as square, rectangle, or any other polygon. The signal paths preferably extend radially outwards from the corresponding feeds. As previously discussed, the at least two feeds are end portions of their respective conductive tracks. The conductive tracks being used for feeding signal to and/or from the patch antenna.
In a preferred embodiment, at least one of the first substrate and the second substrate is a microwave substrate. More preferably, at least the first substrate is a microwave substrate. In another embodiment, the second substrate is a general purpose PCB.
In another embodiment, at least one of the first electrically conductive material, the second electrically conductive material, and the third electrically conductive material comprises metal, preferably silver. In other words, at least one of the conductive layers is realized using a metal-based paste, preferably silver, and further preferably using a thick film process.
In another embodiment, the third electrically conductive material is also used for forming at least, a plurality of tracks, pad, or routing on the fourth surface.
In yet another embodiment, at least some RF circuitry is mounted on the fourth surface using the conductive layer deposited on the fourth surface.
In another embodiment, the first and the fourth surface have a plurality of pads distributed along the periphery of the first surface and the second surface respectively. The first substrate and the second substrate are held in close proximity by soldering a plurality clamps, each clamp extending between a pad on the periphery of the first surface and to a corresponding pad on the periphery of the fourth surface. In other words, each clamp is attached by preferably soldering its one end to a pad on the first surface periphery and its second end soldered on a corresponding pad on the fourth surface periphery such that the first substrate and the second substrate are at least resiliently biased to be held in close proximity by the plurality of clamps. Alternatively or in combination, the first substrate and the second substrate are held in close proximity by an adhesive, the adhesive bonding at least some portion of the second surface and/or ground plane to at least some portion of the third surface.
According to an embodiment, the thickness of the first substrate is around 1 mm, and/or the thickness of the second substrate is around 0.63 mm. In the preferred embodiment, at least one of the first electrically conductive material, the second electrically conductive material, and the third electrically conductive material is attached using a thick-film process. Alternatively or in combination, at least one of the materials is attached using a thin-film process.
According to another embodiment, each of said at least two feeds are connected to a capacitive coupling pad, the capacitive coupling pad being realized in a fourth electrically conductive material at least partially attached to the third surface.
Preferably, the fourth electrically conductive material is attached to the third surface. According to yet another embodiment, each of said at least two feeds is connected to its respective capacitive coupling pad. The capacitive coupling pad of each of the at least two feeds is realized in the second electrically conductive material attached to the second surface. As it will be appreciated also from previous discussion, the each capacitive coupling pad is conductively isolated from the ground plane.
In yet an embodiment, the second substrate is replaced by a dielectric layer such that the antenna arrangement comprises, a first substrate comprising a first surface and a second surface, the first surface and the second surface being opposite sides of the first substrate. A patch antenna being realized in a first electrically conductive material attached to the first surface. A ground plane being realized in a second electrically conductive material attached to the second surface. A dielectric layer attached to at least some portion of the ground plane and/or the second surface. At least two feeds realized in a third electrically conductive material attached at least partially to the dielectric layer. The patch antenna being arranged with respect to the ground plane so as to form a resonant antenna, and each of said at least two feeds are having an individual corresponding opening in the ground plane for capacitively coupling each of said at least two feeds to the patch antenna. The footprint of each of said at least two feeds is preferably smaller than footprint of its corresponding opening in the ground plane, thereby resulting in the footprint or periphery of each of the at least two feeds being essentially enclosed within the footprint or periphery its corresponding opening, in the antenna arrangement. The footprint is preferably essentially circular, but it can also be of any other shape, such as square, rectangle, or formed as any other polygon. Similarly as in above discussion, the at least two feeds are end portions of their respective conductive tracks. The conductive tracks being used for feeding signal to and/or from the patch antenna.
The present teachings also relate to a wireless device comprising the antenna arrangement as hereby disclosed.
Number | Date | Country | Kind |
---|---|---|---|
20170411 | Mar 2017 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/056337 | 3/14/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/167120 | 9/20/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5241321 | Tsao | Aug 1993 | A |
6054953 | Lindmark | Apr 2000 | A |
6903687 | Fink | Jun 2005 | B1 |
7091907 | Brachat | Aug 2006 | B2 |
8542151 | Lin | Sep 2013 | B2 |
8619003 | Dairiki | Dec 2013 | B2 |
10651138 | Kirino | May 2020 | B2 |
20030076259 | Zhang | Apr 2003 | A1 |
20040113840 | Gottwald et al. | Jun 2004 | A1 |
20050052321 | Lee et al. | Mar 2005 | A1 |
20070080864 | Channabasappa | Apr 2007 | A1 |
20090015483 | Liu | Jan 2009 | A1 |
20090256752 | Akkermans et al. | Oct 2009 | A1 |
20160261036 | Sato | Sep 2016 | A1 |
20160261039 | Parsche | Sep 2016 | A1 |
20170093041 | McMichael | Mar 2017 | A1 |
20180337456 | Liu et al. | Nov 2018 | A1 |
20200021017 | Kirknes | Jan 2020 | A1 |
20200161766 | Liu | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2218269 | Apr 1999 | CA |
104103906 | Oct 2014 | CN |
105552550 | May 2016 | CN |
0957535 | Nov 1999 | EP |
1160917 | Dec 2001 | EP |
H05-145327 | Jun 1993 | JP |
101014352 | Feb 2011 | KR |
WO-2012095358 | Jul 2012 | WO |
Entry |
---|
Taddei, Ruggero, “International Search Report” for PCT/EP2018/056337, dated Jun. 13, 2018, 5 pages. |
Singhal, Pallavi, et al.; “Rectangular Microstrip Patch Antenna Design at 3 GHz Using Probe Feed”; International Journal of Emerging Technology and Advanced Engineering, vol. 3, No. 11; Nov. 2013; pp. 421-425. |
Sotelo Bazan, Gustavo Adolfo; “Design of a Circularly Polarized Patch Antenna for Satellite Mobile Communications in L-Band”; http://hdl.handle.net/2099.1/11708; University Politècnica de Catalunya; Dec. 2010; 151 pages. |
Dastkhosh, Amir Reza, et al.; “A Wideband High-Gain Dual-Polarized Slot Array Patch Antenna for WiMAX Applications in 5.8 GHz”; International Journal of Antennas and Propagation, vol. 2012, Article Id 595290; Sep. 20, 2011; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20200058998 A1 | Feb 2020 | US |