The invention concerns a patch antenna, sometimes called a microstrip or stripline antenna, used in connection with an RFID, Radio Frequency IDentification, tag.
Numerous types of RFID tag are commercially available. A common type of RFID tag stores a small amount of data, such as an identifying number, and transmits the data to a nearby interrogating device, when the latter issues an interrogation signal.
In general, RFID tags can be viewed as containing four primary components. Three of the components are commonly fabricated in a single integrated circuit, IC, and they are: (1) a receiver, (2) a transmitter, both of which are sometimes termed a transceiver, and (3) memory to store data, such as the ID number stated above. The fourth component is an antenna, used to communicate with the interrogator.
In some designs, the antenna can be included in the IC, or fabricated on the same silicon wafer as the IC. The antenna can also be external to the IC.
In addition, other components can be present, to perform tasks such as (1) detecting an incoming interrogation signal, and in response launching a dormant tag into operation, (2) absorbing operating power from incoming rf radiation, (3) reading data in the memory and transmitting the data to the interrogator, and (4) discriminating an address in an incoming polling signal, to discern whether the interrogation signal is addressed to the RFID tag associated with the components, or to another RFID tag.
Some RFID tags are passive. They contain no power supply, and obtain operating power from rf energy delivered by the interrogator. Other RFID tags do contain power supplies, such as batteries of the size used in hearing aids. These latter RFID tags can not only transmit stored data, but they can also receive data from the interrogator, and can write the data received to memory in the RFID tag.
In general, passive devices do not receive and store incoming data but, of course, exceptions are possible.
The frequency of rf radiation used depends on the particular application of the RFID tags. For example, some tags use low-frequency radiation, in the AM or FM radio bands, which span roughly from 0.5 MHz to 150 MHz. Such radiation can pass through buildings and other structures. Using such radiation, one can read an RFID tag through a wall or building.
At higher frequencies, such as 1,000 MHz, the radiation begins to acquire the properties of visible light. Visible light will not penetrate walls and buildings. Using such high frequencies, one can only communicate with RFID tags which are within one's line-of-sight, with no intervening obstructions.
Further, at high frequencies, the presence of nearby conductive objects can interfere with operation of the RFID tags. While the detailed mechanism of the interference is complex, one can view the conductive objects as creating “echoes” of the rf signals. The echoes can jam communication. For example, the echoes can destructively add together, forming nulls where the net signal is zero. If the RFID tag or the interrogator is located at a null, no signal will be detected.
Therefore, when RFID tags using high-frequency radiation are used in the proximity of conductive objects, such as sea water or bodies of metal, problems can arise. As a specific example, problems are found when high-frequency RFID tags are used on steel shipping containers, particularly when multiple such containers are present.
An object of the invention is to provide an improved RFID tag, which can utilize high-frequency carrier frequencies, and operate in the presence of large conductive objects.
A further object of the invention is to use a patch antenna, also called a stripline antenna, in connection with an RFID tag.
A further object of the invention is to use a patch antenna in connection with an RFID tag, to allow the RFID tag to be attached to a steel shipping container.
A patch antenna is used in connection with an RFID tag, to accept incoming information, such as interrogation signals, and also to transmit data from the tag.
A feed line 6 is connected to the patch 3. Block 9 represents an RFID circuit, which contains the elements described in the Background of the Invention. Line 12 represents a ground line, which will be used to connect to a ground plane, later described.
Lines 6 and 12 are not connected together electrically, as shown by the schematic of
A film 24 of adhesive is placed adjacent the bottom side of the dielectric sheet 21. This adhesive is used to attach the dielectric sheet 21 to a metallic ground plane 27.
Ground plane 27 can take the form of a metallic sheet, or film, in which case
Leg 12A of line 12 forms a via, or layer-to-layer connection, between the RFID circuit 9 and the ground plane 27. Window 30, in sheet 21, and window 31, in layer 24, allow the leg 12A to pass through the respective layers, en route to the ground plane 27.
The pattern, indicated by dashed lines 48 on board 45, is etched in the copper on the upper side of the board 45, producing the structure 51, shown at the upper right part of the Figure. The ground plane 52 on the lower side of the board 45 is not etched.
A via 54 is formed, as indicated at the lower right of the Figure, which connects pad 55 to the ground plane 52. The via 54 can be formed by drilling from the bottom of the board to the pad 55, and filling the drilled hole with solder. The entire assembly can then be nickel-plated, to reduce corrosion, and to facilitate later soldering.
The RFID circuit 9, at the lower left of the Figure, which can take the form of a surface-mount integrated circuit, is connected to the line 6 and pad 55, as by soldering. Pad 55 corresponds to line 12 in
The entire assembly 57 of
It may be desirable to make electrical contact between the ground plane 52 and the container 59. This can be accomplished by, for example, abrading a spot (not shown) on the container 59, to remove paint, corrosion, and other unwanted materials. Then the assembly 57 is attached to the container 59, using a conductive adhesive, such as an epoxy containing a powdered metal, such as silver powder.
Rather, line 160 indicates the relative electric field strength E, at different angles. For example, the relative electric field strength at any point P2 on line L2 is represented by the length of arrow A2. The relative electric field strength at any point P3 on line L3, a similar distance from the antenna as point P2, is represented by the length of arrow A3. The relative strengths of the two electric fields is represented by the relative sizes of the two arrows.
It is commonly accepted that the agency in a generic patch antenna which causes radiation is the fringing electric field between the patch 203 and the ground plane 248. Line 250 represents the fringing field.
Consistent with this, one standard mode of feeding a signal to a patch antenna is shown in
The coaxial cable 250 is located at a position which is removed from the fringing field 250 of
In one form of the invention, the RFID circuit 209 occupies the position indicated in
This positioning is justified by the argument just given with regard to the coaxial cable 252 in
The RFID circuit 209 can be connected to the patch 203 and the ground plane 248 as indicated in
Under this arrangement, the RFID circuit 209 in
In another embodiment, the RFID circuit 209 can be embedded within the dielectric 221, as shown in
It is noted that RFID circuit 209 may take the form of a die cut from a silicon wafer. The RFID circuit is fabricated on that die. In general, the RFID circuit will be fabricated on the surface of the die. That is, the transistors, resistors, traces, and so on only penetrate one, or a few, microns into the die. Thus, a pad may be fabricated on the die, represented by dot D in
In some situations, as explained above, the ground plane 248 in
The upper part of the Figure shows a view of the bottom of the dielectric 221, as seen by eye E. Patch 203 and RFID circuit 209 are drawn in phantom at the top, because the dielectric 221 blocks their view.
Affixed to the bottom surface of the dielectric 221 is a conductive pad 290, which is connected to the RFID circuit 209, by line 12, which extends through the dielectric 221. The overall assembly of
That is, when the assembly is attached to the metallic container, the conductive wall of the container provides the function of the ground plane 27 in
Several pads 303 are shown. Many of these can be used for testing purposes, during manufacture of the RFID circuit 209. However, after manufacture, in one form of the invention, only two pads are used in the operative invention, namely, (1) a pad connecting to the signal lead, such as lead 6 in
The two pads which are used are labeled 303A and 303B in
One mode of operation of the invention is here emphasized. As explained above, one type of RFID tag obtains its operating power from incoming rf radiation, which is received by the tag's antenna. In the situation of
One explanation for this power flow is the reciprocity theorem of antenna theory. That theorem states, in simple terms, that an antenna which radiates an electric field represented by arrow A2, is also a good absorber of a similar incoming electric field A2. That is, an antenna which generates a field when energized, also becomes energized when a similar field is generated by an external source.
The Inventor points out that, in the power-absorption mode, the RFID circuit can be electrically shielded by the patch 203 from the incoming radiation, yet can derive power from that radiation. For example, the RFID circuit 209 in
Similarly, while RFID circuit 209 in
Since the patch 203 is conductive, the net field parallel to its surface, at the surface, must be zero. This is a standard boundary condition in electromagnetic theory. Thus, the RFID circuit 209, in being adjacent to the patch 203, sees a zero field component parallel with the patch 203, at the surface of the patch 203.
The component which is perpendicular to the patch 203 will be one of the fringing fields 250 in
Further, this calculation of field strength presumed that the charge density across the patch 203 is uniform, or that charge is present at point PA. That is not necessarily so.
One model for the patch antenna states that the charge density is concentrated at the edges of the patch, and is zero, or nearly so, in the central region of the patch. Thus, under this model, the electric field along path E in
Therefore, it can be said that, while the RFID circuit does not directly receive incoming radiation, it nevertheless can derive power from the antenna immersed in the radiation.
Definitional matters. A distinction is drawn between an “RFID tag,” and an “RFID circuit.” The former is operative to receive and transmit rf signals, and includes an antenna. The latter, the “RFID circuit,” contains an electrical circuit, probably an integrated circuit, but lacks an antenna.
Of course, “antenna” is used in a practical sense. If an RFID circuit, lacking an antenna, is sufficiently close to a device transmitting data at the frequency for which the RFID circuit is designed, the RFID circuit will pick up that data, using its internal wiring as antenna. Nevertheless, the separate antenna used in normal operation is absent.
The RFID circuit stores data, and acts as a radio transceiver, which transmits the data. It may perform other functions. It may continually transmit the data, or may do so only when prompted by a polling signal.
One definition of “RFID tag” is the combination of (1) an RFID circuit with (2) an antenna. That is, the RFID circuit is largely inoperative, without the antenna. (Again, as stated above, the internal conductive traces on the RFID circuit can broadcast RF signals, which can be picked up at short range, without an antenna. However, in ordinary usage, an added antenna is used.)
Another definition of “RFID tag” is a small device, which is ordinarily portable until attached to an object, and which stores a code or number, and transmits that code/number. It may transmit the code/number periodically, or may do so only when prompted by an interrogation signal. It may perform other functions.
“Small” means (1) at least smaller than a brief case measuring 20×18×2 inches. “Small” can further mean smaller than 3×4×0.5 inches. “Small” can further mean smaller than 1×1×0.2 inches.
One specific type of RFID tag is the passive type, which derives operating power from incoming radiation, and which is not self-powered.
A specific type of passive RFID tag is the type which performs a single function, namely, transmitting a number stored within it when prompted to do so by an interrogation signal.
The term “patch antenna” is a term-of-art. One definition is a section of a strip line, wherein one conductor of the strip line forms a ground plane, and the other conductor, smaller in area than the ground plane, acts as an antenna.
It is known that patch antennas need not be flat.
A specific form of the invention utilizes a patch antenna in connection with a non-self-powered, passive, RFID circuit, operating at frequencies above 900 MHz. As explained above, the ground plane of the patch may take the form of the conductive wall of a shipping container. In such a case, it is expected that the problem of signal nulls discussed above, and other problems caused by nearby conductive objects, will be reduced.
A type of trade-off is seen here. Patch antennas, in general, are characterized by narrow bandwidth, low efficiency, and low gain, compared with antennas commonly used with RFID tags, such as dipole antennas. However, these disadvantages can be offset by the elimination of the problems otherwise caused by the metallic shipping container to which the RFID is attached.
From another point of view, a self-powered RFID circuit can transmit a stronger signal than a passive RFID circuit, which would imply a higher signal-to-noise ratio, which would imply less significant interference from nearby reflective objects, compared with a passive device. Under this reasoning, the passive RFID circuit would benefit from the patch antenna more than would a self-powered RFID circuit, because the passive RFID is more subject to noise problems.
RFID tags sometimes contain printed labels. Such a label can overlay part, or all, of the dielectric sheet 21 in
Numerous substitutions and modifications can be undertaken without departing from the true spirit and scope of the invention. What is desired to be secured by Letters Patent is the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4068232 | Meyers et al. | Jan 1978 | A |
5552790 | Gunnarsson | Sep 1996 | A |
5945938 | Chia et al. | Aug 1999 | A |
5995048 | Smithgall et al. | Nov 1999 | A |
6215402 | Rao Kodukula et al. | Apr 2001 | B1 |
6281794 | Duan et al. | Aug 2001 | B1 |
6329915 | Brady et al. | Dec 2001 | B1 |
6342830 | Want et al. | Jan 2002 | B1 |
6816076 | Pomes | Nov 2004 | B2 |
6924688 | Beigel | Aug 2005 | B1 |
Number | Date | Country |
---|---|---|
1 055 943 | May 2000 | EP |
WO 9315417 | Aug 1993 | WO |
WO 0036572 | Jun 2000 | WO |
WO 0043952 | Jul 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060255946 A1 | Nov 2006 | US |