The present invention relates generally to equalization, detection and decoding techniques using the Soft-Output Viterbi Algorithm (SOVA).
A magnetic recording read channel converts an analog read channel into an estimate of the user data recorded on a magnetic medium. Read heads and magnetic media introduce noise and other distortions into the read signal. As the information densities in magnetic recording increase, the intersymbol interference (ISI) becomes more severe as well. In read channel chips, a Viterbi detector is typically used to detect the read data bits in the presence of intersymbol interference and noise.
The Soft-Output Viterbi Algorithm (SOVA) is a well known technique for generating soft decisions inside a Viterbi detector. A soft decision provides a detected bit with a corresponding reliability. These soft decisions can be used by an outer detector to improve the error rate performance of the overall system. For a more detailed discussion of SOVA detectors, see, for example, J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and its Applications,” IEEE Global Telecommunications Conference (GLOBECOM), vol. 3, 1680-1686 (November 1989). SOVA architectures exist for one-step trellises, where one soft decision is generated per clock cycle. SOVA detectors may be implemented, for example, in next-generation read channel systems, and data rates in excess of 2 Gigabits-per-second will have to be achieved. It is challenging to achieve such high data rates with existing SOVA architectures that consider one-step trellises.
A need therefore exists for a method and apparatus for performing SOVA detection at the high data rates that are required, for example, by evolving high-end storage applications. A further need exists for a method and apparatus for performing SOVA detection employing a multiple-step trellis.
Generally, a path metric difference computation unit is disclosed for computing path differences through a multiple-step trellis. According to one aspect of the invention, the disclosed path metric difference computation unit computes differences between paths through a multiple-step trellis, wherein a first of the plurality of paths is a winning path for each single-step-trellis period of a multiple-step-trellis cycle, a second of the plurality of paths is a winning path for a first single-step-trellis period and is a losing path for a second single-step-trellis period of a multiple-step-trellis cycle and a third of the plurality of paths is a losing path for a first single-step-trellis period and is a winning path for a second single-step-trellis period of a multiple-step-trellis cycle. The disclosed path metric difference computation unit comprises one or more path metric difference generators for generating a path metric difference Δ0 for a second single-step-trellis period of the multiple-step-trellis cycle based on a difference between the first path and the second path, and a path metric difference Δ−1 for a first single-step-trellis period of the multiple-step-trellis cycle based on a difference between the first path and the third path, wherein one or more of intermediate path metric values and intermediate path metric difference values are reused to generate one or more of the path metric differences Δ0 and Δ−1. The path metric differences Δ0 and Δ−1 can be used to compute reliabilities in a reliability unit.
The path metric difference computation unit optionally also includes a comparator to compare path metrics of the second path and a fourth path to identify the second path and a subtractor to determine the path metric difference Δ0 between the first and second paths. An output of the comparator comprises a selection signal, F, that is used, for example, to compute equivalence bits in a path metric comparison unit.
The path metric difference computation unit optionally also includes (i) a selector to select between the path metrics of the second and fourth paths to identify the second path based on a selection signal; (ii) a subtractor to determine the path metric difference Δ−1 between the first and third paths; (iii) one or more pipeline registers and wherein the first path is determined in a first multiple-step-trellis cycle and the path metric differences are generated in a subsequent multiple-step-trellis cycle; (iv) a comparator for determining a path metric for the first path into a state by comparing path metrics for path extensions into the state; and (v) one or more adders, comparators and selectors to perform an add-compare-select operation for a state to determine the first path.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
The present invention recognizes that the limitation on achievable data rates in a SOVA detector is overcome by employing a multiple-step trellis. The multiple-step trellis is obtained from a one-step trellis by collapsing transitions over multiple time steps into one. In other words, each transition in the multiple-step trellis corresponds to multiple transitions in the one-step trellis. For example, in an exemplary two-step trellis, each transition in the two-step trellis corresponds to two transitions in the original one-step trellis. SOVA detectors in accordance with the present invention can operate at data rates that are about twice the data rates of conventional designs that use one-step trellises. Even larger speed-ups are achievable for multiple-step trellises with step sizes larger than two.
The present invention is illustrated in the context of a two-step SOVA, where Viterbi detection is followed by reliability processing. For a discussion of suitable two-step SOVA architectures for one-step trellises, see, for example, O. J. Joeressen and H. Meyr, “A 40-Mb/s Soft-Output Viterbi Decoder,” IEEE J. Solid-State Circuits, vol. 30, 812-818 (July, 1995), and E. Yeo et al., “A 500-Mb/s Soft-Output Viterbi Decoder,” IEEE Journal of Solid-State Circuits, vol. 38, 1234-1241 (July, 2003). The present invention applies, however, to any SOVA implementation, as would be apparent to a person of ordinary skill in the art. For a discussion of suitable one-step SOVAs, see, for example, J. Hagenauer and P. Hoeher. “A Viterbi algorithm with Soft-Decision Outputs and its Applications.” IEEE Global Telecommunications Conference (GLOBECOM), vol. 3, 1680-1686 (November, 1989), and O. J. Joeressen et al., “High-Speed VLSI Architectures for Soft-Output Viterbi Decoding,” Journal of VLSI Signal Processing, vol. 8, 169-181 (1994), incorporated by reference herein. It is important to distinguish the terms “one-step SOVA” and “two-step SOVA” from the term “multiple-step trellis.” While the term “n-step SOVA” indicates the number of steps, n, required to perform Viterbi and reliability processing, the term “multiple-step trellis” indicates a trellis obtained from a one-step trellis by collapsing transitions over multiple time steps into one.
state(b−1b−2)→state(b0b−1).
In the second step of the two-step SOVA, the reliabilities for the bit decisions along the ML path 210 terminating in the starting state state(b0b−1) are updated. The reliability update depth is denoted by U.
Let b0′, b−1′, . . . denote the state bits for the ML path 210 that terminates in the starting state state (b0′,b−1′). Also, let {tilde over (b)}0, {tilde over (b)}−1, . . . denote the state bits for the competing, losing path 230 in
The absolute path metric difference between the ML path 210 and competing path 230 into the starting state, state(b0′,b−1′), is denoted by Δ0′. The U intermediate reliabilities for the bits b0′, b−1′, . . . , b−U+1′ that are updated using Δ0′ are denoted by R0,0′, R−1,0′, . . . , R−U+1,0′, respectively. The reliabilities are updated according to following rule:
where R−1,−1′, R−2,−1′, . . . , R−U+1,−1′ are the intermediate reliabilities that were updated in the previous clock cycle using the path metric difference Δ−1′ for the starting state state(b−1′,b−2′), and R−U+1′ is the final reliability for bit b−U+1′.
It can be seen from the updating formula that the reliability for bit b0′ is first initialized to infinity (R0,−1′=+∞). Then, as the starting state 250 for the ML path 210 moves from state(b0′,b−1′) to state(bU−1′,bU−2′), and as corresponding absolute path metric differences Δ0′ to ΔU−1′ become available, the reliability for bit b0′ is updated U times by using either the previous reliability, if the bit b0′ agrees with the bit of the respective competing path, or using the minimum of the path metric difference and previous reliability.
The updating of reliabilities is shown in
As previously indicated, the present invention increases the maximum data rate that may be achieved by a SOVA detector by transforming the original one-step trellis 400 into a multiple-step trellis 500, shown in
The BMU 710 is explained for the two-step trellis shown in
m(b0b−1b−2b−3)=[y−e(b0b−1b−2b−3)]2,
where the subtracted term e(b0b−1b−2b−3) is the ideal (noise-less) channel output under the condition that the state bit block (on which the ideal output depends) is b0b−1b−2b−3.
In each two-step-trellis clock cycle, each one-step-trellis branch metric is used as a summand in two distinct two-step-trellis branch metrics. The two-step-trellis branch metric for the 5 state bits b0b−1b−2b−3b−4, where b0 is the most recent bit at the later one-step-trellis period of the two-step-trellis cycle, is given by:
m
branch(b0b−1b−2b−3b−4)=m(b−1b−2b−3b−4)+m(b0b−1b−2b−3).
In addition, the exemplary two-step-trellis SOVA architecture 700 comprises an add-compare-select unit (ACSU) 900, discussed below in conjunction with
The BMU 710, ACSU 900, and SMU 1100 implement the first step of the two-step SOVA, i.e., maximum-likelihood sequence detection using the Viterbi algorithm. The second step of the two-step SOVA is implemented by the path comparison unit 1200, which computes the paths that compete with a respective win-win path, and the reliability update unit 1400, which updates the reliabilities for the ML path.
A conventional one-step-trellis SOVA implementation computes one absolute path metric difference per state at each (one-step-trellis) clock cycle, as described, e.g., in O. J. Joeressen and H. Meyr, “A 40 Mb/s Soft-Output Viterbi Decoder,” IEEE Journal of Solid-State Circuits, Vol. 30, 812-18 (July, 1995). The present invention recognizes that in the exemplary implementation for a two-step trellis, where two steps from the original one-step trellis 400 are processed at once, two path metric differences are computed per state at each (two-step-trellis) clock cycle. Thus, as discussed below in conjunction with
The path metric difference Δ0 for the second period of the two-step-trellis cycle, into the state associated with the one-step-trellis index n=0, is the difference between the win-win path segment 820-0 and the win-lose path segment 810-0. The path metric difference Δ−1 for the first period of the two-step-trellis cycle, into the respective state associated with the one-step-trellis index n=−1, is the difference between the win-win path segment 820-1 and the lose-win path segment 830-1.
In a conventional one-step-trellis SOVA implementation, the ACS generates a single ACS decision, c, indicating, for each state, which branch to trace back along the winning path through the trellis. According to an exemplary convention, a value of e=0 provides an indication to trace back the upper branch from a state. The present invention recognizes that in a two-step-trellis SOVA implementation, the ACS 900 needs to generate, for each two-step-trellis cycle, two-bit ACS decisions ef, indicating, for each two-step-trellis cycle, which branches to trace back along the win-win path through the trellis, where e corresponds to the first period and f to the second period of the two-step-trellis cycle. Thus, a two-bit ACS decision of ef=00 provides an indication to trace back the upper branches out of the state that terminates in the state defined by the 3-bit block b0b−1b−2=000 through the trellis 800 along the win-win path 820 to the state defined by the 3-bit block b−2b−3b−4=000.
Again, the path metric difference Δ0 for the second period of the two-step-trellis cycle is the difference between the win-win path segment 820-0 and the win-lose path segment 810-0. Similarly, the path metric difference Δ−1 for the first period of the two-step-trellis cycle is the difference between the win-win path segment 820-1 and the lose-win path segment 830-1. Thus, to compute the path metric differences, Δ0 and Δ−1, three different paths need to be distinguished (win-win path 820, win-lose path 810, and lose-win path 830). The two-bit ACS decisions ef, however, only allows two of these paths to be distinguished. The win-win path 820 can be identified using the two-bit ACS decision ef=00. The lose-win path 830 can be identified using the two-bit selection signal e
The best path, i.e., the win-win path 820 into state(b0b−1b−2) is given by the bit sequence b0b−1b−2b−3b−4=b0b−1b−2ef=00000.
The lose-win-path 830 is thus the path that lost to the win-win path 820 in the first period of the two-step-trellis cycle and then became part of the win-win path 820. This path 830 is given by the bit sequence b0b−1b−2b−3b−4=b0b−1b−2e
The win-lose-path 810 is the winning path into state(b1−1b−2ē) and the losing path into state(b0b−1b−2). Denote the one-step-trellis ACS decision for the two paths into state state(b−1b−2ē) by F. Then, the win-lose-path 810 can be traced back from state(b0b−1b−2) to state(b−1b−2ē) and then to state(b−2ēF). In the example of
The lose-lose-path 840 can be traced back from state(b0b−1b−2) to state(b−1b−2ē) and state(b−2ē
In summary, for each state(b0b−1b−2) two path metric differences Δ−1 and Δ0 are computed, the former for the first period and the latter for the second period of a two-step-trellis cycle. The lose-win path 830 can be traced back from state(b0b−1b−2) to state(b−2e
Returning to
m
path′(b0b−1b−2b−3b−4)=mpath(b−2b−3b−4)+mbranch(b0b−1b−2b−3b4),
where mpath(b−2b−3b−4) is the path metric for the winning path into state state(b−2b−3b−4) at the previous two-step-trellis cycle.
For each state, the ACSU performs the ACS operation to determine the winning path using a set of adders 910, a comparator 920 and a selector 930. For example, for state(000), the four path metrics for the path extensions into this state are computed as
m
path′(00000)=mpath(000)+mhrate(00000)
m
path′(00010)=mpath(010)+mhrate(00010)
m
path′(00001)=mpath(001)+mhrate(00001)
m
path′(00011)=mpath(011)+mhrate(00011)
The path metric for the winning path 820 into state(b0b−1b2) is determined with a 4-way comparison 920 among the path metrics for the 4 path extensions into this state, i.e., it is the minimum of the 4 values mpath′(b0b−1b−200), mpath′(b0b−1b−210), mpath′(b0b−1b−201), and mpath′(b0b−1b−211).
In the ACSU 900, the path metric differences Δ−1 and Δ0 are computed after the two-step-trellis ACS operation, as shown in
The win-lose path 810 and lose-lose path 840 are chosen using two 2-to-1 multiplexers 960, 965, based on the selection signal ē. This is equivalent to selecting the win-lose and lose-lose path 840 using two 4-to-1 multiplexers that are driven by the 2-bit selection signals ē0 and ē1 respectively. The two selected path metrics are compared by a comparator 970 to identify the path metric 975 of the win-lose path 810, and the corresponding ACS decision F is generated. The path metric 975 is selected by the selector 972. The path metric difference Δ0 is computed by a subtractor 980 that computes the absolute value of the difference between the path metric of the win-win path 820 and win-lose path 810.
In the ACSU 1000, the path metric differences Δ−1 and Δ0 are selected or computed after the two-step-trellis ACS operation, as shown in
Similarly, the path metric difference Δ0 is selected by a selector 1055 (controlled by selection logic 1050 that processes the first bit, c, of the 2-bit ACS decision ef and the selection signal F) that selects the output of the appropriate comparator 1020 that produced the absolute value of the difference between the path metric of the win-win path 820 and win-lose path 810.
The ACS decision F is generated in the ACSU 1000 as follows. The path metric difference between the win-win path 820 and win-lose path 810 and the path metric difference between the win-win-path 820 and the lose-lose path 840 are chosen using two selectors 1060, 1065, each of which is controlled by selection logic that processes the 2-bit ACS decision ef. The two selected path metric differences are compared by a comparator 1070 to generate the corresponding ACS decision F.
The ML path 820 is the path with the overall minimum path metric. The survivor bits {circumflex over (b)}−D+2 and {circumflex over (b)}−D+1 that correspond to the state with the overall minimum path metric are provided to the delay buffer D1 (
As previously indicated, the two-step-trellis SOVA architecture 700 of
The ACS decisions e, f, F and the path metric differences Δ−1, Δ0 for all states are also delayed in the delay buffers D2. The delay of D2 is equal to the sum of the delay of the path memory and the buffer D1. The delay buffer D3 further delays the state bits that are outputted by the buffer D1. The delay of D3 is equal to the delay of the reliability update unit.
As previously indicated, the path comparison unit 1200, shown in
The survivor bits {circumflex over (b)}0, {circumflex over (b)}−1, {circumflex over (b)}−2, {circumflex over (b)}−3, {circumflex over (b)}−4, {circumflex over (b)}−5, . . . are generated as shown in
In
In addition, the top and middle rows of the path comparison units 1200-even, 1200-odd contain two multiplexers 1210 per one-step-trellis period and state that select the bits of the competing lose-win path 830 and win-lose path 810 using the selection signals e
A structure similar to the one shown in
Δ−1′ and Δ0′ are the delayed path metric differences for the ML path 820 into the starting state (see
q0,0′, q−1,−1′, q−1,0′, q−2,−1′, q−2,0′, q−3,−1′, q−3,0′, . . . are the equivalence bits for the ML path into the starting states state(b−1′b−2′b−3′) and state(b0′b−1′b−2′). These signals are selected among the equivalence bits computed in the path comparison unit (see
The reliabilities R0,0′, R−1,0′, R−2,0′, R−3,0′, R−4,0′, R−5,0′, . . . are updated based on Δ0′, whereas R−1,−1′, R−2,−1′, R−3,−1′, R−4,−1′, R−5,−1′ . . . are updated based on Δ−1′.
Rmax is a hard-wired value and denotes the maximum reliability value, e.g., Rmax=∞. The first reliabilities R0,0′ and R−1,−1′ consider Rmax as an initialization value in the exemplary embodiment.
After initialization, a functional element, such as the exemplary functional element 1410, comprises four functional units, such as the exemplary functional unit 1420, and two registers. Each functional unit 1420 comprises a comparator, a multiplexer and an AND gate. The top row of the reliability update unit 1400 computes reliability values for even one-step-trellis periods and the bottom row computes reliability values for odd one-step-trellis periods. For example, R0,0′ (computed in the previous two-step-trellis cycle) and Δ−1′ are used to compute R−2,−1′, under control of the corresponding equivalence bit q−2,−1′. Thereafter R−2,−1′ and Δ0′ are used to compute R−2,0′ under control of the corresponding equivalence bit q−2,0′. Thus, two functional units operate in series to first compute R−2,−1′ and then R−2,0′. In an analogous fashion, two functional units operate in series to first compute R−3,−1′ and then R−3,0′, by using the path metric differences, Δ−1′ and Δ0′, and corresponding equivalence bits. In summary, two groups of functional units operate in parallel to compute the reliability values R−2,0′ and R−3,0′ for the same two-step-trellis cycle, where each group comprises two functional units that operate in series.
The reliability unit 1400 computes the final reliabilities R−U+2′=R−U+2,0′ and R−U+1′=R−U+1,0′, where U is the reliability update length. Soft decisions Si′ are generated based on the final reliability values and corresponding bit decisions, e.g. according to the rule:
It is to be understood that the embodiments and variations shown and described herein are merely illustrative of the principles of this invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention.
The present application is a continuation of U.S. patent application Ser. No. 11/045,585, filed Jan. 28, 2005; and is related to U.S. patent application Ser. No. 10/853,087, entitled “Method and Apparatus for Multiple Step Viterbi Detection with Local Feedback,” filed on May 25, 2004; each incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 11045585 | Jan 2005 | US |
Child | 12547921 | US |