The disclosed embodiments are related to a patient support apparatus, and more particularly, to a patient support apparatus having physical therapy components.
Early mobility is a common theme for physical therapy applied to acute patients in an effort to accelerate their recovery in the Intensive Care Unit (ICU). Synonymous with early mobility is the quads or squat therapy, which involves the patient doing what is akin to deep knee bends. There are some devices that can accomplish quads or squat therapy, however none of these devices are integrated into an ICU bed and none of the devices reach beyond a simple quads type therapy. It is desired to incorporate physical therapy devices that engage more than just the quads, for example, the 3 basic muscle groups, quads, arms, and the core. By incorporating additional therapy capabilities, early mobility can be extended to patients that may have a disability preventing them from using a quad based physical therapy. In addition, by engaging additional muscle groups a patient's recovery may be accelerated.
The present disclosure includes one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter.
According to an aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may be in communication with the control module. An exercise apparatus may be coupled to the frame and may be in communication with the control module. The control module may be configured to control an operation of the exercise apparatus. The graphical user interface may display information related to the operation of the exercise apparatus.
In some embodiments, the graphical user interface may include user inputs that enable a user to input an exercise regimen into the control module. The control module may control the exercise apparatus based on the exercise regimen. The control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance.
Optionally, the graphical user interface may be positioned on the footboard. A motion switch may track the motion of the exercise apparatus. The motion switch may transmit data related to the motion of the exercise apparatus to the control module. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
It may be desired that the exercise apparatus includes foot pedals coupled to the footboard. The frame may include a foot section that lowers to enable use of the foot pedals.
It may be contemplated that the exercise apparatus includes a head section of the frame. The head section may raise and lower as a user performs sit ups. The head section may include a strain gauge to measure movement of the user relative to the head section. A motor may raise and lower the head section.
In some embodiments, the exercise apparatus may include a pair of arm levers. Each arm lever of the pair of arm levers may be coupled to the frame.
According to another aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may be communication with the control module. The graphical user interface may enable a user to input an exercise regimen into the control module. An exercise apparatus may be coupled to the frame and may be in communication with the control module. The control module may be configured to control an operation of the exercise apparatus. The control module may control the exercise apparatus based on the exercise regimen. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus based on the exercise regimen.
In some embodiments, the graphical user interface may be positioned on the footboard. The graphical user interface may be positioned on one of the pair of side rails.
Optionally, the control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance.
It may be contemplated that a motion switch tracks the motion of the exercise apparatus. The motion switch may transmit data related to the motion of the exercise apparatus to the control module. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
It may be desired that the exercise apparatus includes foot pedals coupled to the footboard. The frame may include a foot section that lowers to enable use of the foot pedals.
Optionally, the exercise apparatus may include a head section of the frame. The head section may raise and lower as a user performs sit ups. The head section may include a strain gauge to measure movement of the user relative to the head section. A motor may raise and lower the head section.
It may be contemplate that the exercise apparatus includes a pair of arm levers. Each arm lever of the pair of arm levers may be coupled to the frame.
According to yet another aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may be in communication with the control module. The graphical user interface may include user inputs that enable a user to input an exercise regimen into the control module. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance. An exercise apparatus may be coupled to the frame and may be in communication with the control module. The control module may be configured to control an operation of the exercise apparatus based on the exercise regimen. The control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen.
It may be desired that the graphical user interface is positioned on the footboard. The graphical user interface may positioned on one of the pair of side rails.
In some embodiments, a motion switch may track the motion of the exercise apparatus. The motion switch may transmit data related to the motion of the exercise apparatus to the control module. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
In some embodiments, the exercise apparatus may include foot pedals coupled to the footboard. The frame may include a foot section that lowers to enable use of the foot pedals.
Optionally, the exercise apparatus may include a head section of the frame. The head section may raise and lower as a user performs sit ups. The head section may include a strain gauge to measure movement of the user relative to the head section. A motor may raise and lower the head section.
It may be contemplated that the exercise apparatus includes a pair of arm levers. Each arm lever of the pair of arm levers may be coupled to the frame.
According to a further aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may positioned on at least one of the footboard and one of the pair of side rails and may be in communication with the control module. Foot pedals may be coupled to the foot board and may be in communication with the control module. The control module may be configured to control an operation of the foot pedals. The graphical user interface may display information related to the operation of the foot pedals.
Optionally, the frame may include a foot section that may lower to enable use of the foot pedals. The graphical user interface may include user inputs that may enable a user to input an exercise regimen into the control module. The control module may control the foot pedals based on the exercise regimen. The control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance.
It may be contemplated that a motion switch tracks the motion of the foot pedals. The motion switch may transmit data related to the motion of the foot pedals to the control module. The foot pedals may include a resistance control to control a resistance of the foot pedals. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
According to yet a further aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may be coupled to at least one of the footboard and one of the pair of side rails and may be in communication with the control module. An exercise apparatus may be coupled to the frame and may be in communication with the control module. The exercise apparatus may include a head section of the frame that may raise and lower as a user performs sit ups. The control module maybe configured to control an operation of the exercise apparatus. The graphical user interface may display information related to the operation of the exercise apparatus.
In some embodiments, the head section may include a strain gauge to measure movement of the user relative to the head section. A motor may raise and lower the head section.
Optionally, the graphical user interface may include user inputs that enable a user to input an exercise regimen into the control module. The control module may control the exercise apparatus based on the exercise regimen. The control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance.
It may be contemplated that a motion switch tracks the motion of the exercise apparatus. The motion switch may transmit data related to the motion of the exercise apparatus to the control module. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
According to an additional aspect of the disclosed embodiments, a patient support apparatus may include a frame. A headboard and footboard may be coupled to the frame. A pair of side rails may be coupled to the frame. A control module may be positioned on the frame. A graphical user interface may be coupled to at least one of the footboard and one of the pair of side rails and may be in communication with the control module. A pair of arm levers may be in communication with the control module. Each arm lever of the pair of arm levers may be coupled to the frame. The control module may be configured to control an operation of the exercise apparatus. The graphical user interface may display information related to the operation of the exercise apparatus.
It may be desired that the graphical user interface includes user inputs that enable a user to input an exercise regimen into the control module. The control module may control the exercise apparatus based on the exercise regimen. The control module may track the user's progress of the exercise regimen. The graphical user interface may display data related to the user's progress of the exercise regimen. The exercise regimen may include at least one of a number of sets, a number of repetitions, and a resistance.
Optionally, a motion switch may track the motion of the exercise apparatus. The motion switch may transmit data related to the motion of the exercise apparatus to the control module. The exercise apparatus may include a resistance control to control a resistance of the exercise apparatus. The resistance control may include a motor. The resistance control may include a resistance band. The resistance control may be controlled with user inputs on the graphical user interface.
Additional features, which alone or in combination with any other feature(s), such as those listed above and/or those listed in the claims, can comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
Frame 20 of bed 10 includes a base frame 28, an upper frame assembly 30 and a lift system 32 coupling upper frame assembly 30 to base frame 28. Lift system 32 is operable to raise, lower, and tilt upper frame assembly 30 relative to base frame 28. Bed 10 has a head end 24 and a foot end 26 that is spaced from head end 24 in a longitudinal dimension of bed 10. Hospital bed 10 further includes a footboard 12 at the foot end 26 and a headboard 14 at the head end 24. Base frame 28 includes wheels or casters 29 that roll along a floor (not shown) as bed 10 is moved from one location to another. A set of foot pedals 31 are coupled to base frame 28 and are used to brake and release casters 29.
Illustrative hospital bed 10 has four side rail assemblies coupled to upper frame assembly 30 as shown in
Upper frame assembly 30 includes a lift frame 34, a weigh frame 36 supported with respect to lift frame 34, and a patient support deck 38 carried by weigh frame 36. Each of frames 34, 36, 38, either individually of collectively, is considered to be an “upper frame” according to this disclosure. Thus, patient support apparatuses that omit one or more of frames 34, 36, 38 but yet still have an upper frame are within the scope of this disclosure. So, basically, the upper frame is considered to be the portion of bed frame 20 that is moved by lift system 32 relative to base frame 30, regardless of its configuration. Accordingly, upper frame assembly 30 is sometimes referred to herein as simply upper frame 30.
Patient support deck 38 is carried by weigh frame 36 and engages a bottom surface of mattress 22. Patient support deck 38 includes a head section 40, a seat section 42, a thigh section 43 and a foot section 44 in the illustrative example as shown in
In the illustrative embodiment, seat section 42 is fixed in position with respect to weigh frame 36 as patient support deck 38 moves between its various patient supporting positions including a horizontal position, shown in
Bed 10 includes one or more motors or actuators, which in some embodiments, comprise linear actuators with electric motors to move the various sections 40, 43, 44 relative to frame 36 and operate lift system 32 to raise, lower, and tilt upper frame assembly 30 relative to base frame 28. These actuators are well-known in the hospital bed art and thus, are not illustrated herein. Alternative actuators or motors contemplated by this disclosure include hydraulic cylinders and pneumatic cylinders, for example.
Each side rail 48 includes a first user control panel 66 coupled to the outward side of the associated barrier panel 54 and each side rail 48 includes a second user control panel 67 coupled to the inward side of the associated barrier panel 54. Control panel 66 includes various buttons that are used by a caregiver (not shown) to control associated functions of bed 10 and control panel 67 includes various buttons that are used by a patient (shown in
The control panel 70 includes a graphical user interface 80 that includes a display 82 having inputs 84. The display 82 illustrates screens for an exercise regimen that may include exercises for the patient's quads, arms, or core. That is, a caregiver may utilize the display 82 to set the patient's exercise regimen. The exercise regimen may be set on a timer to alert the patient to exercise at a particular time, for example every four hours. In some embodiments, the exercise regimen includes setting a time for performing a particular exercise, e.g. exercise quads for 5 minutes. The exercise regimen may also include setting a number of sets and a number of repetitions in each set. Also, the caregiver may set a resistance for each exercise. In some embodiments, a display 82 is also provided on the control panel 67 to enable the patient to set an exercise regimen.
The display 82 may also include information related to a bed position. For example, the display 82 may illustrate the bed 10 with references to the angles of each bed section, such as head section at 30 degrees. The display 82 may also display information related to a pressure of pressurized bladders in the mattress 22. In an embodiment where the bed 10 includes a weigh scale, the display 82 may display a weight of the patient. In an embodiment of the bed 10 that includes devices for detecting vital signs, the display 82 may include information related to the patient's vital signs. For example, the display 82 may illustrate information related to patient temperature, blood pressure, heart rate, etc.
Still referring to
Foot pedals 100 are positioned in a recess 92 of the footboard 12 to enable the patient to exercise their quads. The foot pedals 100 move between a stowed positioned (shown in
Referring to
The caregiver may notify the patient that it is time to exercise. Optionally, a timer may be set at the bed 10 or a remote computer and an alert may notify the patient that it is time to exercise. In some embodiments, the patient may begin the quad exercises without any set exercise regimen. In other embodiments, the patient's exercise regimen is entered at the bed 10 or a remote computer prior to starting the workout. The caregiver and/or patient enters a goal time, e.g. 5 minutes, into the interface 80. Other information may also be set in the exercise regimen, for example a goal heartrate or a resistance of the pedals 100. As described in more detail below, in some embodiments, the resistance of the pedals 100 may be altered to fit the patient's exercise needs.
During the exercise, the patient's exercise time and number of revolutions is tracked. A total mileage pedaled, calories burned, and speed may also be determined and displayed on the display 90. The display 90 also shows a total time exercising and a remaining time in the exercise, in some embodiments. Throughout the exercise, the display 90 displays reminders and encouragement to the patient to finish the exercise. After the set time, the display 90 notifies the patient that the exercise is complete. As described in more detail below, data related to the patient's exercise is stored for future review.
Referring to
The pedals 100 are also coupled to a motion switch 140 that tracks the motion of the pedals 100. The motion switch 140 determines how many revolutions of the pedals 100 have been completed. The motion switch 140 may also determine a speed of the pedals 100. Data collected by the motion switch 140 is transmitted to the control module 132. The data includes information related to the speed and revolutions of the pedals. The control module 132 transmits the data to the interface 80 to display the data on the display 82. The data may also be displayed on the display 90.
Referring now to
A lever 160 having a handle 162 extends from the housing 152. The patient grips the handle 162 during a rowing exercise. The lever 160 is configured to move within a pie-shaped recess 164 formed in the housing 152. The recess 164 extends from a first stop surface 166 to a second stop surface 168. The lever 160 is rotatably coupled to the housing 152 so that the lever 160 is movable between the first stop surface 166 to the second stop surface 168. As the lever 160 moves between the surfaces 166, 168, the lever 160 moves between an extended position (shown in
Referring now to
During the exercise, the patient's repetitions and sets are tracked. Calories burned and speed may also be determined and displayed on the display 90. The display 90 also shows a remaining sets and repetitions in the exercise. Throughout the exercise, the display 90 shows reminders and encouragement to the patient to finish the exercise. After the set time, the display 90 notifies the patient that the exercise is complete. As described in more detail below, data related to the patient's exercise is stored for future review.
Referring to
The levers 160 are also coupled to a motion switch 190 that tracks the motion of the levers 160. The motion switch 190 determines how many times the lever 160 is moved between the first stop surface 166 and the second stop surface 168. If the patient does not entirely move the lever 160 to one of the first stop surface 166 or the second stop surface 168, the display 82 or the display 90 may notify the patient that the repetition was not fully completed. Alternatively, motion by the lever 160 through a substantial portion of the arc, such as two-thirds or 80%, is counted as a completed repetition, in some embodiments. The motion switch 190 may also determine a speed of the levers 160. Data collected by the motion switch 190 is transmitted to the control module 182. The data includes information related to the number of repetitions, number of sets, and speed. The control module 182 transmits the data to the interface 80 to display the data on the display 82. The data may also be displayed on the display 90.
As illustrated in
Referring to
As illustrated in
A home screen 300 of the display 82 is illustrated in
A list of main function icons 330 is provided in the right side of the display 82. The main function icons 330 enable the patient and/or caregiver to set various functions of the bed 10. Scrolling icons 332 enable the user to scroll through the main function icons 330. A “home” icon 334 can be selected at any time to return the user to the home screen 300. A “bed adjust” icon 340 may be selected to populate a screen that enables the user to alter a position of the bed 10, e.g. raise the head section of the bed 10, lower the foot section of the bed 10, etc. A “sleep” icon 342 may be selected to indicate that the patient is asleep. The “sleep” icon 342 may temporarily suspend certain functions of the bed 10. For example, is the bed 10 is programmed to alert the patient every 2 hours to exercise, such an alert may be suspended while the “sleep” icon 342 is activated. An “alarm” icon 344 may activate an alarm. An “exercise” icon 350 populates various screens related to the patient's exercise regimen. For example, the “exercise” icon 350 may populate a physical therapy history screen 400, as illustrated in
Referring now to
The physical therapy screen 400 includes all of the main function icons 330 and a “back” button 420. A “history” icon 422 may be selected to illustrate the entire week history of exercise for the patient. Referring to
The bed 10 includes three therapeutic early mobility exercises. First, the normal footboard is replaced with a physical therapy footboard that incorporates a stowable bicycle type exercise apparatus 100. This footboard is connected to the control module to enable data tracking of the patients exercise. Second, a pair of “bolt on” rowing type exercise handles 150 allow for therapeutic exercise of the arms. The handles are also connected to the control module for data tracking. Finally, the head section utilizes the head section strain gauges or other suitable sensors to allow for a simulated therapeutic sit-up that benefits the core. Available through the graphical user interface 80, the head section can simulate a sit-up and then display the relevant sit-up data on a history screen. This allows the patient and the physical therapist to see how the patient is progressing.
The graphical user interface 80 is connected to the therapy accessories by means of electronic connections to the unit control block, actuators, motion switches and strain gauges. The controller or control circuitry of bed 10 is programmed to control these physical therapy devices, monitor and record performance data. This information is displayed to the caregiver via the graphical user interface 80 and also allows for interaction of physical therapy accessory settings. The display of the data consists of a discrete break down of the patient's performance with respect to the quads, arm, and core therapies. In addition the graphical user interface 80 allows for viewing of the data on a day-to-day, weekly, or monthly basis. Some embodiments also feature an intuitive “at a glance” novel layout of the presented info that could be more beneficial for users that don't necessarily like to view data solely on a bar graph.
The bed 10 offers early mobility exercise. In addition, by addressing additional muscle groups the patient's chances of benefiting from early mobility therapies are greatly increased. This translates to lower morbidity rates for patients confirmed by many early mobility studies. For care institutions, this concept translates to quicker recovery times for patients and all the revenue benefits that are associated. The bed 10 offers a safe and efficient solution to the hassles physical therapists face on a regular basis while trying to move highly acute patients to other devices or areas of the hospitals. Because the bed 10 offers mobility therapies incorporated into the patient platform, caregivers are more likely to use them. In addition, the availability of these exercises also allows the patient access to therapeutic exercises that can be done on their own. This could lead to a sense of empowerment allowing for better patient outcomes.
The advantages that arise from the software of the exercise devices are a unique way to track and display patient physical therapy data on a patient platform equipped with physical therapy capability. In addition, the ability of the software to capture, store and then send the data to the patient's electronic medical record allows for a better awareness of the patient's progress. Furthermore, capturing the data and sending it to the electronic medical record can reduce charting errors and allow for more accurate patient charting. This ability in turn can lead to earlier interventions if the patient's progress is flat or even negative. Finally, the ability to better monitor the patient's physical therapy state may lead to better patient outcomes.
Any theory, mechanism of operation, proof, or finding stated herein is meant to further enhance understanding of principles of the present disclosure and is not intended to make the present disclosure in any way dependent upon such theory, mechanism of operation, illustrative embodiment, proof, or finding. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described can be more desirable, it nonetheless cannot be necessary and embodiments lacking the same can be contemplated as within the scope of the disclosure, that scope being defined by the claims that follow.
In reading the claims it is intended that when words such as “a,” “an,” “at least one,” “at least a portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
It should be understood that only selected embodiments have been shown and described and that all possible alternatives, modifications, aspects, combinations, principles, variations, and equivalents that come within the spirit of the disclosure as defined herein or by any of the following claims are desired to be protected. While embodiments of the disclosure have been illustrated and described in detail in the drawings and foregoing description, the same are to be considered as illustrative and not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Additional alternatives, modifications and variations can be apparent to those skilled in the art. Also, while multiple inventive aspects and principles can have been presented, they need not be utilized in combination, and many combinations of aspects and principles are possible in light of the various embodiments provided above.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/836,150, filed Apr. 19, 2019, which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4169591 | Douglas | Oct 1979 | A |
4557480 | Dudley | Dec 1985 | A |
4615335 | Searcy | Oct 1986 | A |
4635931 | Braennstam | Jan 1987 | A |
4925184 | McJunkin, Jr. | May 1990 | A |
4976426 | Szabo et al. | Dec 1990 | A |
4979737 | Kock | Dec 1990 | A |
5005829 | Caruso | Apr 1991 | A |
5207628 | Graham | May 1993 | A |
5312315 | Mortensen et al. | May 1994 | A |
5820519 | Slenker | Oct 1998 | A |
5984844 | Royer | Nov 1999 | A |
6053850 | Martinez et al. | Apr 2000 | A |
6152855 | Dean, Jr. et al. | Nov 2000 | A |
6695795 | Knoll | Feb 2004 | B2 |
7883453 | Cooper | Feb 2011 | B1 |
7996080 | Hartman et al. | Aug 2011 | B1 |
8249714 | Hartman et al. | Aug 2012 | B1 |
8923978 | Hartman et al. | Dec 2014 | B1 |
8950026 | Valdemoros Tobia | Feb 2015 | B2 |
9038218 | Heil | May 2015 | B1 |
9044361 | Bell | Jun 2015 | B2 |
9492341 | Huster | Nov 2016 | B2 |
9586077 | Kabasso | Mar 2017 | B2 |
9603768 | Widmer et al. | Mar 2017 | B1 |
9687401 | Alford | Jun 2017 | B2 |
20030135129 | Cusimano et al. | Jul 2003 | A1 |
20030207734 | La Stayo et al. | Nov 2003 | A1 |
20040082438 | LaStayo et al. | Apr 2004 | A1 |
20040092372 | Clark, III | May 2004 | A1 |
20040157708 | Matthews | Aug 2004 | A1 |
20050251067 | Terry | Nov 2005 | A1 |
20060199700 | LaStayo et al. | Sep 2006 | A1 |
20110040215 | Knoll | Feb 2011 | A1 |
20110237407 | Kaleal et al. | Sep 2011 | A1 |
20140009917 | Westermann | Jan 2014 | A1 |
20160016036 | Barriskill et al. | Jan 2016 | A1 |
20160045383 | Soo | Feb 2016 | A1 |
20180092801 | Shockley, Jr. et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
02076293 | Oct 2002 | WO |
2013134835 | Sep 2013 | WO |
2018081680 | May 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20200330301 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62836150 | Apr 2019 | US |