This invention relates generally to the medical technology field, and more specifically to a new and useful patient interface system in the medical technology field.
Early detection of breast cancer and other types of cancer typically result in a higher survival rate. Despite a widely accepted standard of mammography screenings for breast cancer detection, there are many reasons that cancer is often not detected early. One reason is low participation in breast screening, as a result of factors such as fear of radiation and discomfort. In particular, the mammography procedure involves compression of the breast tissue between parallel plates to increase the X-ray image quality by providing a more uniform tissue thickness and stabilizing the tissue. However, this compression is typically uncomfortable, or even painful. Mammography has additional drawbacks, such as limited performance among women with dense breast tissue and a high rate of “false alarms” that lead to unnecessary biopsies that are collectively expensive and result in emotional duress in patients.
Ultrasound tomography is one imaging modality in development that may be a practical alternative to mammography. However, there is a need to create a new and useful patient interface system for scanning a volume of tissue in this manner that is safe and comfortable for patients. This invention provides such a new and useful patient interface system.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. System
As shown in
The patient interface system 100 functions to position a patient and volume of tissue in place for an image scan, in order to ensure proper patient positioning and to facilitate a reduction in the amount of unnecessary scans taken (e.g., due to patient misalignment). In one embodiment, as shown in
The patient interface system 100 is preferably modular to provide a customizable interface for various patients of differing builds, and comfortable for patients to encourage regular screenings and early cancer detection. The patient interface system 100 can alternatively be non-modular. Additionally, the patient interface system 100 can be used in conjunction with any suitable imaging modality, or for any suitable purpose involving substantially complete access to volume of tissue (e.g., for scanning using another imaging modality, for biopsy, for surgical procedures, etc.).
The base 110 functions to support the weight of a prone patient, and is preferably configured to provide a surface that spans the entire height and width of the patient, such that the patient's entire body can be supported within the surface of the base. However, the base 110 can alternatively be configured to provide a surface that is shorter that the height of the patient and/or narrower than the width of the patient, such that portions of the patient's body are not supported by the base 110. The base 110 preferably includes a planar portion 112 on which the patient can lie prone, and a frustoconical portion 120 with a sloped inner surface 122 configured to provide comfort and allow the volume of tissue to extend into the base aperture 114. As such, the frustoconical portion 120 preferably terminates at the base aperture 114, which provides an opening into the ultrasound imaging tank 102 configured to receive the volume of tissue and facilitate scanning of the volume of tissue. The base aperture 114 is preferably circular, but in alternative configurations, the base aperture 114 can alternatively be ellipsoidal, oblong, polygonal, or any other suitable shape. In variations, the frustoconical portion 120 and the base aperture 114 are preferably configured to receive and accommodate a single breast of the patient; however, in other variations, the base 110 can be configured to accommodate two breasts and/or multiple protruding tissues (e.g., a face, knees, buttocks, etc.) of the patient, for example, by way of multiple apertures, multiple frustoconical portions, multiple portions displaced from the planar portion 112 of the base, and/or any other suitable element(s) configured to accommodate multiple tissue volumes of the patient. Furthermore, the base 110 can be configured to accommodate a head region of a patient, for instance, with an aperture configured to receive and support a region of a patient's head or face (e.g., a coronal region, a sagittal region, a horizontal region, etc.), as the patient interfaces with the base 110 (e.g., in configuration wherein the patient is lying face down, lying on his/her side, lying face up, and/or in any other configuration).
The planar portion 112 and frustoconical portion 120 are preferably separate pieces configured to couple to one another, through complementary nesting (e.g., frustoconical portion 120 seated within a recessed cavity or on a shelf of the planar portion 112), interlocking joints, fasteners, by press fit, using adhesives, using magnets, using thermal bonding, or in any suitable manner. In variations wherein the planar portion 112 and the frustoconical portion 120 are configured to couple to one another, the planar portion 112 and the frustoconical portion 120 can thus be configured to permanently couple to each other, or can be configured to reversibly couple to each other. In variations involving reversible coupling, the frustoconical portion 120 can be a substitutable portion, such that different frustoconical portions 120 corresponding to different patient morphologies can be provided at the base 110 to enhance patient comfort. Alternatively, the frustoconical portion 120 can be integrally formed (e.g., physically coextensive, of unitary construction) with one or more parts of the planar portion 112 of the base 100, for example, by casting. Furthermore, in some variations, the base 110 can include any one or more of: a planar surface, a contoured surface (e.g., to a patient's body), frustoconical surface, and any other suitable surface of combination of surfaces to suitably support a particular patient size or shape.
In one variation, as shown in
In some embodiments, as shown in
The planar portion 112 of the base preferably includes a rigid material that is compliant with the U.S. Food and Drug Administration (FDA) guidelines; for instance, in a specific example, the planar portion 112 of the base includes Corian® surfaces (e.g., Corian® Whisper surfaces manufactured by DuPont™) that are compliant with FDA regulation 177.1010. The material is preferably biocompatible, non-porous, and sanitizable. Furthermore, the material of the planar portion 112 preferably does not interfere with ultrasound signals transmitted and received using a transducer proximal to the base 110 and/or the volume of tissue. In other variations, however, the material of the base 110 can be configured to facilitate reflection of transmitted ultrasound signals in order to enable enhanced analyses of acoustomechanical properties of the volume of tissue, and/or to function as a shield to protect a patient against, for example, harmful types of radiation (e.g., x-ray radiation). However, the planar portion 112 of the base can additionally or alternatively include any other suitable weight-supportive, biocompatible material.
The frustoconical portion 120 of the base 110 functions to provide a recessed space into which the membrane 150 of the support assembly 130 can deflect, particularly when the membrane 150 of the support assembly 130 supports the body wall of the patient. The frustoconical portion 120 is preferably configured to extend beyond a plane defined by the planar portion 112 of the base 110, and can at least partially define the base aperture 114 configured to receive the volume of tissue. As shown in
Similar to the planar portion 112 of the base 110, the frustoconical portion 120 preferably includes a rigid material that is compliant with the U.S. Food and Drug Administration (FDA) guidelines. In a specific example, the frustoconical portion 120 includes a polyethylene terephthalate glycol-modified (PETG) surface such as a surface manufactured by Curbell Plastics™ (e.g., Spectar®/Vivak® surfaces manufactured by Curbell Plastics™). In another specific example, the frustoconical portion 120 of the base 110 can include Corian® surfaces (e.g., Corian® Whisper surfaces manufactured by DuPont™ that are compliant with FDA regulation 177.1010. The material is preferably biocompatible, non-porous, and sanitizable. Furthermore, the material of the frustoconical portion 120 preferably does not interfere with ultrasound signals transmitted and received using a transducer proximal to the base 110 and/or the volume of tissue. In other variations, however, the material of the base 110 can be configured to facilitate reflection of transmitted ultrasound signals in order to enable enhanced analyses of acoustomechanical properties of the volume of tissue and/or to function as a shield to protect a patient against, for example, harmful types of radiation (e.g., x-ray radiation). However, the frustoconical portion 120 of the base 110 can additionally or alternatively include any other suitable weight-supportive, biocompatible material that can be processed to form the frustoconical portion 120.
In one specific example, as shown in
In some embodiments, the system 100 can additionally include a table topper 116 disposed on the planar portion 112 of the base 110. As shown in
The table topper 116 can additionally be one of a set of multiple table toppers of various sizes, such that a particular table topper can be substituted in a modular manner into the patient interface system 100 to optimally accommodate patients of various morphologies. In alternative variations, the table topper 116 can include a particulate and/or pliable filling that can be manipulated (e.g., molded) to accommodate different users. As such, the particulate filling can be pushed around or molded, for example, within a casing, in order to mold the table topper 116 to the patient's body. The table topper 116 preferably includes an external non-porous surface that can easily be disinfected or wiped clean between patients (e.g., vinyl). However, the table topper 116 can additionally or alternatively be additionally covered with a protective cover that can be disposed of and replaced by a new cover after a patient interfaces with the patient interface system 100.
In a specific example, the table topper 116 includes a polyurethane foam encased within a vinyl covering, wherein the polyurethane foam and the vinyl covering are compliant with the U.S. Food and Drug Administration (FDA) guidelines. The polyurethane foam is processed to be water repellant, and is biocompatible and sanitizable. Furthermore, the material of the table topper 116 preferably does not interfere with ultrasound signals transmitted and received using a transducer proximal to the base 110 and/or the volume of tissue. In other variations of the specific example, however, the material of the table topper 116 can be configured to facilitate reflection of transmitted ultrasound signals in order to enable enhanced analyses of acoustomechanical properties of the volume of tissue, and/or can function as a shield in variations of the system 100 configured to interface with imaging modalities involving, for example, more harmful forms of radiation (e.g., x-ray radiation). However, the table topper 116 can additionally or alternatively include any other suitable conforming, biocompatible material that facilitates patient comfort when interfacing with the system 100.
The support assembly 130 functions to simultaneously facilitate patient comfort and to allow a volume of tissue of the patient to extend through the base aperture 114 into a tank 102 for tissue scanning. The support assembly 130 includes a frame 140 and a membrane 150 disposed within the frame 140 and configured to conform to the body wall and deflect into the inner surface of the frustoconical portion 120 of the base 110. Preferably, the support assembly 130 is configured to couple to the base 110 such that a membrane aperture 152 of the membrane 150 is aligned with the base aperture 114, and such that a volume of tissue of the patient can pass through both the membrane aperture 152 and the base aperture 114. The support assembly 130 can be one of a set of multiple support assemblies that include membrane apertures of various sizes and/or locations relative to the frame 140, such that a particular support assembly 130 can be reversibly substituted in a modular manner into the patient interface system 100 to accommodate variations in patient morphology. For example, a first support assembly 130 can include a larger membrane aperture 152 for scanning a breast of a patient with larger breasts, and a second support assembly 130 can include a smaller membrane aperture 152 for scanning a breast of a patient with smaller breasts. In other variations, however, the support assembly 130 can be a non-substitutable element of the system 100, and can still accommodate variations in patient morphology in any other suitable manner. For instance, the support assembly 130 can include a set of pre-cut inserts (e.g., inserts with different sized apertures, inserts with different material properties, etc.) that can be positioned superior to or inferior to the membrane 150 and aligned relative to the membrane aperture 152 in any suitable manner, in order to accommodate different sized breasts without requiring the tension of the membrane to be adjusted. In still other variations, however, the support assembly 130 may not be configured to accommodate variations in patient morphology.
In another example, different support assemblies 130 can include different numbers and/or configurations of membrane apertures 152 for accommodating both breasts of a patient and/or other tissues of a patient. In an alternative variation, the patient interface system 100 includes a frame 140 and a membrane 150 that is one of a set of multiple membranes, such that a particular membrane 150 can be swapped in a modular manner to couple to the frame 140. In examples, a first membrane configured to be retained within the frame 140 can include a larger membrane aperture 152 for scanning a breast of a patient with larger breasts, and a second membrane configured to be substituted for the first membrane can include a smaller membrane aperture 152 for scanning a breast of a patient with smaller breasts. In another example of this alternative variation, membranes can include different numbers and/or configurations of membrane apertures 152 for accommodating both breasts of a patient and/or other tissues of a patient. Thus, in these alternative embodiments, the support assembly includes a single frame 140 and replaceable membranes 150 that are configured for different applications. However, the patient interface system 100 can include any suitable number of frames and/or membranes 150 that can be combined in any suitable manner to optimize position, comfort, and/or scanning access to the tissue for various patients.
The frame 140 of the support assembly 130 functions to provide structural support to the membrane 150 and couples the membrane 150 to the base 110. The frame 140 can additionally function to maintain the membrane 150 in tension at a peripheral portion of the membrane 150, such that the membrane 150 provides a counteracting force in response to the weight of the patient's body. However, in some variations, the frame 140 may not be configured to retain the membrane 150 in tension. The frame 140 is preferably annular, forms a closed perimeter about the membrane 150, and can be circular or ellipsoidal; however, the frame 140 can alternatively form an open perimeter about a portion of the membrane 150 and/or define any other suitable shape (e.g., regular polygonal shape, irregular polygonal shape, irregular curvilinear shape).
As shown in
The membrane 150 is preferably coupled in tension across the frame 140 of the support assembly 130 and configured to be positioned over the frustoconical portion 120 of the base 110 when the support assembly 130 is coupled to the base 110, and preferably defines a membrane aperture 152 that receives the volume of tissue. In one variation, the membrane 150 includes a flexible polymer such as urethane and can be coupled to the support assembly 130 using, for example, mechanical fasteners, an adhesive, coupling using magnetic elements, and/or thermal welding. However, the membrane 150 can alternatively include any suitable material and be coupled with any suitable fixation method. When a patient lies prone on the table surface and the volume of tissue (e.g., a volume of breast tissue) extends through the membrane aperture 152, the membrane 150 preferably deflects downward into the inner sloped surface 122 of the frustoconical portion 120 of the base 110 and conforms to the body wall around the volume of tissue, due to the weight of the patient on the support assembly 130. The membrane 150 is preferably one of a set of membranes with varying dimensions, such as in size, shape (e.g., circular, ellipsoidal, rectangular), number of apertures, and location (e.g., centered or off-centered relative to the frame 140 or relative to the base 110) of the membrane aperture 152. The set of membranes can additionally or alternatively vary in any suitable aspect, such as material type or thickness. For example, material type can vary to accommodate patients with skin contact allergies, or can be stronger (e.g., have a higher tensile modulus, have greater fracture resistance) to provide extra patient support without requiring a substantially thicker membrane 150.
As shown in
The bezel 144 is preferably proximal to a superior surface 149 of the frame base 142 by a series of rivets or other mechanical fasteners 141 distributed around the border of the support assembly 130. The rivets/mechanical fasteners can provide a compressive force that retains the membrane 150 between the bezel 144 and the frame base 142, and/or can pass through openings in the membrane 150 to lock the membrane in place relative to the bezel 144 and the frame base 142. The series of mechanical fasteners 141 are preferably arranged uniformly about the border of the support assembly 130, but can additionally or alternatively include fasteners that are clustered or randomly distributed about the border of the support assembly 130. For example, in one variation, a series of mechanical fasteners sandwiches the membrane 150 between the bezel 144 and the frame base 142, thereby securing the membrane 150 to the support assembly 130. However, the series of mechanical fasteners may not provide a compressive force, but may instead bias the bezel 144 toward the frame base 142 while coupling a peripheral portion of the membrane 150 between the bezel 144 and the frame base 142 (e.g., a fastener can be configured to pass through an opening in the membrane that is aligned with openings in the bezel 144 and the frame base 142). Additionally or alternatively, the bezel 144 can couple to the frame 140 with a snap fit, an adhesive, magnetic couplers, or any suitable fastening mechanism. The bezel 144 preferably includes the same material as the frame base 142, but can alternatively include one or more materials that are different from the frame base 142.
In one variation, as shown in
The amount of membrane tension can be fixed and dependent on, for example, the thickness of the tensioning ring 146, and/or of a spacer 148 configured to displace the tensioning ring 146 from the frame base 142, wherein an increased height of the spacer 148/tensioning ring 146 can result in greater tension and a decreased height of the spacer 148/tensioning ring 146 can result in reduced tension. In some variations, the tensioning ring 148 and/or the spacer 148 can be substitutable elements, such that the amount of tension across the membrane can be manipulated by using tensioning rings 146 and/or spacers 148 of different thicknesses. The spacer 148 is preferably annular and configured to match a footprint of the tensioning ring 146; however, the spacer 148 can alternatively be defined by any other suitable geometry and/or footprint. For example, the spacer 148 can define a non-continuous surface that abuts the tensioning ring 146 at certain locations. The amount of membrane tension can additionally or alternatively be adjustable, such as to maintain a particular desired amount of tension over repeated stress on the membrane 150 due to repeated uses of the support assembly 130. For example, the thickness or elevation of the tensioning ring 146 and/or of the spacer 148 can be adjusted (e.g., using a mechanism to expand the thickness of the tensioning ring 146 and/or the spacer 148) to obtain a suitable amount of membrane tension. The tensioning ring 146 and/or spacer 148 can include the same material as the frame base 142, but can alternatively include one or more materials that are different from the frame base 142. The support assembly 130 can, however, include any other suitable element(s) for maintaining and/or adjusting tension across the membrane 150.
In a variation omitting a spacer 148, the membrane 150 can be configured to be retained at one of a set of peripheral regions 157, as shown in
In one embodiment of the system 100, as shown in
In some variations, the electrical subsystem can include a conditioning module 164, which functions to preprocess signals generated by the pressure sensor array 160 prior to transmission to a processor 170. The conditioning module 164 preferably comprises signal conditioning elements, including one or more of: an analog-to-digital converter (e.g., to convert analog signals from the pressure sensor array 160), an amplifier, and a filter for processing signals prior to transmission. In some variations, the conditioning module 164 can include a microprocessor configured to direct signal conditioning functionalities of the conditioning module 138 and a voltage regulator configured to protect elements of the electrical subsystem from overvoltage and/or under-voltage states.
In one variation, the pressure sensor array 160 can be used to confirm application of approximately uniform pressure at the membrane 150 (e.g., at a peripheral portion of the membrane, across the membrane) from the patient weight. For example, the pressure sensor array 160 can be used to confirm that the body wall of the patient is seated as evenly on the membrane 150 as possible and the volume of tissue is extended as fully as possible through the membrane aperture 152, thereby facilitating a complete imaging scan of the volume of tissue. Alternatively, the pressure sensor array 160 can be calibrated to a certain non-uniform pressure distribution that provides a desired patient configuration relative to the patient interface system 100, which can be used to maintain any suitable position of the patient to achieve good scanning results. In still other variations, the pressure sensor array 160 can be used for any suitable purpose, or variations of the system can entirely omit the pressure sensor array 160. Furthermore, the electrical subsystem can additionally or alternatively include any other suitable electrical components.
In variations of the system 100 including a pressure sensor array 160, the system 100 can include a processor 170, which functions to receive a set of signals from the pressure sensor array 160 and/or the signal conditioning module 164, and to generate an analysis of the set of signals in order to guide patient placement at the patient interface system 100. The processor 170 can thus comprise a first module 171 configured to receive the set of signals from the pressure sensor array 160, and a second module 172 configured to generate an analysis from the set of signals. In a first example, the analysis can confirm a uniform pressure distribution resulting from the patient's weight at the patient interface system 100. In a second example, the analysis can confirm a desired non-uniform pressure distribution resulting from the patient's weight at the patient interface system 100. In another example, the analysis can confirm an undesired uniform pressure distribution and/or an undesired non-uniform pressure distribution resulting from the patient's weight at the patient interface system 100. A uniform pressure distribution and/or a non-uniform pressure distribution confirmed by the analysis can then be used to guide or adjust the patient's configuration (e.g., torso position, body wall position, etc.) in order to facilitate scanning.
In some variations, guidance can be provided, as facilitated by the analysis generated by the processor 170, using visual and/or audio means for transmitting information. In one example, the analysis can be used to generate a rendering at a user interface 185 including a display configured to depict a current position of the patient, and a desired position of the patient that will produce a more desired pressure distribution. In another example, the analysis can be used to provide audio or text-based instructions to the patient and/or an operator (e.g., using a visual display, using a speaker), wherein the instructions facilitate adjustment of the patient's configuration relative to the patient interface system 100. In another example, the instructions can provide suggested system 100 configurations including one or more of: tilt angles of the planar portion 112 and/or the frustoconical portion 120 of the base 110, expanded and/or contracted configurations of the base 110, appropriate membrane sizes, appropriate membrane aperture sizes, appropriate tensioning ring 146 and/or spacer 148 thicknesses to achieve a desired tension across the membrane 150, and any other suitable configuration of any element of the system 100. Furthermore, in some variations of the example, the instructions can be provided to a controller 178 configured to automatically adjust system element configurations (e.g., tilt angles of the planar portion 112 and/or the frustoconical portion 120 of the base 110, expanded and/or contracted configurations of the base 110, appropriate membrane sizes, appropriate membrane aperture sizes, appropriate tensioning ring 146 and/or spacer 148 thicknesses, etc.) using an actuation subsystem 179 configured to manipulate a configuration of at least one element of the system 100.
As shown in
Preferred embodiments of the preferred patient interface system 100 include every combination of the base 110, the support assembly 130, the processor 170, the controller 178, the actuation subsystem 179, and the restraining module 180, and their respective components, including the planar portion 112 and the frustoconical portion 120 of the base 110, the table topper 116, frame 140, the membrane 150, the tensioning ring 146, the spacer 148, the pressure sensor array 160, and the conditioning module 164 of the support assembly 130. Furthermore, the system 100 can omit any one or more of the above described elements. For example, variations of the system 100 can omit the pressure sensor array 160, and can additionally or alternatively omit the tensioning ring(s) 146, the spacer(s) 148, and any other element configured to facilitate tensioning of the membrane 150.
2. Exemplary Use
In an exemplary use of an embodiment of the patient interface system, the patient interface system positions the breast of a patient to be scanned for ultrasound tomography. This example implementation is for illustrative purposes only, and should not be construed as definitive or limiting in scope of the claimed invention. In this example, a system operator or other translates various measurements of the patient into a selection of a suitable support assembly to be coupled to the base. These measurements can include any one or more of: breast size, patient weight, patient height, torso width, torso length, and any other suitable measurement, and correspond to a support assembly with at least a particular size of membrane aperture, and possibly to a particular set of adjustments to the base. The patient lies prone, stomach-side down, on the cushion of the base, and is positioned such that the breast to be scanned extends through the membrane aperture (and the aligned one or more apertures associated with the base) and into an imaging tank filled with water and an ultrasound transducer. Data generated from a pressure sensor array embedded in a flexible sheet coupled to the membrane and analyzed by a processor can be used to confirm proper positioning of the patient, and/or can be used to reposition the patient relative to the patient interface system, in order to improve data quality captured using the ultrasound transducer. The processor can generate a rendering that is displayed at a user interface accessible to at least one of the patient and the system operator, in order to guide positioning and/or repositioning of the patient at the patient interface system. The ultrasound transducer can then be activated to scan the breast tissue while the patient interfaces with the patient interface system, and acoustic data from the transducer can be analyzed by the processor and/or any suitable other processor to generate renderings of the breast based on one or more acousto-mechanical parameters including: acoustic reflection, acoustic attenuation, acoustic speed, and combinations thereof.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a Continuation application of Ser. No. 14/208,181, filed Mar. 13, 2014, now U.S. Pat. No. 10,123,770, which claims the benefit of U.S. Provisional Application Ser. No. 61/778,985, filed Mar. 13, 2013, which are each incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3154067 | Stenstrom et al. | Oct 1964 | A |
3771355 | Sachs | Nov 1973 | A |
3881466 | Wilcox | May 1975 | A |
3886489 | Jones | May 1975 | A |
3925610 | French et al. | Dec 1975 | A |
4015836 | Redington et al. | Apr 1977 | A |
4028934 | Sollish | Jun 1977 | A |
4059010 | Sachs | Nov 1977 | A |
4075883 | Glover | Feb 1978 | A |
4105018 | Greenleaf et al. | Aug 1978 | A |
4144877 | Frei et al. | Mar 1979 | A |
4222274 | Johnson | Sep 1980 | A |
4250894 | Frei et al. | Feb 1981 | A |
4317369 | Johnson | Mar 1982 | A |
4328707 | Clement et al. | May 1982 | A |
4363326 | Kopel | Dec 1982 | A |
4412288 | Herman | Oct 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4433690 | Green et al. | Feb 1984 | A |
4481948 | Sole | Nov 1984 | A |
4509368 | Whiting et al. | Apr 1985 | A |
4515165 | Carroll | May 1985 | A |
4541436 | Hassler et al. | Sep 1985 | A |
4542744 | Barnes et al. | Sep 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4564019 | Miwa | Jan 1986 | A |
4606342 | Zamba et al. | Aug 1986 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4662222 | Johnson | May 1987 | A |
4671256 | Lemelson | Jun 1987 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4733562 | Saugeon | Mar 1988 | A |
4855911 | Lele et al. | Aug 1989 | A |
4858124 | Lizzi et al. | Aug 1989 | A |
4917096 | Englehart et al. | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4941474 | Pratt, Jr. | Jul 1990 | A |
5003979 | Merickel et al. | Apr 1991 | A |
5025792 | Hon et al. | Jun 1991 | A |
5029476 | Metala et al. | Jul 1991 | A |
RE33672 | Hirohide | Aug 1991 | E |
5095909 | Nakayama et al. | Mar 1992 | A |
5103129 | Slayton et al. | Apr 1992 | A |
5143069 | Kwon et al. | Sep 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5178147 | Ophir et al. | Jan 1993 | A |
5179455 | Garlick | Jan 1993 | A |
5212571 | Garlick et al. | May 1993 | A |
5255683 | Monaghan | Oct 1993 | A |
5260871 | Goldberg | Nov 1993 | A |
5267566 | Choucair et al. | Dec 1993 | A |
5268876 | Rachlin | Dec 1993 | A |
5269309 | Fort et al. | Dec 1993 | A |
5280788 | Janes et al. | Jan 1994 | A |
5289520 | Pellegrino et al. | Feb 1994 | A |
5296910 | Cole | Mar 1994 | A |
5297553 | Sliwa, Jr. et al. | Mar 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5305752 | Spivey et al. | Apr 1994 | A |
5318028 | Mitchell et al. | Jun 1994 | A |
5329817 | Garlick et al. | Jul 1994 | A |
5339282 | Kuhn et al. | Aug 1994 | A |
5349954 | Tiemann et al. | Sep 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5398691 | Martin et al. | Mar 1995 | A |
5413108 | Alfano | May 1995 | A |
5415164 | Faupel et al. | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5433202 | Mitchell et al. | Jul 1995 | A |
5463548 | Asada et al. | Oct 1995 | A |
5465722 | Fort et al. | Nov 1995 | A |
5474072 | Shmulewitz | Dec 1995 | A |
5479927 | Shmulewitz | Jan 1996 | A |
5485839 | Aida et al. | Jan 1996 | A |
5487387 | Trahey et al. | Jan 1996 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5513639 | Satomi et al. | May 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5546945 | Soldner | Aug 1996 | A |
5548658 | Ring et al. | Aug 1996 | A |
5553618 | Suzuki et al. | Sep 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5582173 | Li | Dec 1996 | A |
5588032 | Johnson et al. | Dec 1996 | A |
5588430 | Bova et al. | Dec 1996 | A |
5590653 | Aida et al. | Jan 1997 | A |
5590657 | Cain et al. | Jan 1997 | A |
5596992 | Haaland et al. | Jan 1997 | A |
5606971 | Sarvazyan | Mar 1997 | A |
5609152 | Pellegrino et al. | Mar 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5640956 | Getzinger et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5660185 | Shmulewitz et al. | Aug 1997 | A |
5664573 | Shmulewitz | Sep 1997 | A |
5673698 | Okada et al. | Oct 1997 | A |
5678565 | Sarvazyan | Oct 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5749364 | Sliwa, Jr. et al. | May 1998 | A |
5759162 | Oppelt et al. | Jun 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5766129 | Mochizuki | Jun 1998 | A |
5785663 | Sarvazyan | Jul 1998 | A |
5787049 | Bates | Jul 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5810731 | Sarvazyan et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5830133 | Osten et al. | Nov 1998 | A |
5833614 | Dodd et al. | Nov 1998 | A |
5833627 | Shmulewitz et al. | Nov 1998 | A |
5833633 | Sarvazyan | Nov 1998 | A |
5833634 | Laird et al. | Nov 1998 | A |
5836882 | Frazin | Nov 1998 | A |
5836894 | Sarvazyan | Nov 1998 | A |
5846202 | Ramamurthy et al. | Dec 1998 | A |
5851182 | Sahadevan | Dec 1998 | A |
5855554 | Schneider et al. | Jan 1999 | A |
5865167 | Godik | Feb 1999 | A |
5865743 | Godik | Feb 1999 | A |
5891619 | Zakim et al. | Apr 1999 | A |
5945674 | Dukor | Aug 1999 | A |
6002958 | Godik | Dec 1999 | A |
6005916 | Johnson et al. | Dec 1999 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6023632 | Wilk | Feb 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6056690 | Roberts | May 2000 | A |
6078677 | Dolleman et al. | Jun 2000 | A |
6083166 | Holdaway et al. | Jul 2000 | A |
6102857 | Kruger | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6117080 | Schwartz | Sep 2000 | A |
6135960 | Holmberg | Oct 2000 | A |
6146897 | Cohenford et al. | Nov 2000 | A |
6149441 | Pellegrino et al. | Nov 2000 | A |
6165734 | Garini et al. | Dec 2000 | A |
6190334 | Lasky et al. | Feb 2001 | B1 |
6235038 | Hunter et al. | May 2001 | B1 |
6242472 | Sekins et al. | Jun 2001 | B1 |
6245017 | Hashimoto et al. | Jun 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6292682 | Kruger | Sep 2001 | B1 |
6296489 | Blass et al. | Oct 2001 | B1 |
6317617 | Gilhuijs et al. | Nov 2001 | B1 |
6351660 | Burke et al. | Feb 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6385474 | Rather et al. | May 2002 | B1 |
6413219 | Avila et al. | Jul 2002 | B1 |
6425869 | Rafter et al. | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6450960 | Rather et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6475150 | Haddad | Nov 2002 | B2 |
6478739 | Hong | Nov 2002 | B1 |
6490469 | Candy | Dec 2002 | B2 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6527759 | Tachibana et al. | Mar 2003 | B1 |
6540678 | Rather et al. | Apr 2003 | B2 |
6559178 | Zamoyski | May 2003 | B1 |
6574499 | Dines et al. | Jun 2003 | B1 |
6587540 | Johnson et al. | Jul 2003 | B1 |
6612988 | Maor et al. | Sep 2003 | B2 |
6636584 | Johnson et al. | Oct 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6672165 | Rather et al. | Jan 2004 | B2 |
6716412 | Unger | Apr 2004 | B2 |
6728567 | Rather et al. | Apr 2004 | B2 |
6776760 | Marmarelis | Aug 2004 | B2 |
6785570 | Nir | Aug 2004 | B2 |
6810278 | Webber et al. | Oct 2004 | B2 |
6837854 | Moore et al. | Jan 2005 | B2 |
6883194 | Corbeil et al. | Apr 2005 | B2 |
6926672 | Moore et al. | Aug 2005 | B2 |
6939301 | Abdelhak | Sep 2005 | B2 |
6984210 | Chambers et al. | Jan 2006 | B2 |
7025725 | Dione et al. | Apr 2006 | B2 |
7179449 | Lanza et al. | Feb 2007 | B2 |
7285092 | Duric et al. | Oct 2007 | B2 |
7346203 | Turek et al. | Mar 2008 | B2 |
7497830 | Li | Mar 2009 | B2 |
7530951 | Fehre et al. | May 2009 | B2 |
7556602 | Wang et al. | Jul 2009 | B2 |
7570742 | Johnson et al. | Aug 2009 | B2 |
7742796 | Wayne et al. | Jun 2010 | B2 |
8272088 | Sliski et al. | Sep 2012 | B2 |
9649068 | Defreitas et al. | May 2017 | B2 |
10123770 | Szpak et al. | Nov 2018 | B2 |
20010029334 | Graumann et al. | Oct 2001 | A1 |
20010037075 | Candy | Nov 2001 | A1 |
20010051774 | Littrup et al. | Dec 2001 | A1 |
20020065466 | Rather et al. | May 2002 | A1 |
20020099290 | Haddad | Jul 2002 | A1 |
20020120196 | Dubberstein et al. | Aug 2002 | A1 |
20020131551 | Johnson et al. | Sep 2002 | A1 |
20030138053 | Candy et al. | Jul 2003 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040059265 | Candy et al. | Mar 2004 | A1 |
20040081273 | Ning | Apr 2004 | A1 |
20040122325 | Chambers et al. | Jun 2004 | A1 |
20040152986 | Fidel et al. | Aug 2004 | A1 |
20040167396 | Chambers et al. | Aug 2004 | A1 |
20040181154 | Peterson et al. | Sep 2004 | A1 |
20050165309 | Varghese et al. | Jul 2005 | A1 |
20050196025 | Schofield | Sep 2005 | A1 |
20050260745 | Domansky et al. | Nov 2005 | A1 |
20060009693 | Hanover et al. | Jan 2006 | A1 |
20060020205 | Kamiyama | Jan 2006 | A1 |
20060064014 | Falco et al. | Mar 2006 | A1 |
20060084859 | Johnson et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060287596 | Johnson et al. | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20070015949 | Kaiser | Jan 2007 | A1 |
20070167823 | Lee et al. | Jul 2007 | A1 |
20070282200 | Johnson et al. | Dec 2007 | A1 |
20080045864 | Candy et al. | Feb 2008 | A1 |
20080058682 | Azhari et al. | Mar 2008 | A1 |
20080218743 | Stetten et al. | Sep 2008 | A1 |
20080229832 | Huang et al. | Sep 2008 | A1 |
20080269812 | Gerber et al. | Oct 2008 | A1 |
20080275344 | Glide-Hurst et al. | Nov 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080294027 | Frinking et al. | Nov 2008 | A1 |
20080294043 | Johnson et al. | Nov 2008 | A1 |
20080319318 | Johnson et al. | Dec 2008 | A1 |
20090035218 | Ross et al. | Feb 2009 | A1 |
20090076379 | Hamill et al. | Mar 2009 | A1 |
20090129556 | Ahn et al. | May 2009 | A1 |
20090143674 | Nields et al. | Jun 2009 | A1 |
20100331699 | Yu et al. | Dec 2010 | A1 |
20110152685 | Misono | Jun 2011 | A1 |
20130267850 | Berman | Oct 2013 | A1 |
20140316269 | Zhang et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
3443295 | May 1996 | AU |
2324602 | Sep 1999 | CA |
0097917 | Jan 1984 | EP |
0284055 | Sep 1988 | EP |
0317049 | May 1989 | EP |
0320444 | Jun 1989 | EP |
0351610 | Jan 1990 | EP |
0538241 | Apr 1993 | EP |
0609922 | Aug 1994 | EP |
0614651 | Sep 1994 | EP |
0642762 | Mar 1995 | EP |
0661029 | Jul 1995 | EP |
0774276 | May 1997 | EP |
1063920 | Jan 2001 | EP |
2040642 | Aug 1980 | GB |
2005253827 | Sep 2005 | JP |
2007181679 | Jul 2007 | JP |
2009034521 | Feb 2009 | JP |
WO-9947046 | Sep 1999 | WO |
WO-0228350 | Apr 2002 | WO |
WO-0230288 | Apr 2002 | WO |
WO-2004061743 | Jul 2004 | WO |
WO-2005057467 | Jun 2005 | WO |
WO-2007023408 | Mar 2007 | WO |
Entry |
---|
Andre et al., “A New Consideration of Diffraction Computed Tomography for Breast Imaging: Studies in Phantoms and Patients,” Acoustical Imaging, 21, 379 (1995). |
Azhari et al., “Volumetric Imaging with Ultrasonic Spiral CT,” Radio!, 212, (1999), 270-275. |
Banihashemi, B. et al., “Ultrasound Imaging of Apoptosis in Tumor Response: Novel Preclinical Monitoring of Photodynamic Therapy Effects,” Cancer Research, vol. 68, No. 20, Oct. 15, 2008, pp. 8590-8596. |
Barlow et al., “Prospective Breast Cancer Risk Prediction Model for Women Undergoing Screening Mammography,” J. Nal'l Cancer Institute, 98(17): 1204-1214 (2006). |
Boone et al., “Dedicated Breast CT: Radiation Dose and Image Quality Evaluation,” Med Phys 221(3): 657-667, (2001). |
Borup et al., “Nonperturbative Diffraction Tomography Via Gauss-Newton Iteration Applied to the Scattering Integral Equation,” Ultrasonic Imaging 1, Academic Press, Inc., (1992), 69-85. |
Boston et al., “Estimation of the Content of Fat and Parenchyma in Breast Tissue Using MRI T1 Histograms and Phantoms,” MRI 23: 591-599, (2005). |
Boyd, “Quantitative Classification of Mammographic Densities and Breast Cancer Risk: Results from the Canadian National Breast Screening Study,” J Nat'l Cancer Institute, 87(9): 670-675, (1995). |
Byng et al., The Quantitative Analysis of Mammographic Densities,: Phys Med Biol 39 (1994), 1629-1638. |
Cadzow, “Signal enhancement—A composite property mapping algorithm,” IEEE Transactions on Acoustics, Speech and Signal Processing, 36(1), (1988), 49-62. |
Candy et al., “Signal Processing: The Model-Based Approach,” (McGraw Hill. 1986), pp. 178-213. |
Centerline, PortalVision section, Summer 2002 edition, published by Varian Medical Systems. |
Chan et al., An Agglomeration Multigrid Method for Unstructured Grids, Contemporary Mathematics, vol. 218, 1998. |
Chang et al., “Breast Density Analysis in 3-D Whole Breast Ultrasound Images,” IEEE Proc 28th IEEE EMBS Annual International Conference, (2006), 2795-2798. |
Chang et al., Kirchhoff migration of ultrasonic images, Materials evaluation, V59, N3, 413-417, 2001. |
Chelfouh et al., “Characterization of Urinary Calculi: in Vitro Study of ‘Twin king Artifact’ revealed by Color-Flow Sonography,” AJR Am. J. Roentgenol., 171(4), (1998), 1055-60. |
Chen et al., “Projecting Absolute Invasive Breast Cancer Risk in White Women with a Model that Includes Mammographic Density,” J. Nat'l Cancer Institute, 98(17), (2006), 1215-1226. |
Dean, “The Radon Transform and Some of Its Applications,” Krieger Publishing Company, Malabar, Florida (1993). |
Diederich et al., “The design of ultrasound applicators for interstitial hyperthermia,” Ultrasonics Symposium, Proc IEEE 1993 Baltimore, MD, USA, Oct. 31-Nov. 3, 1993, New York, NY, USA, 1215-1219. |
Drineas et al., “Distance matrix reconstruction from incomplete distance information for sensor network localization,” 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Sep. 2006, pp. 536-544. |
Duric et al., “Detection of Breast Cancer with Ultrasound Tomography: First Results with the Computed Ultrasound Risk Evaluation (CURE) Prototype,” Med Phys, 34(2), (2007). |
Dussik, “The Ultrasonic Field as a Medical Tool,” Amer J Phys Med, 33(1), (1954), 5-20. |
Fjield et al.. “A Parametric Study of the Concentric-Ring Transducer Design for MRI Guided Ultrasound Surgery,” J. Acoust. Soc. America, 100 (2), Pt. 1 (1996). |
Gervias et al., “Renal Cell Carcinoma: Clinical Experience and Technical Success with Radio-frequency Ablation of 42 Tumors,” Radiology, 226, (2003), 417-424. |
Glide, “A Novel Approach to Evaluating Breast Density Using Ultrasound Tomography,” Dissertation Graduate School of Wayne State University (2007). |
Glide et al., “Novel Approach to Evaluating Breast Density Utilizing Ultrasound Tomography,” Med Phys, 34(2), (2007), 744-753. |
Glide-Hurst, “A New Method for Quantitative Analysis of Mammographic Density,” Med Phys, 34(11), (2007), 4491-4498. |
Glide-Hurst et al., “A Novel Ultrasonic Method for Measuring Breast Density and Breast Cancer Risk,” Med Imaging 2008, Proc SPIE, vol. 6920, 69200Q. |
Glide-Hurst et al., “Volumetric breast density evaluation from ultrasound tomography images”, Medical Physics, vol. 35, 2008, pp. 3988-3997. |
Greenleaf, “Computerized Tomography with Ultrasound,” Proc IEEE, 71(3), (1983), 330-337. |
Greenleaf, et al. Artificial Cavitation Nuclei Significantly Enhance Acoustically Incuded Cell Transfection. Ultrasound Med & Biol, 24, (1998), 587-595. |
Greenleaf et al., “Introduction to Computer Ultrasound Tomography,” Computer Aided Tomography and Ultrasonics in Medicine, (1979), North-Holland, 125-136. |
Greenleaf et al., “Multidimensional Visualization of Ultrasonic Images,” J Acoust Soc Amer, 95 (1994), 2902. |
Greenleaf, “Tissue Characterization with Ultrasound: vol. II: Results and Applications,” CRC Press, Inc., Boca Raton, Florida, pp. 95-122. |
Harmuth, “Sequency Theory: Foundations and Applications, Advances in Electronics and Electron Physics,” (Academic Press, 1977) 18-95. |
Hayashi, “A New Method of Measuring in Vivo Sound Speed in the Reflection Mode,” J Clin Ultrasound, 16(2), (1988), 87-93. |
Haykin, “Neural Networks—A Comprehensive Foundation,” Prentice Hall, (1994), 236-284. |
Hebden et al., “Acoustically Modulated Electrical Impedance Tomography, ”Proc SPIE, 1231 (1990), 7-14. |
Jellins et al., “Velocity Compensation in Water-Coupled Breast Echography,” Ultrasonics 11(5), (1973), 223-6. |
Johnson et al., “Comparison of Inverse Scattering and Other Tomographic Imaging Algorithms Using Simulated and Tank Data for Modeling Subbottom Imaging Systems,” IEEE Oceans '93 Symposium, Nov. 1993, vol. 1, (1993), 458-462. |
Johnson et al., “Modeling of Inverse Scattering and Other Tomographic Algorithms in Conjunction with Wide Bandwidth Acoustic Transducer Arrays for Towed or Autonomous Sub-bottom Imaging Systems,” Proc. Mastering the Oceans Through Technology, Oceans Newport, Rhode Island, USA, Oct. 26-29, 1992, 294-299. |
Kaizer et al., “Uitrasonographically Defined Parenchymal Patterns of the Breast: Relationship to Mammographic Patterns and Other Risk Factors for Breast Cancer,” Brit J Radiology, 61(722), (1988), 118-24. |
Karssemeijer. “Automated Classification of Parenchymal Patterns in Mammograms,” Phys Med Biol, 43, (1998), 365-378. |
Kerlikowske et al., “Longitudinal Measurement of Clinical Mammographic Breast Density to Improve Estimation Breast Cancer Risk,” J. Nat'l Cancer Institute, 99(5), (2007), 386-395. |
Klimes, et al., Grid Travel-time Tracing: Second-order Method for the First Arrivals in Smooth Media, PAGEOPH, 1996, 148:539-63. |
Knapp et al., “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech and Signal Processing, 24(4), (1976), 320-327. |
Kossoff et al., “Average Velocity of Ultrasound in the Human Female Breast,” J Acoust Soc America, 53(6), (1973), 1730-6. |
Li et al., Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation, 2008 International Conference on BioMedical Engineering and Informatics, IEEE Computer Society, 708-712. |
Li et al., Comparison of Ultrasound Attenuation Tomography Methods for Breast Imaging, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, Proc. of SPIE., vol. 6920, 692015-(1-9), 2008. |
Li et al., “In Vivo Breast Sound-Speed Imaging with Ultrasound Tomography”, Ultrasound in Med & Bioi., vol. 35, No. 10, 2009, pp. 1615-1628. |
Li et al., Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging, Med. Phys. 37(5), May 2010, 2233-2246. |
Li et al., “Clinical Breast Imaging Using Sound-Speed Reconstructions of Ultrasound Tomography Data,” Med Imaging 2008, Proc SPIE, vol. 6920, 6920009. |
Louvar et al., “Correlation of Color Doppler Flow in the Prostate with Tissue Microvascularity,” Cancer 1 :83(1), (1998), 135-40. |
Marias, “Automatic Labelling and BI-RADS Characterisation of Mammogram Densities,” Proc 2005 IEEE, Sep. 1-4, 2005, pp. 6394-6398. |
Mast, “Empirical Relationships Between Acoustic Parameters in Human Soft Tissues,” Acoust Research Letters Online, Nov. 16, 2000, pp. 37-42. |
Masugata et al., “Relationship Between Myocardial Tissue Density Measured by Microgravimetry and Sound Speed Measured by Acoustic Microscopy,” Ultrasound in Med & Biol, 25(9), (1999), 1459-1463. |
McCormick et al., Multigrid Solution of a Linearized, regularized least-squares problem in electrical impedance tomography, Inverse Problems 9, 1993, 697-713. |
Metz, “Basic Principles of ROC Analysis”; Semin Nucl Med., Oct. 8, 1978 (4):283-98. |
Metz, “Receiver Operating Characteristic Analysis: A Tool for the Quantitative Evaluation of Observer Performance and Imaging Systems,” J Am Coli Radiol 2006; 3: 413-422. |
Metz, “ROC Methodology in Radiologic Imaging”; Invest Radiol., Sep. 21, 1986, (9):720-33. |
Miller et al., “Sonoporation of Cultured Cells in the Rotating Tube Exposure System,” Ultrasound Med & Biol, 25 (1999), 143-149. |
Mitchell, An Introduction to Genetic Algorithms, pp. 8-11. 35-78. 155-179 (MIT Press, 1996). |
Nelson et al., “Interactive Acquisition, Analysis and Visualization of Sonographic Volume Data,” International J Imaging Sys and Tech, 8(26), (1997), 26-37. |
Noble et al., “Spleen Hemostasis Using High-Intensity Ultrasound: Survival and Healing,” J. Trauma Injury, Infection, and Critical Care, 53(6), (2002), 1115-1120. |
“Notice of Allowance dated Jul. 10, 2018 for U.S. Appl. No. 14/208,181”. |
Office action dated Sep. 20, 2016 for U.S. Appl. No. 14/208,181. |
Office action dated Nov. 19, 2015 for U.S. Appl. No. 14/208,181. |
Oh et al., Multigrid Tomographic Inversion with Variable Resolution Data and Image Spaces, IEEE Transactions on Image Proessing, vol. 15, No. 9, Sep. 2006. |
Ophir et al., “Eiastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues,” Proc Instn Mech Engrs, 213(Part H), (1999), 203-233. |
Palomares et al., “Mammographic Density Correlation with Gail Model Breast Cancer Risk Estimates and Component Risk Factors,” Cancer Epidemiol Biomarkers Prev, 15(7), (2006), 1324-1330. |
Quan et al., Sound-speed Tomography using First-arrival Transmission Ultrasound for a Ring Array, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, Proc. of SPIE, vol. 6513. |
Robinson et al., “Quantitative Sonography,” Ultrasound in Med & Biol, 12(7): 555-65, (1986). |
Schmidt et al., “Modification of Kirchhoff Migration with Variable Sound Speed and Attenuation for Tomographic Imaging of the Breast,” Proc. of SPIE, vol. 7968, Mar. 25, 2011. |
Sehgal et al., “Visualization of Breast Calcification by Acoustic Resonance Imaging,” Radiology Supplement, 84th Scientific Assembly and Annual Meeting, Nov. 29-Dec. 4, 1998 presented in McCormick Place, Chicago, Illinois, vol. 209, listing: 1150 (1998). |
Shi et al., “Effects of Pressure Changes on Harmonic and Subharmonic Response of US Contrast Microbubbles,” 84th Scientific Assembly and Annual Meeting, Nov. 29-Dec. 4, 1998, presented in McCormick Place, Chicago, Illinois, vol. 209, listing: 1154 (1998). |
Singh, Seema et al., “Color Doppler Ultrasound as an Objective Assessment Tool for Chemotherapeutic in Response Advanced Breast Cancer,” Breast Cancer, 2005, vol. 12, No. 1, 2005, pp. 45-51. |
Teubner et al., “Comparative Studies of Various Echomammography,” Ultraschall in Der Medizin, 3(3) (1982), 109-18, Thieme Verlag, Stuttgart/New York. |
U.S. Appl. No. 14/208,181 Office Action dated Nov. 2, 2018. |
Vaezy et al., “Real-Time Visualization of High-Intensity Focused Ultrasound Treatment Using Ultrasound Imaging,” Ultrasound in Med & Biol, 27(1), (2001), 33-42. |
Walach et al., Local Tissue Attenuation Images Based on Pulsed-Echo Ultrasound Scans, IEEE Transactions on Biomedical Engineering, vol. 36. No. 2, Feb. 1989. |
Wei et al., “Correlation Between Mammographic Density and Volumetric Fibroglandular Tissue Estimated on Breast MR Images,” Med Phys, 31(4), (2004), 933-942. |
Weiwad et al., “Direct Measurement of Sound Velocity in Various Specimens of Breast Tissue,” Invest Radio!, 35(12), (2000), 721-6. |
Wiskin et al., “Full Inverse Scattering vs. Born-like Approximation for Imaging in a Stratified Ocean,” Proc. Eng. In Harmony with the Ocean, (Oceans '93), Victoria, British Columbia (Oct. 1993). |
Wolfe, “Risk for Breast Cancer Development Determined by Mammographic Parenchymal Pattern,” Cancer, 37(5), (1976), 2486-2493. |
Xu, et al., “A Study of 3-Way Image Fusion for Characterizing Acoustic Properties of Breast Tissue,” Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, Feb. 16, 2008. |
Yaffe, “Breast Cancer Risk and Measured Mammographic Density,” Eur J Cancer Prevention, 7(1), (1998), S47-55. |
Yaman, C. et al., “Three-Dimensional Ultrasound to Assess the Response to Treatment in Gynecological Malignancies,” Gynecologic Oncology, Academic Press, vol. 97, No. 2, May 1, 2005, pp. 665-668. |
Yankelevitz et al., “Small Pulmonary Nodules: Volumetrically Determined Growth Rates Based on CT Evaluation,” Radiology, 217, (2000), 251-256. |
Zhang et al., A Comparison of Material Classification Techniques for Ultrasound Inverse Imaging, J. Acoust. Soc. Am., 111 (1), Pt. 1, Jan. 2002. |
Number | Date | Country | |
---|---|---|---|
20190038255 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
61778985 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14208181 | Mar 2014 | US |
Child | 16155276 | US |