Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference and made a part of the present disclosure.
The present invention generally relates to patient interfaces for respiratory therapy. More particularly, certain aspects of the present disclosure relate to various systems and methods for venting gases from patient interfaces.
The treatment of obstructive sleep apnea (OSA) by continuous positive airway pressure (CPAP) flow generator systems involves the continuous delivery of pressurized gases to the airways of a human via a conduit and an interface (e.g., a mask). Typically the interface creates at least a substantial seal on or around the nose and/or the mouth. As the patient breathes, carbon dioxide gases can progressively accumulate in the delivery system, which if left over a period of time, can become hazardous to the patient.
One solution to this issue is to provide washout vents, also known as bias flow vents, which enable a flow of gases to be exhausted to the atmosphere and provides a mechanism for reducing or removing the accumulation of carbon dioxide gases.
The vents, while providing a mechanism for removing carbon dioxide, also have trade-offs. The vents can create a disturbance for the patient and/or the patient's bed partner. This disturbance typically manifests itself in two forms: noise and the creation of a draft.
The creation of practical and not-so-practical solutions to the drawbacks of washout vents has been the subject of considerable development effort from numerous organisations which has resulted in numerous patents. However, a need still exists for improved designs.
It is an object of the present disclosure to provide one or more constructions and/or methods that will at least go some way towards improving on the above or that will at least provide the public or the medical profession with a useful choice. The following is a description of a number of practical options to improve current designs.
In accordance with at least one of the embodiments disclosed herein, a patient interface is provided comprising a body portion sized and shaped to surround the nose and/or mouth of a user and adapted to create at least a substantial seal with the user's face, a coupling that permits the patient interface to be coupled to a gas delivery system, and a vent that allows the passage of gas from an interior of the body portion to an exterior of the body portion, the vent comprising a plurality of exit holes arranged in an array.
A diameter of each of the plurality of exit holes can be between about 0.5 mm and about 1.5 mm. A length to diameter ratio of each of the plurality of exit holes can be at least about 2. A ratio of a pitch distance between each of the plurality of exit holes to the diameter can be at least about 4. An exit radius of each of the plurality of exit holes can be at least about 0.5 mm. An entry radius of each of the plurality of exit holes can be at least about 0.5 mm.
In some configurations, the gas that exits the vent enters directly into a plenum chamber defined by the patient interface. The plenum chamber can be defined between the body portion and a frame portion or a shroud of the patient interface. The plenum space can also contain a fibrous media.
In some configurations, the vent is located on the coupling and the plenum chamber is defined between the coupling and a shroud that at least partially surrounds the coupling. The coupling can be a ball-jointed elbow or a swiveling joint.
In some configurations, the gas that exits the vent enters a diffuser. The diffuser can be frustoconical in shape. The diffuser can have an expansion angle of at least about 4 degrees and/or less than or equal to about 8 degrees. The length to root diameter ratio of the diffuser can be at least about 1.5 to 1.
In accordance with at least one of the embodiments disclosed herein, a patient interface is provided comprising a body portion sized and shaped to surround the nose and/or mouth of a user and adapted to create at least a substantial seal with the user's face, a coupling that permits the patient interface to be coupled to a gas delivery system, a vent that allows the passage of gas from an interior of the body portion to an exterior of the body portion, the vent comprising a plurality of exit holes arranged in an array, and a plenum chamber that receives the gas exiting the vent.
In some configurations, the plenum chamber is configured to return the exit gas flow back on itself. The plenum chamber can have a cone angle of between about 4 degrees and about 8 degrees. The plenum chamber can have a length to root diameter ratio of at least about 1.5 to 1.
In some configurations, the plenum chamber is defined between the body portion and a frame portion or a shroud of the patient interface. The frame portion or the shroud can be positioned between about 3 to about 5 hole diameters from the vent. The frame portion or the shroud can define a textured surface facing the vent.
In some configurations, the vent is located on the coupling and the plenum chamber is defined between the coupling and a shroud that at least partially surrounds the coupling. The coupling can be a ball-jointed elbow. The shroud can be positioned between about 3 to about 5 hole diameters from the vent. The shroud can define a textured surface facing the vent.
In some configurations, the plenum chamber re-directs the gas flow through an angle of between 45 degrees and about 135 degrees. The plenum chamber at the exit point of the gas flow to ambient can form a sharp corner between the inner surface and the adjoining surface. The plenum chamber at the exit point of the gas flow to ambient can have a radius applied to the corner between the inner surface and the adjoining surface.
In some configurations, the plenum chamber is defined as the space between the body portion or cap and a frame portion of the patient interface. The plenum chamber can be in the shape of an annulus.
In some configurations, the plenum space also contains a fibrous media. All of the vented gas exiting the plenum space into the ambient space can pass through the fibrous media.
In accordance with at least one of the embodiments disclosed herein, a patient interface is provided comprising a body portion sized and shaped to surround the nose and/or mouth of a user and adapted to create at least a substantial seal with the user's face, a coupling that permits the patient interface to be coupled to a gas delivery system, a vent that allows the passage of gas from an interior of the body portion to an exterior of the body portion, the vent comprising a plurality of exit holes arranged in an array, and a textured/fibrous surface defined by a component of the patient interface located in front of and facing the vent.
In some configurations, the component is a shroud or a frame portion or an extra component. The textured surface can be located between about 3 hole diameters and about 5 hole diameters from the vent.
In accordance with at least one of the embodiments disclosed herein, a patient interface is provided comprising a body portion sized and shaped to surround the nose and/or mouth of a user and adapted to create at least a substantial seal with the user's face, a coupling that permits the patient interface to be coupled to a gas delivery system, wherein the coupling comprises a rotational joint, and a vent that allows the passage of gas from an interior of the body portion to an exterior of the body portion, wherein the vent comprises a plurality of passages incorporated in the rotational joint of the coupling.
In some configurations, the rotational joint can be a swivel joint. In other configurations, the rotational joint can be a ball joint.
In some configurations, the plurality of passages can be formed in the female portion of the coupling. The plurality of passages that are formed in the female portion of the coupling can be combined with a gutter or leak channel.
In other configurations, the plurality of passages can be formed on the male portion of the coupling. The plurality of passages that are formed on the male portion of the coupling can extend sufficiently to prevent occlusion when the coupling is positioned at the extremes of motion.
Specific embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
With reference initially to
The interface 100 can comprise any of a plurality of different types of suitable mask configurations. For example, certain features, aspects and advantages of the present invention can be utilized with nasal masks, full face masks, oronasal masks or any other positive pressure mask. Although the illustrated mask is a full face mask, the scope of the present disclosure should not be limited by the particular embodiments described.
In the illustrated configuration, the interface 100 comprises a mask body 102, a mask frame 104 and a connection port assembly 106. The mask body 102 is configured to cover the user's mouth and/or nose to deliver respiratory gases to the user. The mask body 102 can be secured to the mask frame 104. The mask frame 104 is held in place by a headgear assembly that wraps around the user's head. A connection port assembly 106 can be connected to the mask body 102 and/or mask frame 104, preferably with a releasable connection. In some configurations, the connection port assembly 106 can include a ball joint to improve flexibility and comfort.
The mask frame 104 can couple to the mask body 102 and help stabilize the interface 100 on the user's face. The mask frame 104 can be any shape and size to functionally secure the interface 100 to the user's face. The mask frame 104 can be attached to the mask body 102 with interlocking clips, tabs or other functional couplers. The mask frame 104 can be rigid, substantially rigid or semi-rigid to provide support for the mask body 102. For example, the mask frame 104 can be at least partially made of a metal or rigid plastic, such as acrylic, polycarbonate or high-density polyethylene.
As illustrated in
In some configurations, the forehead rest 108 can be a separate flexible piece that is attached or overmoulded onto the mask frame 104. For example, the forehead rest 108 can be made of a flexible silicone that is overmoulded onto the frame bridge 110. The flexible material advantageously conforms to the user's forehead anatomy and helps improve comfort to the user with soft material contact. In some configurations, the forehead rest 108 can be attached or integrally formed as part of the mask frame 104 and can be made of the same material as the mask frame 104 and frame bridge 110.
The typical method of passively venting carbon dioxide (CO2) is via the use of a hole or a hole array that is incorporated into the mask body or gas path componentry that, for example, is directly connected to the mask. In the embodiment illustrated in
The vents 112 create a controlled or known leak to enable the exhausting of the user's exhaled carbon dioxide gases. There may be a performance trade-off between the location of the vents (relative to the patient's mouth or nose) and the amount of bias flow required. As used herein, bias flow refers to the flow of gases to the environment through the vents. The flow rate of the bias flow and the design geometry of the vent holes can have an effect on the noise level and draft that the bias flow produces, as well as the amount of entrainment that the exiting gas flow may cause, as discussed further below.
In the illustrated configuration, the vents 112 comprise a plurality of through holes on the mask body 102 that expel gases through a cutout 116 in the mask frame 104. In other configurations, the vents can be slits or large openings instead of or in addition to small through holes. In some configurations, the vents can be disposed on other portions of the interface, such as the connection port assembly or connection joints, as discussed below. Generally, relatively smaller hole sizes produce less airflow noises compared to a larger hole size given the same flow velocity through both hole sizes. The plurality of holes helps reduce airflow noises compared to having one or a few holes with the same vent area when expelling a given volume of gas.
In some embodiments, the vents 112 can be formed as a separate component from the mask body or mask frame. The separate vent module can be permanently or releasably assembled to the mask body or mask frame. For example, the vent module can have threads that mate with complementary threads on the mask body. In other configurations, the air vent module can have any type of functional coupler to mate the vent module to the mask body or mask frame. In these configurations, the vent module can be removed easily for service, cleaning or replacement.
The vent module can be overmoulded to the mask body or mask frame for a permanent attachment. The overmoulding can include a flexible gusset between the vent module and the mask that helps with flexibility. In other configurations, the vent module can be permanently attached using, for example, adhesives or ultrasonic welding.
Furthermore, the vents 112 can be formed of a different material than the mask body or mask frame. This can advantageously allow the vents to be made of a material that is suitable for forming apertures. For example, the vents can be made of a soft and/or flexible material while the mask body and/or mask frame are made of a more rigid material. In some configurations, the soft and/or flexible material (e.g., silicone, rubber, foam and the like) may help reduce the amount of noise the flow makes through the apertures. However, in some embodiments, the vents 112 can be formed of the same material as the mask body and/or mask frame while providing acceptable noise and draft levels.
A separate vent module advantageously allows improved manufacturing and product quality. By having the vents in a separate component the moulding of the small and detailed vent apertures can be better controlled. By moulding the vents as a separate component, the part tolerances can be better controlled and result in more consistent hole dimensions having a more consistent flow rate performance between parts. Moulding a separate vent module may allow for production of more complex vent designs as a result of not having to accommodate undercuts and other geometric restrictions of other components, such as the mask body for example. Improved control of the part dimensions may also improve control of noise levels, such as by controlling the part contours to produce a smooth air flow through the holes.
It has been learned that optimizing the design of the vent hole geometry and the adjoining plenum chamber can be beneficial in reducing the noise and draft levels of the fluids exiting the vents. Various definitions can be used to quantify or measure sound levels.
First, sound power can be used to quantify the sound levels. This is the measure of the amount of energy from a particular sound source. The measurement is independent of distance from the sound source. Second, sound pressure can be used to quantify sound levels. This is the measure of the intensity of the sound at a particular distance from the sound source. This is typically measured in decibels (i.e., dB or dBa). A third method of quantifying sound levels is a sound field. A sound field is a graphical representation (i.e., a contour map) of the pressure levels of a particular sound as a function of position from the sound source.
When a fluid flow experiences a sudden contraction in the flow path, such as with vent holes, the flow contracts through a minimum cross-section called the vena contracta 120, as illustrated in
As the fluid flow exits the vena contracta 120, it progressively reduces in velocity and increases in pressure, until it reaches a velocity of approximately zero and a pressure of approximately atmospheric pressure. In this transition zone after the vena contracta 120, vortices 122 may form at the boundary between the exiting fluid flow and the stationary atmospheric air, which are caused by viscous effects between the two fluids being at different velocities. This effect is known as vortex shedding. At a macro level, the vortex shedding may produce rapid random fluctuations which occur across a range of frequencies. Typically, the frequencies can range from at least approximately 1 kHz to less than or equal to 10 kHz, with wavelengths in the range of at least approximately 1 mm to less than or equal to 4000 mm.
There are a number of geometric factors that influence the amount of sound energy created by the vortex shedding. These geometric variables can be utilised during the design of the vent holes 114 to reduce and minimise the amount of sound energy created when fluids travel through the vents 112. With reference to
The two most commonly understood flow types are laminar flow and turbulent flow, which can be quantified by a Reynolds number. For design purposes, the Reynolds number at which the transition between laminar flow and turbulent flow occurs is approximately 2300. In situations where turbulent flow occurs at the vena contracta, there is usually an increase in sound level. Furthermore, when debris or surface imperfections exist in the vent holes, this can create a mechanism that promotes an earlier transition from laminar flow to turbulent flow compared to smooth surface vent holes.
Being able to adjust the geometry of the vents offers the ability to control the sound levels produced by the vents to be within an acceptable range for use as part of a CPAP system. Some design envelopes have been developed that achieve acceptable sound levels. One of the design envelopes is for the vent hole diameter 130 versus the exit radius 134. A graphical representation of the design envelope showing vent hole diameter versus the exit radius is illustrated in
The contour of the exit radius 134 can affect the noise levels that are created by the fluid flow. In some configurations, the exit radius 134 can be at least approximately 0.25 mm and/or less than or equal to approximately 0.75 mm. As discussed below, this range is preferable for reducing or minimizing the noise levels created by a 1 mm vent hole. Similarly, the contour of the entrance radius can affect the noise levels that are created by the fluid flow. In some configurations, the entrance radius can be at least approximately 0.25 mm. In some configurations, the entrance radius can be at least approximately 0.1 mm and/or less than or equal to approximately 1 mm.
The contour of the exit radius 134 can also substantially reduce the variation in the noise level that is created as the flow rate is changed. The noise level can have minimal variation as the driving pressure from the CPAP unit changes. Accordingly, the vent can have a substantially constant sound output that is predictable throughout a range of driving pressures. The entrance radius 132 has similar effects on the sound power level, although a less pronounced effect compared to the exit radius 134.
In some configurations, the hole diameter 130 can be at least approximately 0.5 mm and/or less than or equal to approximately 1.5 mm. Producing vent hole diameters smaller than 0.5 mm can be difficult or impractical using conventional injection molding techniques. With vent hole diameters larger than 1.5 mm, the sound power created by the gas flow can produce sound pressure levels larger than what is acceptable for some applications.
Although
Another design envelope is for hole pitch/diameter ratio versus the hole length/diameter ratio. A graphical representation of the design envelope showing hole pitch/diameter ratio versus the hole length/diameter ratio is illustrated in
In some configurations, the vent hole length to diameter ratio can be at least approximately 2. Having a hole length to diameter ratio below 2 may significant increase the sound power level for a given hole size. For example, a hole length to diameter ratio of 1.5 can approximately doubles the decibel sound output compared to a ratio of 2. However, in some configurations, the vent hole length to diameter ratio can be at least approximately 1 while still providing acceptable sound levels.
Once the design has been established for a single hole and the resulting flow rate for that hole is established, the number of holes required for sufficient carbon dioxide flushing can be determined. Multiple vent holes can be positioned in a vent hole array. In some configurations, the vent hole pitch (i.e, the distance between holes) to diameter ratio can be at least approximately 4. Generally, for ratios outside this design envelope, the fluid flows from the individual holes can have a strong interaction with each other, which multiplies the sound output. However, in some configurations, the vent hole pitch to diameter ratio can be at least approximately 3.
The fluid flow exiting the vent holes are at a relatively high velocity, typically 20-50 m/sec. Due to conservation of energy and momentum, the exiting fluid flow entrains the surrounding environmental air. The fluid flow is at a lower pressure than the surrounding air and the pressure differential causes a portion of the surrounding environmental air to be entrained and moved along with fluid flow, which multiplies many times the effective draft from the vent holes. The experimentally determined increase of the effective draft may be in the order of 6-10 times. For example, a vent hole array with a 10 cm H20 change in pressure from the entrance to exit will create a bias flow of approximately 15-20 liters/min. The effect of the entrainment can result in approximately 90-120 liters/min of total flow being projected towards the user or bed partner. Accordingly, the ability to control the rate of entrainment can directly affect the ability to minimize the disturbance caused by the effective draft.
In some configurations, the draft and noise from the vents can be reduced or minimized by using a plenum chamber that enables the energy present in the exiting fluid flow to dissipate. The plenum chamber can enable the fluid velocity to slow and the fluid pressure to increase to reduce or prevent entrainment. The plenum chamber can have any of a plurality of different types of shapes or designs. In some configurations, the plenum chamber can be an expansion chamber that substantially reduces or prevents environmental air from being entrained, as illustrated in
The space between the outer shell 314 and the inner surface of the connection port assembly 306 is the plenum space 340. The venting fluid passes through the vent holes 314 and into the plenum space 340, which in some configurations is designed to turn the fluid flow back on itself. The plenum space 340 reduces the velocity and increases the pressure of the fluid flow. After the energy in the fluid flow is reduced, the vented fluids can exit the plenum space 340 into the surrounding environment with minimized or reduced noise levels.
In some configurations, the draft and noise levels from the vents can be reduced or minimized by the application of a steadily increasing cross-sectional area, such as a diffuser 460 as illustrated in
Some geometric design considerations that can help to reduce the fluid flow velocity include the expansion angle α and the ratio of the diffuser length 462 to the root diameter 464. Diffusers with geometries similar to those described below have resulted in a reduction of the fluid flow velocity from approximately 6-8 meters per second to less than 0.8 meters per second in some embodiments.
The diffuser 460 can have an expansion angle α of at least approximately 4 degrees and/or less than or equal to approximately 8 degrees, or geometry that has the same effective cross sectional area behaviour. . . . It has been discovered that angles greater than about 8 degrees are generally not very effective at reducing draft and noise levels in some applications. However, in some configurations, the diffuser can have an expansion angle α of at least approximately 1 degrees and/or less than or equal to approximately 15 degrees.
The length of the diffuser should be long enough to provide sufficient distance for the fluid flow velocity to decrease to a desirable level, while not protruding too much from the mask to where it causes an obstruction. For larger vents, the diffuser length can be proportionately larger to achieve the desired reduction in draft and noise levels. The ratio of the diffuser length 462 to the root diameter 464 can be at least approximately 1.4:1. In some embodiments, the ratio of the diffuser length 462 to the root diameter 464 can be at least approximately 1.25:1 and/or less than or equal to approximately 1.9:1.
With reference to
Another advantage of positioning the media 166 a distance β from the vent hole exits is that it can prevent accumulation of water around the vent holes caused from condensation of the fluid flow. The condensation can occlude the vent hole exits and undesirably increase the resistance to flow (i.e., drop in bias or leak flow rate).
Another vent design can include the use of an annulus configuration where the fluid flow exits through a hole or hole array and is then exhausted radially outward by an annulus cap that redirects the fluid flow through a plenum space and eventually vents to environment. In some configurations, the plenum chamber can redirect the gas flow through an angle of between 45 degrees and about 135 degrees.
In the illustrated configuration, the annulus cap 570 is integrally formed with one of the interface components, such as the mask body, mask frame or connection port assembly. In some configurations, the annulus cap can be a separate component that is fastened over the top of the vents with a functional coupler, such as threaded fasteners, clips or an interference fit.
There are a number of geometric factors that influence the amount of sound energy created by the vortex shedding as the fluid flow exits the annulus cap. These factors can include: (1) the cross-sectional area of the plenum space 540, which affects the fluid velocity exiting the slot; (2) the profile of the plenum space 540, which also affects the fluid velocity exiting the slot; and (3) the exit radii 572 of the annulus cap 570 surrounding the plenum space exit, which influences the location and resulting sound level of the vortex shedding that occurs in the existing fluid flow. Similar to as discussed above, a given flow volume will have a greater velocity through a relatively smaller cross-sectional area compared to a relatively larger cross-sectional area. Higher flow velocities can produce more draft and sound levels.
The profile of the plenum space 540 can be configured to slow down the fluid velocity and help reduce noise levels. For example, in the configurations illustrated in
Similar to as discussed above, the fluid flow exiting the annulus cap 570 are at a relatively high velocity. Due to conservation of energy and momentum, the exiting fluid flow entrains the surrounding environmental air. The fluid flow is at a lower pressure than the surrounding air and the pressure differential causes a portion of the surrounding environmental air to be entrained and moved along with fluid flow, which multiplies many times the effective draft from the vent holes. The ability to control the rate of entrainment can directly affect the ability to minimize the disturbance caused by the effective draft.
In some configurations, the rate of entrainment can be reduced by the use of a fibrous media 566 positioned in the flow path, as illustrated in
Instead of or in addition to having vents on the mask body or mask frame, the bias flow can be incorporated into the leak rate that normally occurs through a ball joint or swiveling joints present in some interfaces. Some interfaces have either a ball joint or a swivel joint to help reduce or minimize the effect of torque that the delivery tube may induce on the interface and user. These joints provide free motion with low or minimal leak rate. The descriptions below relate to an interface having a ball joint. However, it should be understood that the same design concepts can be applied to swivel joints.
In some configurations, the connection port assembly 206 can be connected to the mask body 202 with a ball joint 250, as illustrated in
There are several options for the geometry of the gas path through a ball joint or swivel joint that can produce a stable, predictable leak. With reference to
The grooves can be disposed on either or both components of the ball joint. For the example,
Preferably, the ball joint can provide a consistent, reliable leak rate independent of the orientation of the ball socket. The cross-sectional areas of each groove can be substantially the same so that the leak rate is the substantially the same no matter which orientation the ball socket is in.
In addition, the ball joint can be designed to minimize the obstruction of the air pathway as the fluids exit the joint. If there are obstructions in the fluid pathway, the sound levels may change as the ball joint is moved, especially when flexed to its extremes. For example,
In some embodiments, the interface can have a separate ball socket component that can be separately made and coupled to the mask body or mask frame. A separate ball socket component can advantageously allow improved manufacturing and product quality. The small and detailed features, such as the grooves, can be better controlled and the part tolerances can be better controlled and result in more consistent dimensions having a more consistent flow rate performance. Moulding a separate ball socket component may also allow for production of more complex groove designs as a result of not having to accommodate undercuts and other geometric restrictions of other components. The ball socket component can be attached to the mask body or mask frame through any type of functional coupling, such as overmoulding, adhesives, clips, welding and interference fit.
In some configurations, the vent holes can be disposed on a separate insert that is coupled to the interface.
The vent cover 3117 can help to reduce the draft from the vent 3112. The plenum space 3140 between the connection port assembly 3106 and the vent cover 3117 can help reduce the fluid flow velocity, and reduce the draft and noise levels as discussed previously.
As mentioned above, having vent holes in a radial configuration, such as around a cylinder, is beneficial in reducing or minimizing the amount of draft that is felt by the user or bed partner. However, moulding radial holes, or holes on a curved surface, can be difficult from a process point of view. Accordingly, in some configurations, the vent holes can be formed on a vent module made of soft material and then attached to the interface. The soft material can allow for the vent module to be wrapped around or contoured onto the interface. In some configurations, the soft material of the vent module can be rubber, plastic, silicone or any other suitably flexible material. In some embodiments, however, the material can be a harder material and can have some functional means of being bent, such as with hinges or reliefs that promote bending.
It has been discovered that instead of vent holes, slots can be used to vent the fluids. Slots have some advantages over vent holes, which may include more venting flow rate, better manufacturability and lower noise levels. The slots may produce less noise compared to holes because the slots have less surface structures for the fluid to flow past, which is a contributor to noise production.
With continued reference to
Although certain embodiments, features, and examples have been described herein, it will be understood by those skilled in the art that many aspects of the methods and devices illustrated and described in the present disclosure may be differently combined and/or modified to form still further embodiments. For example, any one component of the interface illustrated and described above can be used alone or with other components without departing from the spirit of the present invention. Additionally, it will be recognized that the methods described herein may be practiced in different sequences, and/or with additional devices as desired. Such alternative embodiments and/or uses of the methods and devices described above and obvious modifications and equivalents thereof are intended to be included within the scope of the present invention. Thus, it is intended that the scope of the present invention should not be limited by the particular embodiments described above, but should be determined only by a fair reading of the claims that follow.
Number | Date | Country | |
---|---|---|---|
61767586 | Feb 2013 | US | |
61845102 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17134995 | Dec 2020 | US |
Child | 18821987 | US | |
Parent | 14769674 | Aug 2015 | US |
Child | 17134995 | US |