Patient monitoring alarm escalation system and method

Information

  • Patent Grant
  • 8364221
  • Patent Number
    8,364,221
  • Date Filed
    Friday, November 21, 2008
    15 years ago
  • Date Issued
    Tuesday, January 29, 2013
    11 years ago
Abstract
Embodiments of the present invention relate to a patient monitoring alarm escalation system and method. Specifically, embodiments of the present invention include an alarm detection device configured to measure physiological data received via a patient monitor, the alarm detection device configured to initiate an alarm in response to predefined measurements of the physiological data, and an alarm device configured to emit a first signal with a first property and a second signal with a second property, the first signal being emitted when the alarm is initiated, the second signal being emitted if an alarm acknowledgement mechanism is not activated prior to a designated event.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to alarm systems for patient physiological data monitoring instruments. In particular, the present invention relates to an alarm escalation system including mechanisms for indicating a level of criticality of alarms corresponding to physiological measurements and equipment status indicators of patient monitoring devices.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


Patient monitors include medical devices that facilitate observation of patient physiological data. For example, a typical patient monitor detects and displays a patient's vital signs continually. This improves patient care by facilitating continuous supervision of a patient without continuous attendance by a human observer (e.g., a nurse or physician). Typically, patient monitors include alarm systems that provide audible and/or visual indications of certain predefined conditions. For example, some patient monitors include alarms that are triggered based on physiological conditions (e.g., high and low patient heart rate thresholds, arterial oxyhemoglobin saturation) or status indicators for the monitor itself (e.g., power loss). These alarms further facilitate supervision of patients and improve patient care by providing caregivers with warnings concerning certain monitored conditions. Generally, such alarms remain in an alarm state until acknowledged by a user. For example, an audible alarm for a patient's abnormal systolic condition may continue to sound until a user presses an acknowledge button that silences the alarm and indicates that the alarm has been recognized. Such audible alarms for patient monitors generally incorporate unchanging alarm tones or auditory effects. It is now recognized that such unchanging alarms tend to cause patient monitor users/operators (e.g., nurses, physicians, and caregivers) to become desensitized to ongoing and unacknowledged audible alarms.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a perspective view of a patient monitor in accordance with an exemplary embodiment of the present invention;



FIG. 2 is a block diagram of a method for providing patient monitor alarms in accordance with an exemplary embodiment of the present invention;



FIG. 3 is a pressure-time plot of a primary alarm signal and a secondary alarm signal in accordance with an exemplary embodiment of the present invention; and



FIG. 4 is a block diagram of a monitoring system in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.



FIG. 1 is a perspective view of a patient monitor in accordance with an exemplary embodiment of the present invention. Specifically, the patient monitor illustrated by FIG. 1 is a multi-speaker pulse oximeter 10 having a first speaker 12 and a second speaker 14. The pulse oximeter 10 may be configured to provide an active audible alarm with at least two distinctive tones. These distinctive tones may be utilized to elevate annoyance when an alarm condition remains unacknowledged for a certain period of time, thus directing a user's attention to the unacknowledged alarm condition. For example, in one embodiment, a first tone from the first speaker 12 is sounded in response to an alarm condition, and a second tone from the second speaker 14 is sounded as a reminder tone. The reminder tone is sounded after the alarm condition has remained unacknowledged for a designated amount of time. In another embodiment, distinctive reminder tones are sounded alternatively from the respective speakers 12 and 14, thus creating increasing audio agitation (e.g., increasing volume, frequency, and/or dissonance) after a designated amount of time has passed without the alarm condition having been acknowledged by pressing an alarm silence button 16. Additionally, the elevation of audio agitation may be accelerated the longer an alarm remains unacknowledged. For example, after the audio agitation has been increased a first time, the amount of time until it is increased again may be reduced by half and so forth.


In some embodiments, spatial separation of the first speaker 12 and the second speaker 14 may be used to increase alarm awareness among caregivers and to ensure that all areas of a room are accessible to an alarm. For example, stereo characteristics and so forth may be utilized to get the attention of a caregiver that is desensitized to typical alarms. In a specific example, the spatial separation of the first speaker 12 and second speaker 14 may be used to create unique sounds and/or to improve sound projection to all areas of a room. Further, embodiments of the present invention may be engineered to ensure that the location of the alarm device emitting the alarm is apparent to the caregiver. For example, if multiple devices are in a room, certain sound effects may be utilized to direct a caregiver's attention to the specific device that is emitting an alarm.


Alarm conditions are designated on the pulse oximeter 10 using set points or by designating patterns of values (e.g., patterns in an SpO2 trend) that can be entered via adjustment buttons 18. For example, a user can input a certain set point (e.g., 103 degrees Fahrenheit, blood oxygen level of 97%) that creates an alarm condition when crossed by actual patient data (e.g., actual patient temperature, actual blood oxygen level), or when processed values or patterns of values are detected. The pulse oximeter 10 may detect alarm conditions using an alarm detection device that compares designated set points with actual patient data received from a sensor 20 via a cable connection port 22 that is configured to communicatively couple with the sensor 20. For example, in some embodiments, the alarm detection device employs SatSeconds™ by Nellcor™ to detect alarms and manage nuisance alarms. SatSeconds™ may include alarming based on an integral of time and depth of a desaturation event. The sensor 20 may be defined as an accessory used to collect and send patient data to the pulse oximeter 10. One end of the sensor 20 is typically coupled to a patient (e.g., to a patient's finger, toe, ear lobe, or forehead) and the other end couples either directly or indirectly (e.g., via a separate monitor cable) to the pulse oximeter 10. Exemplary sensors may include sensors available from Nellcor Puritan Bennett Incorporated. The sensor 20 in the illustrated embodiment couples with a patient's finger and is configured to collect patient physiological data by sensing a patient's pulse rate and percentage of oxygen in the arterial blood. Once collected, these measurements are sent to the pulse oximeter 10.


As set forth above, the pulse oximeter 10 illustrated by FIG. 1 includes dual speakers 12 and 14. The speakers 12 and 14 are configured to provide audible alarms based on certain detected conditions. For example, the speakers 12 and 14 may be utilized to produce audible alarms for detected conditions including: low battery, high or low oxygen saturation, high or low pulse rate, sensor disconnect, high patient temperature, high or low blood pressure, and so forth. While the embodiment illustrated by FIG. 1 includes a pair of speakers 12 and 14, other embodiments may include a single speaker, more than two speakers, or options relating to the provision of one or more speakers. Indeed, some embodiments include a monitor having connection points adapted to communicatively couple with a plurality of speakers. For example, a monitor in accordance with present embodiments may include one or more built-in speakers, expansion ports for coupling to one or more speakers, or both. Further, in some embodiments, remote speakers (e.g., pagers) may be utilized either with or without having speakers directly coupled to the pulse oximeter 10. It should be noted that in some embodiments, to utilize the connection points, external speakers are communicatively linked with the connection points and software on the oximeter 10 is updated to provide additional related functions.


Incorporating a plurality of speakers (e.g., speaker 12 and 14) with the pulse oximeter 10 provides versatility, redundancy, and reliability. For example, by emitting alarm tones and alarm reminder tones from multiple speakers, embodiments of the present invention can produce unique and recognizable alarm sounds that attract the attention of users by elevating annoyance levels of the alarm sounds. This versatility can increase the awareness of caregivers that may not respond quickly to standard alarms, resulting in improved response times and so forth. In a specific example, an alarm may sound from speaker 12 based on a blood pressure reading that passes a predefined alarm threshold. If this alarm is not acknowledged by, for example, pressing the alarm silence button 16, speaker 14 emits a secondary alarm having a different tone than the first alarm to further alert the caregiver of the alarm condition.


In addition to providing auditory versatility, having multiple speakers creates redundancy that improves reliability in the event of a speaker failure (e.g., a speaker being blocked and muffled by an object or a speaker with a faulty connection). Not all unacknowledged alarms will necessarily result from caregivers failing to hear or recognize the initial alarm. Indeed, an initial alarm may remain unacknowledged because a speaker assigned the task of emitting the initial alarm either failed to produce or failed to adequately emit the initial alarm tone. For example, if speaker 12 is configured to emit an initial alarm tone and speaker 14 is configured to emit a reminder alarm tone after the initial alarm is unacknowledged for a designated period, the reminder alarm tone provided by speaker 14 will serve as a back up alarm to alert the user of a pending alarm condition in the event speaker 12 fails to provide the initial alarm tone.


In another embodiment, both speakers 12 and 14 are essentially completely redundant. For example, in a completely redundant embodiment, all speakers (e.g., 12 and 14) are configured to emit the same alarm tones and alarm reminder tones based on the same measured conditions and unacknowledged alarms. If one speaker fails, at least one other speaker will have been redundantly assigned the same alarming task.


It should be noted that, in some embodiments, alarms are visually and/or haptically indicated in addition to being audibly indicated. Indeed, alarms may be indicated to alert any of a caregiver's senses (e.g., sight, touch, and hearing). These alternative sensory indications (e.g., alarm lights and vibrating pagers) are additional tools with which a user's attention can be directed to an alarm condition. For example, the pulse oximeter 10 includes a display 24, such as a liquid crystal display (LCD), that visibly displays alarm indications and other information. In one embodiment, the display 24 is configured to visually communicate patient physiological data (e.g., oxygen saturation percentage, pulse amplitude, pulse rate) and alarms in the form of numeric data, textual data, and/or graphical data (e.g., plethysmographic waveforms and/or alarm icons). The display 24 may also be configured to display equipment status indicators such as an on/off indication depending on whether a power button 26 in latched or unlatched, a power indication depending on whether a power cord 28 is receiving power, and/or other equipment status indicators. In one embodiment, the display 24 is used to visually confirm values entered while configuring aspects of the pulse oximeter 10 (e.g., providing set points for alarms via the adjustment buttons 18). It should also be noted that these extra indications provide supplemental redundancy.



FIG. 2 is a block diagram of a method 40 for providing patient monitor alarms in accordance with an exemplary embodiment of the present invention. The method 40 can be implemented with a single alarm indicator or multiple alarm indicators. For example, embodiments of the present invention may use speakers, pagers, visual indicators, and/or haptic devices to provide the referenced signals (e.g., audible tones). The method 40 begins at block 42 and proceeds to block 44, which is a decision block regarding whether an alarm condition has been detected. If an alarm condition has not been detected, the method returns to the start (block 42). If an alarm condition has been detected, an alarm signal is emitted by one or multiple alarm indicators (e.g., speaker 12) in block 46 and an alarm timer is initiated in block 48. The alarm signal may include a tone emitted from a speaker, a vibration emitted from a pager, a light emitted from a display and so forth.


After an alarm has been initiated (block 46), the method 40 begins determining whether the alarm condition still exists and/or whether the alarm signal has been acknowledged, as illustrated by blocks 50 and 52. Specifically, block 50 is a decision block regarding whether a user has provided confirmation that the alarm condition has been recognized or acknowledged. Such an indication of acknowledgement may be provided by, for example, depressing the alarm silence button 16. If the alarm condition has been acknowledged, the unexpired alarm timer is reset or canceled (block 54) and an alarm silence timer may be initiated (block 56). In the illustrated embodiment, the alarm silence timer is then monitored, as illustrated by block 58. When the alarm silence timer expires, block 58 directs the method 40 to start again at block 42. In some embodiments, the alarm silence timer is not utilized. For example, in some embodiments, once a specific alarm is acknowledged, the same alarm condition will not initiate the primary alarm again, thus eliminating potentially unnecessary alarms. In other words, in such embodiments, the same alarm condition will not cause repeated alarm signals to be periodically emitted after acknowledgement when the alarm silence timer expires.


Block 52 is a decision block regarding whether the alarm condition still exists after being initiated. If the alarm condition is no longer present (e.g., the patient's blood pressure returns to normal), the alarm signal is canceled in block 60, the alarm timer is reset or canceled in block 62, and the method 40 begins again at block 42. For example, in one embodiment, if a patient's temperature passes a set point and then returns to normal the alarm will cease regardless of whether the alarm has been acknowledged. If the alarm condition remains present and has not been acknowledged, the alarm signal is continually emitted, the alarm timer continues to run, and the method 40 proceeds to block 64. It should be noted that in some embodiments, the presence of the alarm condition is not required to maintain the alarm. In other words, the method 40 proceeds without determining whether the alarm condition persists (block 52). For example, in some embodiments, the alarm remains active until acknowledged regardless of whether the alarm condition ceases to exist. This may be desirable in situations that benefit from requiring a user to be made aware that an alarm event occurred.


Block 64 is a decision block regarding whether the alarm timer has expired. If the alarm timer has not expired, the method 40 loops back to block 50. If the alarm timer has expired, a secondary alarm signal is emitted (block 66). As discussed above, this secondary alarm not only serves to increase awareness but also provides redundancy. In one embodiment, the secondary alarm signal has properties different than the primary alarm. For example, where the primary alarm is an audible tone, the secondary alarm may be an audible tone that is emitted with a higher frequency and/or a higher volume. Additionally, if the alarm timer has expired, the alarm timer may be reset with different properties (block 68). For example, the alarm timer may be reset with a reduced period (e.g., half of the initial alarm timer period). In some embodiments, this procedure continues as each successive alarm timer expires, thus gradually increasing communicated urgency, distinguishing features (e.g., type of sound), and/or the annoyance level of the alarm. Further, it should be noted that in some embodiments, acknowledging the alarm by, for example, pushing the alarm silence button 16, acknowledges and silences all alarms (e.g., both primary and secondary alarms).



FIG. 3 is a pressure-time plot of a primary alarm signal and a secondary alarm signal in accordance with an exemplary embodiment of the present invention. While two signals are depicted in the illustrated embodiment, in some embodiments a plurality of signals may be utilized. Specifically, the plot 72 represents an audible signal or alarm emitted from the first speaker 12 as a primary alarm when an alarm condition is detected and unacknowledged. The plot 74 represents an audible signal or alarm emitted from the second speaker 14 as a secondary alarm when the primary alarm has remained unacknowledged for a predetermined amount of time. In some embodiments, a single speaker can be used to emit both alarms 72 and 74. It should be noted that while the illustrated alarms 72 and 74 have pulse waveforms, in other embodiments, the alarms 72 and 74 can have different waveforms (e.g., ramp wave, sine wave, triangle wave). Further, in some embodiments, the alarm signals are not audible but include other types of signals (e.g., vibrations from a pager). For example, in one embodiment, alarm signals are provided by a single or redundant set of vibratory transducers to provide further safety, versatility, and reliability.


As shown in FIG. 3, the secondary alarm 74 is silent during the initial alarm period and changes in frequency over time to increase annoyance, thus drawing attention to the unacknowledged alarm condition. In the illustrated embodiment, after the primary alarm 72 remains unacknowledged for a first amount of time 76, the secondary alarm 74 is initiated with a duty cycle that is interleaved with that of the primary alarm 72. After a second amount of time 78 (e.g., half of the primary time) beyond initiation of the secondary alarm 74, properties of the secondary alarm 74 are changed. Specifically, in the illustrated embodiment, the frequency of the alarm is increased, thus increasing annoyance. In other embodiments, different aspects of the primary and/or secondary alarms 72 and 74 are changed. For example, amplitude, duty cycle, frequency, and harmonic content can be manipulated over time to increase annoyance levels of all or some signals being emitted. In one embodiment, the alarms 72 and 74 begin sweeping through frequencies as the alarm condition remains unacknowledged. In the illustrated embodiment, the annoyance level is continually increased until it reaches a peak level or the alarm is acknowledged. For example, after a third amount of time 80 (e.g., half of the second time 78) beyond the second amount of time 78, the frequency of the secondary alarm 74 is changed again.



FIG. 4 is a block diagram of a monitoring system in accordance with an exemplary embodiment of the present invention. Specifically, FIG. 4 illustrates a monitoring system 90 including a plurality of patient monitors 92 networked to a central management station 94 (e.g., a personal computer), which is coupled with an audible alarm system 96 and an alarm paging system 98. The alarm paging system 98 includes a set of wireless and mobile pagers 100. This monitoring system 90 facilitates monitoring multiple patients in, for example, a hospital or clinic. It should be noted that in some embodiments, the audible alarm system 96 and the alarm paging system 98 are included in the monitors 92. Further, it should be noted that in the illustrated embodiment, the monitoring system 90 is networked with network cables. However, in some embodiments, wireless communication is utilized.


Each of the patient monitors 92 includes a sensing device 102 (e.g., temperature sensor, pulse sensor) for measuring patient physiological data. Additionally, each of the monitors 92 or the central management station 94 is configured to alarm based on predefined physiological data values or conditions relating to such values. For example, an alarm may be activated when a patient's temperature has been at a certain level for a predefined amount of time.


When alarm conditions are detected, the system 90 emits alarm signals from the audible alarm system 96 and/or the alarm paging system 98. Further, as discussed above, if the alarm is not acknowledged, the monitoring system 90 increases the alarm annoyance level. For example, in the illustrated embodiment, a primary alarm signal is sent to a first pager 100A. If this primary alarm is not acknowledged within a predefined amount of time, a second alarm is sent to a second pager 100B. If the second alarm remains unacknowledged for a predefined amount of time (e.g., half of the time allotted to acknowledge the primary alarm), a third alarm is sent to a third pager 100C and so forth. Additionally, the annoyance level of each pager alarm may be increased. For example, the pagers may beep or vibrate with a higher amplitude and/or frequency. Further, audible alarms from a speaker or speakers of the audible alarm system 96 may substitute or supplement the pager alarms. Indeed, the audible alarm system 96 may emit audible alarm tones with increasingly annoying characteristics, as discussed above with regard to FIG. 3.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A pulse oximetry monitoring system, comprising: a pulse oximeter including a plurality of built-in speakers, wherein the pulse oximeter comprises an alarm device configured to: initiate a primary alarm through one of the plurality of built-in speakers in response to determining that a measurement of a physiological data value obtained by the pulse oximeter meets a defined requirement;initiate a secondary alarm through another of the plurality of built-in speakers if an alarm acknowledgement mechanism is not activated prior to a first designated event; andescalate a property of the secondary alarm if the alarm acknowledgement mechanism is not activated prior to a second designated event.
  • 2. The system of claim 1, comprising the alarm acknowledgement mechanism.
  • 3. The system of claim 2, wherein the alarm device is configured to emit the primary alarm at a first frequency and the secondary alarm at a second frequency when an alarm condition is recognized, the second frequency increasing if the alarm acknowledgement mechanism is not activated prior to the second designated event.
  • 4. The system of claim 2, wherein the alarm device is configured to increase a magnitude of the secondary alarm if the alarm acknowledgement mechanism is not activated prior to the second designated event.
  • 5. The system of claim 2, wherein the alarm device is configured to increase magnitudes of the primary and secondary alarms if the alarm acknowledgement mechanism is not activated prior to the second designated event.
  • 6. The system of claim 5, comprising a timer configured to count down a first designated amount of time, wherein completion of the count down is the first designated event.
  • 7. The system of claim 1, comprising a sensor configured to gather actual physiological data from a patient.
  • 8. The system of claim 1, comprising a pager configured for wireless communication with the pulse oximeter and operation remote from the pulse oximeter.
  • 9. A pulse oximeter, comprising: an alarm detection device configured to measure physiological data received via the pulse oximeter, the alarm detection device configured to initiate an alarm in response to predefined measurements of the physiological data;a first built-in speaker configured to emit a first signal with a first property; anda second built-in speaker configured to emit a second signal with a second property, the first signal and the second signal being emitted when the alarm is initiated, and wherein the alarm detection device is configured to escalate the second property of the second signal if an alarm acknowledgement mechanism is not activated prior to a designated event.
  • 10. The pulse oximeter of claim 9, wherein the first and second signals are different audible tones and the first and second properties are different frequencies.
  • 11. The pulse oximeter of claim 9, wherein the pulse oximeter includes a pager system that is built into the pulse oximeter.
  • 12. The pulse oximeter of claim 9, wherein the first property is manipulated if the alarm acknowledgement mechanism is not activated prior to the designated event.
  • 13. The pulse oximeter of claim 9, comprising a plurality of external speakers directly coupled to the patient monitor via connection points.
  • 14. The pulse oximeter of claim 9, comprising a first pager configured to be activated if the alarm acknowledgement mechanism is not activated prior to the designated event, and a second pager configured to be activated if the alarm acknowledgement mechanism is not activated prior to a second designated event.
  • 15. A method for facilitating clinical vigilance, comprising: receiving physiological data from a patient into a pulse oximeter;measuring the physiological data with the pulse oximeter and initiating an alarm in response to predefined measurements of the physiological data;emanating a first signal with a first property from a first built-in speaker of the pulse oximeter, and a second signal with a second property from a second built-in speaker of the pulse oximeter when the alarm is initiated; andescalating the first property or the second property if an alarm acknowledgement mechanism is not activated prior to a designated event.
  • 16. The method of claim 15, comprising escalating the first and the second property with the pulse oximeter if the alarm acknowledgement mechanism is not activated prior to a second designated event.
  • 17. The method of claim 15, comprising emanating the first and second signals as different audible tones.
  • 18. The method of claim 15, comprising emanating a third signal from a pager in remote communication with the pulse oximeter when the alarm is initiated.
  • 19. The method of claim 15, wherein the first and second properties are different frequencies.
  • 20. The method of claim 15, wherein the first and second properties are different volumes.
  • 21. A pulse oximeter configured to receive blood oxygen saturation data from a patient, the monitor comprising: an alarm detection device configured to measure the blood oxygen saturation data and initiate an alarm in response to a value of the blood oxygen saturation data meeting a criterion;at least two speakers directly coupled with the pulse oximeter, the at least two speakers each configured to emanate a first signal and a second signal when the alarm is initiated; andan alarm timer configured to start when the alarm is initiated and to reset with a reduced period if an alarm acknowledgement mechanism is not activated prior to a designated event, wherein said alarm detection device is configured to escalate a property of the first signal or the second signal upon completion of each period of the alarm timer.
  • 22. The pulse oximeter of claim 21, comprising a paging system built-in to the pulse oximeter, wherein the paging system is configured to initiate a pager alarm if the alarm remains unacknowledged a designated amount of time after the alarm condition is detected.
  • 23. The pulse oximeter of claim 21, wherein said alarm detection device is configured to cause a first speaker to emit a first audible sound and a second speaker to emit a second audible sound different from the first audible sound.
  • 24. The pulse oximeter of claim 21, wherein said alarm detection device is configured to cause a first speaker to emit and maintain a first audible sound while an alarm condition is present and unacknowledged and a second speaker to emit a second audible sound that escalates over time while the alarm condition is present and unacknowledged.
  • 25. The pulse oximeter of claim 21, wherein the at least two speakers are built-in speakers of the pulse oximeter.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 11/241,513 filed Sep. 30, 2005, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (222)
Number Name Date Kind
3638640 Shaw Feb 1972 A
4714341 Hamaguri et al. Dec 1987 A
4805623 Jöbsis Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4936679 Mersch Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4971062 Hasebe et al. Nov 1990 A
4972331 Chance Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5028787 Rosenthal et al. Jul 1991 A
5065749 Hasebe et al. Nov 1991 A
5084327 Stengel Jan 1992 A
5119815 Chance Jun 1992 A
5122974 Chance Jun 1992 A
5167230 Chance Dec 1992 A
5190038 Polson et al. Mar 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5263244 Centa et al. Nov 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5297548 Pologe Mar 1994 A
5355880 Thomas et al. Oct 1994 A
5372136 Steuer et al. Dec 1994 A
5385143 Aoyagi Jan 1995 A
5390670 Centa et al. Feb 1995 A
5413099 Schmidt et al. May 1995 A
5469845 DeLonzor et al. Nov 1995 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5553614 Chance Sep 1996 A
5564417 Chance Oct 1996 A
5575285 Takanashi et al. Nov 1996 A
5611337 Bukta Mar 1997 A
5630413 Thomas et al. May 1997 A
5645059 Fein et al. Jul 1997 A
5645060 Yorkey Jul 1997 A
5652566 Lambert Jul 1997 A
5680857 Pelikan et al. Oct 1997 A
5692503 Kuenstner Dec 1997 A
5730124 Yamauchi Mar 1998 A
5730140 Fitch Mar 1998 A
5758644 Diab et al. Jun 1998 A
5779631 Chance Jul 1998 A
5782757 Diab et al. Jul 1998 A
5786592 Hök Jul 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830139 Abreu Nov 1998 A
5831598 Kauffert et al. Nov 1998 A
5842981 Larsen et al. Dec 1998 A
5871442 Madarasz et al. Feb 1999 A
5873821 Chance et al. Feb 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995859 Takahashi Nov 1999 A
6011986 Diab et al. Jan 2000 A
6027453 Miwa et al. Feb 2000 A
6027455 Inukai et al. Feb 2000 A
6036651 Inukai et al. Mar 2000 A
6036652 Inukai et al. Mar 2000 A
6064898 Aldrich May 2000 A
6081742 Amano et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6120460 Abreu Sep 2000 A
6134460 Chance Oct 2000 A
6150951 Olejniczak Nov 2000 A
6154667 Miura et al. Nov 2000 A
6163715 Larsen et al. Dec 2000 A
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6230035 Aoyagi et al. May 2001 B1
6266546 Steuer et al. Jul 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6312393 Abreu Nov 2001 B1
6353750 Kimura et al. Mar 2002 B1
6397091 Diab et al. May 2002 B2
6398727 Bui et al. Jun 2002 B1
6415236 Kobayashi et al. Jul 2002 B2
6419671 Lemberg Jul 2002 B1
6438399 Kurth Aug 2002 B1
6461305 Schnall Oct 2002 B1
6466809 Riley Oct 2002 B1
6487439 Skladnev et al. Nov 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6526301 Larsen et al. Feb 2003 B2
6527725 Inukai et al. Mar 2003 B1
6544193 Abreu Apr 2003 B2
6546267 Sugiura et al. Apr 2003 B1
6549795 Chance Apr 2003 B1
6579242 Bui et al. Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6591122 Schmitt Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6618042 Powell Sep 2003 B1
6622095 Kobayashi et al. Sep 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662030 Khalil et al. Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6690958 Walker et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
6708048 Chance Mar 2004 B1
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714245 Ono Mar 2004 B1
6731274 Powell May 2004 B2
6785568 Chance Aug 2004 B2
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830549 Bui et al. Dec 2004 B2
6850053 Daalmans et al. Feb 2005 B2
6863652 Huang et al. Mar 2005 B2
6873865 Steuer et al. Mar 2005 B2
6889153 Dietiker May 2005 B2
6898451 Wuori May 2005 B2
6939307 Dunlop Sep 2005 B1
6947780 Scharf Sep 2005 B2
6949081 Chance Sep 2005 B1
6961598 Diab Nov 2005 B2
6979812 Al-Ali Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7006865 Cohen et al. Feb 2006 B1
7024235 Melker et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7035697 Brown Apr 2006 B1
7047056 Hannula et al. May 2006 B2
7079036 Cooper et al. Jul 2006 B2
7107096 Fischell et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7162306 Caby et al. Jan 2007 B2
7173525 Albert Feb 2007 B2
7186966 Al-Ali Mar 2007 B2
7209775 Bae et al. Apr 2007 B2
7222054 Geva May 2007 B2
7236811 Schmitt Jun 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Schmid Sep 2007 B2
7292141 Staats et al. Nov 2007 B2
7373193 Al-Ali et al. May 2008 B2
20010005773 Larsen et al. Jun 2001 A1
20010020122 Steuer et al. Sep 2001 A1
20010039376 Steuer et al. Nov 2001 A1
20010044700 Kobayashi et al. Nov 2001 A1
20010045509 Al-Ali Nov 2001 A1
20020026106 Khalil et al. Feb 2002 A1
20020035318 Mannheimer et al. Mar 2002 A1
20020038079 Steuer et al. Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020049389 Abreu Apr 2002 A1
20020062071 Diab et al. May 2002 A1
20020111748 Kobayashi et al. Aug 2002 A1
20020133068 Huiku Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020161287 Schmitt Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165439 Schmitt Nov 2002 A1
20020198443 Ting Dec 2002 A1
20030023140 Chance Jan 2003 A1
20030055324 Wasserman Mar 2003 A1
20030060693 Monfre et al. Mar 2003 A1
20030139687 Abreu Jul 2003 A1
20030144584 Mendelson Jul 2003 A1
20030220548 Schmitt Nov 2003 A1
20030220576 Diab Nov 2003 A1
20040010188 Wasserman Jan 2004 A1
20040054270 Pewzner et al. Mar 2004 A1
20040087846 Wasserman May 2004 A1
20040107065 Al-Ali Jun 2004 A1
20040127779 Steuer et al. Jul 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040172222 Simpson Sep 2004 A1
20040176670 Takamura et al. Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040230106 Schmitt et al. Nov 2004 A1
20050080323 Kato Apr 2005 A1
20050101850 Parker May 2005 A1
20050113651 Wood et al. May 2005 A1
20050113656 Chance May 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050177034 Beaumont Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050267346 Faber et al. Dec 2005 A1
20050267402 Stewart et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060009688 Lamego et al. Jan 2006 A1
20060015021 Cheng Jan 2006 A1
20060020181 Schmitt Jan 2006 A1
20060030763 Mannheimer et al. Feb 2006 A1
20060052680 Diab Mar 2006 A1
20060058683 Chance Mar 2006 A1
20060064024 Schnall Mar 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20060258926 Ali et al. Nov 2006 A1
20070032714 Mannheimer Feb 2007 A1
20070109115 Kiana et al. May 2007 A1
20080183058 Mannheimer Jul 2008 A1
Foreign Referenced Citations (5)
Number Date Country
2536290 Aug 2004 CA
2237544 Sep 1990 JP
8256996 Oct 1996 JP
WO 2004038669 May 2004 WO
WO 2005020176 Mar 2005 WO
Non-Patent Literature Citations (4)
Entry
Barnum, P.T., et al.; “Novel Pulse Oximetry Technology Capable of Reliable Bradycardia Monitoring in the Neonate,” Respiratory Care, vol. 42, No. 1, p. 1072 (Nov. 1997).
Manley, Geoffrey t., et al., Cerebral Oxygenation during Hemorrhagic Shock: Perils of Hyperventilation and the Therapeutic Potential of Hypoventilation, Jun. 2000, The Journal of Trauma: Injury, Infection, and Critical Care, Lippincott Williams & Wilkins, Inc., 0022-5282/00/4806-1025.
Belal, Suliman Yousef, et al.; “A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients,” Physiol. Meas., vol. 22, pp. 397-412 (2001).
Lutter, Norbert O., et al.; “False Alarm Rates of Three Third-Generation Pulse Oximeters in PACU, ICU and IABP Patients,” Anesth Analg, vol. 94, pp. S69-S75 (2002).
Related Publications (1)
Number Date Country
20090221887 A1 Sep 2009 US
Continuations (1)
Number Date Country
Parent 11241513 Sep 2005 US
Child 12276188 US