Patient-mounted retraction

Information

  • Patent Grant
  • 9808281
  • Patent Number
    9,808,281
  • Date Filed
    Thursday, May 20, 2010
    14 years ago
  • Date Issued
    Tuesday, November 7, 2017
    7 years ago
Abstract
Patient-mounted retractors with varying configurations and/or features are provided, along with additional components for use therewith in provided patient-mounted retractor assemblies. Blade type and tube type patient-mounted retractors that may be re-positioned during the course of a procedure are provided in varying configurations and/or geometries suitable for varying procedures and/or patient anatomies. Applications of re-positionable patient-mounted retractor assemblies are particularly suitable for use in minimally invasive procedures, eliminating the need for table-mounted retraction assemblies and/or cannulas that restrict the operating environment.
Description
TECHNICAL FIELD

The present disclosure relates generally to surgery, and in particular relates to patient-mounted retraction apparatuses and associated surgical methods and procedures for using same.


BACKGROUND

Retractors and/or cannulas may be used to provide a surgeon with an access portal to a surgical site in a patient's body. Various minimally invasive procedures, including spinal procedures such as decompression, fusion, external fixation, and the like may be performed through such access portals.


The retractors and/or cannulas typically used in these procedures must often be secured in position within a surgical site via external devices mounted to the operating table, for example via an adjustable arm coupled to a table mounted retractor frame. The setup, deployment, positioning, and repositioning of these devices before and during surgery can be awkward and time-consuming. Furthermore, the arms, frames, and other components associated with these table mounted retraction devices typically crowd the area around the surgical site, thereby reducing the space a surgeon has in which to operate, limiting the flexibility the surgeon has in his choice of instrumentation and/or hardware to accomplish a procedure, and impeding intra-operative imaging.


SUMMARY

In accordance with one embodiment, a retractor body with an anchor receptacle disposed at its distal end is provided. The anchor receptacle carries a locking assembly that is configured to connect the retractor body onto a bone anchor. The bone anchor is configured to be driven into an underlying target location of a patient.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of embodiments of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the patient-mounted retraction systems and methods of the present application, there are shown in the drawings preferred embodiments. It should be understood, however, that the instant application is not limited to the precise arrangements and/or instrumentalities illustrated in the drawings, in which:



FIG. 1 is a perspective view of a blade type patient-mounted retractor assembly in accordance with an embodiment;



FIG. 2 is a cross sectional view of the blade type patient-mounted retractor assembly illustrated in FIG. 1;



FIG. 3 is an exploded assembly view of the blade type patient-mounted retractor assembly illustrated in FIG. 1, including a retractor body, a locking cap, an intermediate wedge, a collet, and a bone anchor;



FIG. 4 is a perspective view of the locking cap, the intermediate wedge, the collet, and the bone anchor illustrated in FIG. 3 in an assembled configuration;



FIG. 5 is a perspective view of the locking cap, the intermediate wedge, and the collet illustrated in FIG. 3, in an assembled configuration;



FIG. 6 is an exploded assembly view of the blade type patient-mounted retractor assembly similar to FIG. 3, but constructed in accordance with an alternative embodiment;



FIG. 7 is an exploded assembly view of a blade type patient-mounted retractor assembly constructed in accordance with an alternative embodiment, including a collet with an integrated locking cap;



FIG. 8 is a perspective view of a retractor system including two blade type patient-mounted retractor assemblies disposed in a surgical site in accordance with an embodiment;



FIG. 9 is another perspective view of the retractor system illustrated in FIG. 8;



FIG. 10 is a cross sectional view of a tube type patient-mounted retractor assembly in accordance with an embodiment;



FIG. 11 is a perspective view of a distal end of the tube type patient-mounted retractor illustrated in FIG. 10;



FIG. 12 is a perspective view of flexible skirting affixed to the distal end of the tube type patient-mounted retractor illustrated in FIG. 11;



FIG. 13 is an exploded assembly view of an anchor cartridge in accordance with an embodiment;



FIG. 14 is a perspective view of the anchor cartridge illustrated in FIG. 13 in an assembled configuration;



FIGS. 15A and 15B are perspective view of the distal end of the tube type patient-mounted retractor illustrated in FIG. 10 with the anchor cartridge disposed therein in extended and fully inserted configurations respectively;



FIG. 16 is a perspective view of a tube type patient-mounted retractor assembly disposed in a surgical site in accordance with an embodiment;



FIG. 17 is a perspective view of the tube type patient-mounted retractor assembly illustrated in FIG. 16;



FIG. 18 is another perspective view of the tube type patient-mounted retractor assembly illustrated in FIG. 16.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “top,” “bottom,” “upper,” and “lower” designate directions in the drawings to which reference is made. The words “inwardly,” “outwardly,” “distally,” and “proximally” refer to directions toward or away from the geometric center of the element being described and designated parts thereof. The words, “anterior”, “posterior”, “superior”, “inferior”, “lateral”, “medial”, “sagittal”, “axial”, “coronal,” “cranial,” “caudal” and related words and/or phrases designate preferred positions and orientations in the human body to which reference is made and are not meant to be limiting. The terminology intended to be non-limiting includes the above-listed words, derivatives thereof and words of similar import.


Described herein are patient-mounted retractor assemblies having varying configurations and/or features. Patient-mounted retractor assemblies may be used in surgical procedures, for example minimally invasive spinal surgeries. Applications of patient-mounted retractor assemblies can include, but are not limited to, discectomies, laminectomies, facetectomies, pedicle screw fixation, and the like. The retractors used in the various patient-mounted retractor assemblies described herein may be configured using any geometry appropriate for retracting tissue, musculature, and other anatomical features from a surgical site, thereby facilitating access within the surgical site, for example by a surgeon performing a procedure. Patient-mounted retractors may be re-positionable within a surgical site, for example along one or more axes, thus providing additional flexibility and utility to a surgeon working within a surgical site. Unless otherwise indicated, the patient-mounted retractors, assemblies, and the various components thereof can be manufactured from any suitable biocompatible material known in the art including but not limited to titanium, titanium alloy, such as TAN, stainless steel, reinforced plastics, elastomeric materials, and the like, or any combination thereof.


The patient-mounted retractors described herein may have various features that facilitate re-configurable access to a surgical site. For example, patient-mounted retractors may have channels formed therein that themselves create, or may be used in combination with complimentary features of other retracotrs to provide, surgical site access, for example in the form of an “access portal.” An access portal may comprise an exposed area within a surgical site configured such that a surgeon performing a procedure is provided with adequate visibility into a surgical site and to provide sufficient space for the deployment and/or utilization of any instrumentation required for the corresponding procedure. Example geometries described herein include “blade” type retractors, such as the retractors depicted in FIGS. 1 to 9, “tube” type, or cannulated, retractors such as the retracor depicted in FIGS. 10 to 18. However, it should be noted that these patient-mounted retractor geometries are merely examples, and the scope of the instant disclosure should not thereto. Alternative patient-mounted retractor geometries may be conceived of by those skilled in the art without straying from the spirit and scope of the instant disclosure.


Referring to FIGS. 1-3, an example embodiment of a patient-mounted retractor assembly 100 includes a blade type retractor 102, a mounting post 115 (e.g., a bone anchor 116) that can be connected to the retractor 102, and a locking assembly 400 comprising locking components such as a collet 128, an intermediate wedge 144, and a locking cap 138. As will become appreciated from the following description, the geometric characteristics of the blade type retractor 102 illustrated in FIGS. 1 to 9 provide an example of one design for a blade type patient-mounted retractor, but any alternative geometry may be used as appropriate. The blade type retractor 102 includes a retraction member in the form of a generally cylindrical retractor body 104 with a proximal end 104a, a distal end 104b opposite the proximal end, and an intermediate portion 104c defined between the proximal and distal ends 104a and 104b. It should be that the generally cylindrical geometry of the body depicted in the illustrative embodiments is merely an example body geometry, and that any other body geometries and/or body shapes for the body 104 may be used as desired. The body 104 of the retractor 102 may further include one or more accessory attachment points that may be configured to releasably receive optional accessories, such as illumination devices, suction apparatus, and the like.


The intermediate portion 104c may define an offset region 105 disposed between the proximal and distal ends 104a and 104b, respectively. For example, the proximal end 104a is centrally disposed on a first axis A1 and the distal end 104b is centrally disposed on a second axis A2 that is offset with respect to the first axis. In the example embodiment, the intermediate portion 104c is centrally disposed on an axis A3 that is offset with respect to both axes A1 and A2, thereby defining an offset region 105 of the body 104 between and with respect to the proximal end 104a and the distal end 104b. The degree of offset between the axes A1 and A2 may be tailored according to the anticipated use of the retractor, for example in accordance with a particular surgical site location within a patient, in accordance with a particular patient size and/or anatomy, and the like. It should be noted that the degree of offset between axes A1 and A2 depicted in the example embodiment illustrated in FIGS. 1-3 is merely an example offset, and the scope of the instant disclosure should not be limited thereto. For example, in an alternative embodiment, axes A1 and A2 may be coincident (i.e., there may be no offset region). In another alternative embodiment, there may be more than one, or varying degrees of offset within the offset region 105 of the intermediate portion 104c, defined along one or more additional axes. Furthermore, while the axes A1 and A2 are depicted as vertical and substantially parallel, and while axes A1, A2, and A3 are all defined within a single plane, it should be noted that axes A1 and A2 could be non-parallel with respect to each other, and/or defined within different planes in alternative embodiments, and the resulting patient-mounted retractor geometries would still be considered within the scope of the instant disclosure.


At least a portion of the body 104 of the blade type patient-mounted retractor 102 may be hollow and/or open. For instance, in the example embodiment depicted in FIGS. 1-3, the body 104 of the blade type retractor 102 is closed at the distal end 104b, hollow and open in the intermediate portion 104c, throughout the offset region 105, and hollow and open at the proximal end 104a, defining a curved plate 111 with opposing lateral edges 117. In alternative embodiments, the body 104 of the retractor 102 may be solid between the proximal and distal ends 104a and 104b, respectively, may be solid and/or closed at the proximal end 104a, may be solid and/or closed at the distal end 104b, or any combination thereof.


The body 104 of the blade type patient-mounted retractor 102 may include an auxiliary retraction member in the form of a flange 112 including a flange body 113 that defines a proximal end 113a, a distal end 113b opposite the proximal end 113a, and a lateral edge 113c. In the example embodiment, the flange 112 extends outwardly from one of the lateral edges 117 between the proximal and distal ends 104a and 104b of the body 104. The flange 112 may extend outwardly from the body 104 in any direction as appropriate. For example, the flange 112 may extend tangentially from an outer perimeter of the body 104, may extend outwardly along a chord defined between two points on a circumference of the body 104, or in any other direction as appropriate. In the illustrative embodiment, the lateral edge 113c has a vertical profile that is essentially parallel with axes A1 and A2. In alternative embodiments, the lateral edge may be defined along an axis offset with respect to axes A1, A2, and/or A3, may have one or more sections of curvature, may have cutouts therefrom, or any combination thereof.


The vertical contour of the flange 112, as defined by the plane of the flange 112, can conform to the shape of the body 104 between the proximal and distal ends 104a and 104b, or may be defined independently of the geometry of the body. In the example embodiment illustrated in FIGS. 1 to 3, the vertical contour of the flange 112 is essentially coplanar with the lateral edge 117 from which it extends. However, it should be noted the geometry of the flange 112 depicted in FIGS. 1 to 3 is merely an example, and the scope of the instant disclosure should not be limited thereto. For instance, the flange body 113 of the flange 112 can exhibit one or more sections having bends and/or areas of curvature formed along one or more axes and/or within one or more planes with respect to the body 104, areas of concavity and/or convexity, or any combination thereof. The geometry of the flange 112 may be determined in part in accordance with a particular surgical site location within a patient, in accordance with a particular patient size and/or anatomy, and the like. In alternative embodiments, the body 104 of the blade type patient-mounted retractor 102 may define more than one flange 112 (not shown). In such embodiments, the flanges 112 may be configured with similar or disparate geometries, vertical contours, etc., with respect to each other.


The flange 112 may have one or more tabs 114 extending from the flange body 113, and in particular extending distally from the distal end 113b of the flange body 113. The tab 114 may be configured to aide in the retraction of flesh, musculature, and the like when the blade type retractor is positioned and mounted in a surgical site. For example, the tab 114 may be configured to flexibly conform to bony anatomy when the retractor 102 is inserted into a surgical site, and in conforming to the bony anatomy may perform a scooping action to retract material located in close proximity to the bony surface that might otherwise obstruct visibility into the surgical site. If more than one tab 114 is desired, a series of slots (not shown) may be formed within the tab 114 and/or the distal end 113b of the flange body 113, thereby defining a plurality of tabs. If the material properties of the retractor body 104 and/or the flange 112 do not exhibit a desired level of flexibility, one or more sections of flexible skirting made of a suitably elastomeric material, may be affixed to the distal end 113b of the flange body 113 in lieu of the tab 114. The shape and geometry of the tab 114 with respect to the flange 112 may be configured as appropriate, for example in accordance with a particular patient size and/or anatomy, and the like.


The body 104 of the blade type patient-mounted retractor 102 may define a channel 110. The channel 110 may be configured to provide access to a surgical site when the patient-mounted retractor is mounted to a patient. The channel 110 may be defined by the body 104, alone or in combination with additional retraction members of the retractor, such as the flange 112. In this regard, it can be said that the channel 110 is at least partially defined by the body 104. The channel 110 may define any suitable shape, geometry, length, etc. as desired. For instance, in the example embodiment illustrated in FIGS. 1-3, the channel 110 is defined longitudinally by the hollow portions of the body 104 between the opening at the proximal end 104a of the body and the closed distal end 104b, and outwardly along the surface of the flange 112. The channel 110 may be configured to provide visibility and instrument access to a surgical site when mounted to a patient, thereby creating an access portal 158 in the surgical site. A retractor system 300, including two or more blade type patient-mounted retractor assemblies 100, may be used to create access portals 158 of varying sizes and/or geometries, as depicted in FIGS. 8 and 9 and discussed in greater detail below.


The blade type patient-mounted retractor 102 may be mounted to a patient by connecting the body 104 of the retractor to a mounting post 115. The mounting post 115 may be any type of fastener suitable to be removably inserted into a patient at a surgical site, for example a bone anchor, a nail, a pedicle mounting post, and the like. In the example embodiment depicted in FIGS. 1 to 9, the mounting post 115 is a bone anchor 116. In preferred embodiments, the blade type retractor 102 and the mounting post 115 are configured to allow the retractor to be polyaxially rotated or positionable about the mounting post 115 when the retractor 102 is connected to the mounting post 115. Rotation of the retractor about the mounting post 115 can allow a surgeon to initially position, and subsequently reposition if necessary, the retractor 102 as needed in order to maximize its utility in the surgical site. In alternative embodiments, the retractor body 104 and the mounting post 115 may be rigidly fixed with respect to one another prior to insertion of the retractor 102 in a surgical site.


The retractor assembly 100 can further include a mounting member 103 that can connect the body 104 of the blade type patient-mounted retractor 102 to the bone anchor 116. The mounting member 103 can be affixed to and/or formed in the body 104. In the example embodiment illustrated in FIGS. 1 to 3, the mounting member 103 is an anchor receptacle 106. The anchor receptacle 106 includes a proximal end 106a, and a distal end 106b opposite the proximal end. The anchor receptacle 106 may be formed within the body 104, or otherwise affixed to the body 104. In the example embodiment depicted in FIGS. 1 to 3, the anchor receptacle 106 is defined by the distal end 104b of the body 104. The anchor receptacle 106 may be configured in accordance with the type of mounting post 115 to which the blade type retractor 102 will connect. For example, the anchor receptacle 106 may define an aperture 108 therein, the aperture 108 configured to receive the head of the bone anchor 116. In alternative embodiments, the anchor receptacle 106 may have a bore (such as the bore 210 illustrated in FIG. 10) formed within the distal end 106b, the bore configured to receive the anchor cartridge 212 discussed in more detail below with reference to the tube type patient-mounted retractor 202. Additional components of the retractor assembly 100 may also be disposed within the aperture 108 of the anchor receptacle, for example the components of the locking assembly 400.


In the example embodiment depicted in FIGS. 1-3, the distal end 106b of the anchor receptacle 106 can be open and tapered or otherwise narrowed with respect to the proximal end 106a, so as to define a socket 106c at the distal end 106b. The socket 106c can be configured to retain a collet 128 as described in more detail below. Alternatively, the socket 106c may be configured to retain a head 120 of the bone anchor 116. It should be noted that the anchor receptacle 106 can be disposed at the distal end 104b of the body 104 merely as an example anchor receptacle location, and that the anchor receptacle 106 could be formed in and/or affixed to any other location on the body 104 as desired.


The bone anchor 116 includes a shaft 118 that defines longitudinally opposing proximal and distal ends 118a and 118b respectively, and a head 120 coupled to the proximal end 118a of the shaft 118. Helical threads 118c extend circumferentially around the shaft 118 along a substantial entirety of the shaft between the proximal and distal ends 118a and 118b, respectively. The helical threads 118c are configured to engage underlying bone. In one embodiment, the threads 118c may define an outer diameter that remains substantially constant between the proximal and distal ends. In alternative embodiments, the outer diameter defined by the threads 118c may vary over the length of the shaft, such that the outer diameter at the proximal end 118a is greater in magnitude than the outer diameter of the threads at the distal end 118b, or such that the outer diameter at the proximal end 118a is lesser in magnitude than the outer diameter of the threads at the distal end 118b. The shaft 118 of the bone anchor 116 may be cannulated, such that the bone anchor 116 may receive a guide wire in order to direct the trajectory of the bone anchor 116 when it is driven into position within a patient.


The head 120 includes an annular body 122 that defines a proximal end 122a, a distal end 122b opposite the proximal end, and a curved outer surface 122c. The annular body 122 may be defined in the shape of a segment of a sphere having a diameter or cross-sectional dimension that is greater at a location between the proximal and distal ends than at either of the proximal and distal ends 122a and 122b respectively. Defining the annular body 122 in the shape of a segment of a sphere allows polyaxial rotation about the head 120 of the bone anchor 116. It should be noted that the head 120 can assume any other suitable shape as desired. The distal end 122b of the head is formed and/or coupled to the proximal end 118a of the shaft, either directly or indirectly via neck 124. The head may have driving features 126 formed therein, for example at the proximal end 122a, the driving features configured to engage with complimentary driving features of a driving instrument (not shown).


As mentioned above, in preferred embodiments, the retractor 102 can be polyaxially positionable about the mounting post 115 when the retractor 102 is connected to the mounting post 115. The retractor assembly 100 can include a locking assembly 400 that can be connected to the retractor body 104, for example disposed within the anchor receptacle 106. The locking assembly 400 can include a collet 128, a locking cap 138, and an intermediate wedge 144. When the blade type retractor 102 has been connected to a mounting post 115, for example bone anchor 116, and positioned as desired within the surgical site, the retractor body 104 can be positionally fixed with respect to the mounting post 115 by engaging the locking assembly 400 to a locked configuration.


The collet 128 includes an annular body 130 that defines a proximal end 130a, a distal end 130b opposite the proximal end, a concave inner surface 130c, and an opposing convex outer surface 130d. The annular body 130 can define the shape of a segment of a sphere, having a diameter or cross-sectional dimension that is greater at a location between the proximal and distal ends than at either of the proximal and distal ends 130a and 130b.


The concave inner surface 130c may define a spherical shape that substantially matches the curved outer surface 122c of the head 120 of the bone anchor 116, such that the concave inner surface 130c will be engaged with the curved outer surface 122c when the head 120 of the bone anchor 116 is received in the collet 128. The inner surface of the socket 106c may be configured in the shape of a segment of a sphere with a spherical volume that is substantially the same as or slightly greater in magnitude than the spherical volume of the convex outside surface 130d of the collet 128. The annular body 130 further includes a plurality of circumferentially spaced retention fingers 132 formed within the distal end 130b of the annular body 130. The retention fingers 132 are configured such that circumferentially adjacent fingers 132 are separated by a slot 134 that extends proximally upwards into the body 130 from the distal end 130b.


The retention fingers 132 are configured to retain the head 120 of the bone anchor 116. As the collet 128 is first disposed onto the head 120 of the bone anchor 116, the retention fingers 132 deflect, spreading outwardly from the center of the collet along the curved outer surface 122c of the head 120. Once the tips at the distal ends of the fingers 132 move beyond the portion of the curved outer 122c surface with the largest diameter between the proximal and distal ends 122a and 122b, the fingers 132 “snap” back to their original shape, thus releasably retaining the head 120 of the bone anchor within the collet 128 via a snap fit. The spherical inner surface of the socket 106c is sufficiently sized to accommodate snapping the collet 128 into place over the head 120 of the bone anchor 116, and for removal of the bone anchor from the collet, while the collet and the bone anchor are disposed within the anchor receptacle 106.


The collet 128 may be retained in the aperture 108 of the anchor receptacle by a locking cap 138 and an intermediate wedge 144. The collet 128 includes an annular ring 136 formed at the proximal end 130a of the annular body 130. The annular ring 136 is configured to engage the lower surface 146b of the intermediate wedge 144 or the bottom surface of a locking cap 138, and to provide axial alignment of the collet within the aperture 108 of the anchor receptacle 106. The locking cap 138 includes a body 140 defining a proximal end 140a, a distal end 140b opposite the proximal end. Helical threads 140c, configured to engage complimentary threads 106d formed within the surface of the aperture 108 at the proximal end 106a of the anchor receptacle 106, extend circumferentially around the body 140 along a substantial entirety of the body between the proximal and distal ends. The locking cap 138 may have driving features 142 formed therein, for example at the proximal end 140a. The driving features 142 are configured to engage with complimentary driving features of a driving instrument (not shown). The locking cap 138 may have a longitudinal aperture 140d formed therethrough. The aperture 140d is configured to receive a raised collar 148 of the intermediate wedge 144. The locking cap 138 may be configured to be removable from the anchor receptacle 106, or alternatively may be configured to be captive within the anchor receptacle 106, and therefore non-removable.


The intermediate wedge 144 may be disposed within the aperture 108 of the anchor receptacle 106, at a location between the collet 128 and the locking cap 138. The intermediate wedge 144 includes a generally cylindrical shaped body 146 defining an upper surface 146a at the proximal end of the body and an opposing lower surface 146b at the distal end of the body. The body 146 further includes a raised collar 148 extending upwardly from the upper surface 146a at the proximal end of the body 146, the collar configured to be received within the longitudinal aperture 140d of the locking cap 138. A longitudinal aperture 150 may extend through the raised collar 148 and the body 146. The aperture 150 can have a diameter that is sufficiently large to allow a guide wire to pass through. The intermediate wedge 144 may have one or more raised ridges 152 formed on the outer surface of the body 146 between the proximal and distal ends 146a and 146b. The raised ridge 152 may be configured to slidably engage with a complimentary slot (not shown) formed in the surface of the aperture 108 of the anchor receptacle 106. The raised ridge 152, when received in slidable engagement with the complimentary slot in the anchor receptacle 106, prevents rotation of the intermediate wedge 144 within the aperture 108.


The lower surface 146b of the body 146 may be configured as a relatively flat plane configured to engage with the annular ring 136 of collet 128. In accordance with an alternative embodiment, a collet 154 (as depicted in FIG. 6) replaces the collet 128 in the locking assembly 400, and the intermediate wedge 144 may be configured accordingly with a substantially concave lower surface 146b configured to engage with the spherical upper surface of the collet 154, thereby providing an enhanced magnitude of surface area contact between the collet 154 and the intermediate wedge 144 with respect to the magnitude of surface area contact between the collet 128 and the intermediate wedge 144. Enhancing the magnitude of surface area contact between a collet and an intermediate wedge can result in a more robust interface between the locking components of the locking assembly 400 when the locking assembly 400 is activated to a locked configuration.


In an example method of using the blade type patient-mounted retractor 102, a mounting post 115, for example the bone anchor 116, is inserted into an underlying target location 107 of a patient at a surgical site. The target location 107 can be an underlying bone such as a vertebral body V1 . In accordance with one embodiment, the target location 107 is a pedicle P1 of the vertebral body V1. The blade type retractor 102 may then be connected to the head of the bone anchor 116. The blade type retractor 102 may have the anchor receptacle 106 disposed at the distal end 104b of the retractor. The anchor receptacle may have locking components disposed within it, for example a collet (e.g., collets 128 or 154), an intermediate wedge 144, and a locking cap 138. It should be noted that certain of these locking components of the locking assembly 400 may be omitted, as discussed in more detail below. To aide deployment of the blade type patient-mounted retractor, it may be desirable to first locate a desired insertion point for the bone anchor via the insertion of a guide wire. A cannulated version of the bone anchor 116 may then be inserted into the surgical site over the guide wire to guide the trajectory of the bone anchor 116 as it is driven into the desired surgical location. The guide wire may also be passed through the anchor receptacle 106 and the locking assembly 400 disposed therein, and used to guide the alignment of the collet with the head of the bone anchor.


The retractor 102 may be connected to the bone anchor 116 by snapping the collet 128 that is disposed in the anchor receptacle 106 over the head 120 of the bone anchor 116. When the retractor body 104 is connected to the head 120 of the bone anchor 116, the retractor 102 can be rotatably positionable about the head 120 of the bone anchor 116. Once the blade type retractor 102 has been positioned to provide the desired access portal 158 at the surgical site, the retractor body 104 may be fixed with respect to the bone anchor 116 by activating the locking assembly 400 to the locked configuration. Although a single blade type retractor 102 can be used to define an access portal 158, greater flexibility is achieved when two or more blade type retractors are deployed at a surgical site, as depicted in FIGS. 8 and 9. In FIGS. 8 and 9, a retractor system 300 including two blade type retractor assemblies 100 is mounted to respective target locations 107 that are spaced from each other at a surgical site, such that the respective retractors 102 oppose each other. In particular, the retractors 102 are positioned such that the respective channels 110 face each other so as to form the access portal 158 at the surgical site. The access portal 158 is re-configurable, for example during the course of a procedure, by releasing the locking assembly 400 of one or both of the retractor assemblies 100 to an unlocked configuration, repositioning one or both of the retractors 102 to reconfigure the access portal 158 as desired, then re-activating the locking assembly 400 of the respective retractor assembly 100 or assemblies 100 to the locked configuration, thereby securing the respective retractor 102 or retractors 102 in their new positions.


In one example of activating the locking assembly 400 of a blade type patient-mounted retractor 102, for example using the collet 128 or 154, the intermediate wedge 144, and the locking cap 138, a driving instrument may be inserted into the channel 110 of the corresponding retractor 102, and a rotational driving force applied to the locking cap 138, thereby advancing the locking cap 138 in a distal, or downward, direction within the anchor receptacle 106, toward the collet 128. If access to the channel 110 would be blocked by the geometry of the body 104 of the retractor 102, an instrument aperture 104d may be formed within the body 104. The aperture 104d can be configured to allow access by a driving instrument to the anchor receptacle 106. If an intermediate wedge 144 is disposed between the locking cap 138 and the collet 128, the advancing locking cap 138 will transfer downward force to the intermediate wedge 144, causing the intermediate wedge 144 to advance in a distal or downward direction within the anchor receptacle 106. As the intermediate wedge 144 advances, the lower surface 146b of the wedge 144 makes contact with the proximal end of the collet 128, thereby transferring downward force to the collet 128 and causing the retention fingers 132 to interfere with the inner surface of the socket 106c at the distal end 106b of the anchor receptacle 106, and to collapse around the head 120 of the bone anchor 116, thereby fixing the anchor receptacle 106, and thus the retractor body 104, in position with respect to the head 120 of the bone anchor 116 via a crush lock between the collet 128 and the bone anchor 116.


If a surgeon performing a procedure desires to reposition the blade type patient-mounted retractor 102, a rotational driving force of the opposite direction to that applied during activation of the locking assembly 400 may be applied to release the locking assembly 400 to its unlocked configuration, thereby re-enabling polyaxial positioning of the retractor 102 with respect to the bone anchor 116. When the retractor 102 is repositioned as desired, the locking assembly 400 can be activated again to its locked configuration as described above to re-lock the retractor 102 in position with respect to the head 120 of the bone anchor 116. The blade type patient-mounted retractor 102 can be removed from the surgical site by releasing the locking assembly 400 and applying an upward force to the retractor body 104, thereby causing the collet 128 to disengage from the head 120 of the bone anchor 116. The bone anchor 116 may be removed from the surgical site, or may be re-used, for example as a bone anchoring element of a bottom-loading pedicle screw assembly. It should be noted that while the instant example method is discussed within reference to the use of solely blade type patient-mounted retractors, it is possible to use blade type patient-mounted retractors in conjunction with tube type patient-mounted retractors during a single procedure.


As described above, various embodiments of the locking assembly 400 may omit one or more of the locking components described above. For example, it is possible to omit the intermediate wedge 144 in certain embodiments. When the intermediate wedge 144 is omitted, the lower surface of the locking cap 138 makes direct contact with the collet 128 as the locking cap 138 is advanced in the anchor receptacle 106. In embodiments where the intermediate wedge 144 is so omitted, the upper surface of the collet 128 at the proximal end 130a may have an engagement structure formed thereon, the engagement structure configured to engage the lower surface of the locking cap 138 as it is advanced, thereby transferring downward force from the locking cap 138 to the collet 128. The lower surface of the locking cap 138 may similarly include engagement structure formed thereon, the engagement structure configured to engage the upper surface of the collet 128 as the locking cap 138 is advanced. Alternatively, both the lower surface of the locking cap 138 and the upper surface of the collet 128 may have complimentary engagement structure formed thereon. In accordance with another alternative embodiment of the locking assembly 400, the locking cap 138 and the collet 128 can be combined into a unitary locking collet 156, depicted in FIG. 7.


It should be noted that although locking the retractor body 104 in position with respect to the bone anchor 116 has been discussed with reference to the locking assembly 400 disposed within the anchor receptacle 106, the scope of the instant disclosure should not be limited thereto. For instance, the retractor body 104 may alternatively be connected to the bone anchor 116 and/or locked in place with respect to the bone anchor 116 via alternatively constructed locking assemblies. For example, the curved outer surface 122c of the head 120 of the bone anchor 116 may have helical threads formed thereon, the threads configured to engage complimentary threads formed within the distal end 106b of the anchor receptacle 106. Alternatively, the head 120 of the bone anchor 116 and the anchor receptacle 106 may have ball and detent features disposed therein, thereby providing predetermined angulation settings between the retractor body and the bone anchor and toolless adjustment. Of course any other components and/or mechanisms can be used to connect the blade type retractor to the bone anchor and/or lock the position of the retractor in position with respect to the bone anchor as desired.


Now referring to FIGS. 10-18, a patient-mounted retractor assembly 200 can be constructed in accordance with an embodiment. The retractor assembly 200 can include a tube type retractor 202, a mounting post 115, a locking assembly 500 configured to secure the mounting post 115 to the retractor 202, and an anchor cartridge 212 that is configured to provide axial translation of the retractor 202 with respect to the mounting post 115, and can carry components of the locking assembly 500. As will become appreciated from the following description, the body geometry characteristics of the tube type retractor 202 illustrated in FIGS. 10-18 provide an example of one design for a tube type patient-mounted retractor, but alternative body geometries may be used as appropriate. The tube type retractor 202 includes a generally tube shaped retractor body 204 defining a proximal end 204a, a distal end 204b opposite the proximal end, and an intermediate portion 204c disposed between the proximal end 204a and the distal end 204b. The retractor 202 further includes at least one bore 206 formed through the body 204 along a longitudinal axis A4. The bore 206 defines a first opening 206a at the proximal end 204a of the body 204, a second opening 206b disposed at the distal end 204b of the body 204, and an intermediate section 206c between the first opening 206a and the second opening 206b. The bore 206 may serve of similar use as the channel 110 and/or access portal 158 defined by the blade-type patient-mounted retractor 102, in that the bore 206 may provide visibility into a surgical site and space for the deployment and/or utilization of instrumentation to be used during a surgical procedure. In alternative embodiments, two or more bores 206 may be formed within the body 204 of the tube type retractor. The body 204 of the retractor 202 may further include one or more accessory attachment points that may be configured to releasably receive optional accessories, such as illumination devices, suction apparatus, and the like.


A cross sectional dimension of the bore can vary between the proximal and distal ends 206a and 206b, respectively. For example, the cross sectional dimension may be the diameter of the bore 206. In the illustrative environment, the first opening 206a has a diameter of greater magnitude than the diameter of the second opening 206b. The diameter of the bore 206 gradually decreases along the intermediate section 206c from the first opening 206a to the second opening 206b. In an alternative embodiment the first opening 206a may have a diameter of lesser magnitude than the diameter of the second opening 206b, and the diameter of the bore 206 may gradually increase along the intermediate section 206c from the first opening to the second opening. In another embodiment, the first and second openings 206a and 206b may have diameters of equal magnitude, and the diameter of the bore 206 may remain constant along the intermediate section 206c. In another alternative embodiment, the diameter may vary along the intermediate section 206c, regardless of the diameter of the first opening 206a or the second opening 206b. Of course other cross sectional dimensions, such as area, may be used to define the characteristics of the bore 206.


The distal end 204b of the body 204 may have a profiled edge 204d formed therein at a location proximate to the second opening 206b. The geometry of the profiled edge 204d may be defined at least in part in accordance with the intended use of the tube type retractor, for example in accordance with the underlying bony anatomy that the distal end 204b of the retractor may engage in a surgical site. For example, the profiled edge 204d can include one or more angled and/or curved cutout sections defined along the perimeter of the distal end 204d of the body, the cutout sections configured to conform to bony structure or other patient anatomy at a surgical site.


The retractor 202 can include one or more tabs 214 extending distally from the distal end 204b of the body 204, for example along the profiled edge 204d, as illustrated in FIG. 11. The tabs 214 may be configured to aide in the retraction of flesh, musculature, and the like when the tube type retractor is positioned and mounted in a surgical site. For example, the tabs 214 may be configured to flexibly conform to bony anatomy when the retractor 202 is inserted into a surgical site, and in conforming to the bony anatomy may perform a scooping action to retract material located in close proximity to the bony surface that might otherwise obstruct visibility into the surgical site. The tabs 214 may be separated by a series of slots 216 extending from the distal end 204b of the body 204 upward towards the proximal end 204a. The number and length of the slots 216 may determine the flexibility, and thus the conforming characteristics, of the tabs 214. If the material properties of the retractor body 204 do not exhibit a desired level of flexibility, one or more sections of flexible skirting 218, made of a suitably elastomeric material, may be affixed to the distal end 204b of body in lieu of the tabs 214, as illustrated in FIG. 12.


The tube type patient-mounted retractor 202 includes a generally circular bore 206 that extends through the body 204, and a straight intermediate section 204c extending between the proximal and distal ends 204a and 204b of the body 204. It should be appreciated, however, that the shape of the bore 206 and the body 204 are merely example shapes, and the scope of the instant disclosure should not be limited thereto. Tube type patient-mounted retractors 202 with many variations of the above shapes are possible and are intended to be included within the scope of the instant disclosure. For example: the geometry of the bore 206 may be elliptical, square, rectangular, hexagonal, or any other shape; the geometry of the retractor body 204 may conform to the geometry of the bore, or the body 204 may have a different geometry from the bore (e.g., a circular bore through a square body); and the intermediate section 206c of the bore 206 may have one or more areas of bends, steps, curvature, differing geometry, or other variations from straightness and/or uniformity of geometry. The geometric characteristics of the tube type retractor 202 may be determined in accordance with, for example, with a particular surgical site location within a patient, in accordance with a particular patient size and/or anatomy, and the like.


The retractor assembly 200 can include a mounting post 115 configured to connect to the tube type patient-mounted retractor 202, and in particular to the retractor body 204. The mounting post 115 may be inserted into a target location 109 of the patient at a surgical site so as to, in turn, mount the retractor 202 to the patient. The mounting post 115 may be provided as any type of fastener suitable to be removably inserted into a patient at a surgical site, for example a bone anchor, a nail, a pedicle mounting post, and the like. In accordance with the illustrated embodiment, the mounting post 115 is the bone anchor 116. In preferred embodiments, the tube type retractor 202 and the mounting post 115 are configured to allow the retractor 202 to be rotatable or polyaxially positionable about the mounting post 115 when the retractor 202 is connected to the mounting post 115. The rotatability of the retractor 202 to the mounting post 115 allows a surgeon to initially position, and subsequently reposition if necessary, the retractor 202 as needed in order to maximize its utility in the surgical site. In alternative embodiments, the retractor 202 and the mounting post 115 may be rigidly fixed with respect to one another prior to insertion in a surgical site.


The body 204 of the tube type patient-mounted retractor 202 can be connected to the bone anchor 116 utilizing a mounting member 203 affixed to and/or formed in the body 204. In accordance with the illustrated embodiment, the mounting member 203 is an anchor receptacle 208. The anchor receptacle 208 can be formed on the body 204 of the retractor 202 between the proximal and distal ends 204a and 204b, respectively, and adjacent to the bore 206. The anchor receptacle 208 includes a proximal end 208a, and a distal end 208b opposite the proximal end 208a. A cylindrical bore 210 is formed in the distal end 208b of the anchor receptacle 208. The bore 210 is configured to receive an anchor cartridge 212 discussed in more detail below. In alternative embodiments, the anchor receptacle 208 may have an aperture and/or a socket formed therein as described above with respect to the aperture 108 and socket 106c formed in the anchor receptacle 106 of the blade type patient-mounted retractor 102. A locking assembly constructed as described above with respect to the locking assembly 400 of the blade type patient-mounted retractor 102 may be disposed in such an aperture.


The anchor receptacle 208 may be formed within the body 204, or otherwise affixed to the body. In accordance with the illustrated embodiment, the anchor receptacle 208 is formed at the distal end 204b of the body 204, at a location adjacent to the bore 206. The cylindrical bore 210 is formed in the anchor receptacle 208 along an axis AS that is offset from the longitudinal axis A4. The degree of offset between the axes A4 and AS may be determined by the desired resulting geometry of the tube type retractor, for example in accordance with a particular surgical site location within a patient, in accordance with a particular patient size and/or anatomy, and the like. In order to provide access, for example by a driving instrument, to structures used in configuring and/or reconfiguring the position of the tube type retractor 202 in a surgical site, access channels 208c and 208d may be formed within the anchor receptacle 208. More or fewer access channels may be formed as necessary. Access channel 208c can be defined by a longitudinal bore 209a that extends distally along axis A5 from the first opening 206a of the bore 206 and into the bore 210. Access channel 208d can be defined by a longitudinal bore 209b that extends between a bore opening 209c, defined within the intermediate section 206c of the bore 206 above an engagement member, and a distal end 209d located below the engagement member. It should be noted that while the anchor receptacle 208 is disposed adjacent to the bore 206 at the distal end 204b of the body 204 in accordance with the illustrated embodiment, the anchor receptacle 208 can alternatively be formed in and/or affixed to any other location on the body 204 as desired.


The anchor cartridge 212 is configured to be received in the bore 210 of the anchor receptacle 208. The anchor cartridge 212 includes a cartridge body 220 defining a proximal end 220a, a distal end 220b opposite the proximal end, and an outside surface 220c. The anchor cartridge 212 can define an aperture 222 that extends through the body 220. Locking components of the locking assembly 500 or the locking assembly 400 can be disposed in the aperture 222 of the anchor cartridge 212. Helical threads 220e, configured to engage complimentary threads 140c of the locking cap 138, may be formed within the surface of the aperture 222 at the proximal end 220a of the anchor cartridge 212. The distal end 220b of the anchor cartridge 212 may be open and tapered or otherwise narrowed with respect to the proximal end 220a, thereby defining a socket 220d. In one embodiment, the socket 220d is configured to retain a collet 232. Alternatively, the socket 220d may be configured to retain the head 120 of the bone anchor 116.


The anchor cartridge 212 is configured to be axially translated within the bore 210 of the anchor receptacle 208. In a preferred embodiment, the outer surface 220c of the anchor cartridge 212 has a series of annular ridges 224 formed thereon. The annular ridges 224 are configured to be engaged by an engagement member disposed within the bore 210 of the anchor receptacle 208, such as the pawl 226. The pawl 226 includes a base 228. The base can be configured to be received within the aperture 229 formed in the distal end 208b of the anchor receptacle 208. The base 228 can be affixed to the anchor receptacle 208, for example by a fastener inserted through bore 228a and received in the distal end 208b of the anchor receptacle. The pawl 226 further includes an arm 230 defining a proximal end 230a, a distal end 230b opposite the proximal end 230a, and an engagement member 230c. The engagement member 230c is configured to engage the annular ridges 224 formed on the outer surface 220c of the anchor cartridge 212, so as to prevent the anchor cartridge from inadvertently backing out of the bore 210. The engagement member 230c can have the shape of a tooth configured to engage an annular ridge 224, or any other shape as desired. The arm 230 also has a release tab 230d disposed proximate to the proximal end 230a. The release tab 230d is configured to cause the arm 230, and thus the engagement member 230c, to deflect away from the anchor cartridge 212 when a downward force is applied to the release tab 230d.


In accordance with the example embodiment illustrated in FIGS. 10-15B, as the anchor cartridge 212 is inserted into the bore 210 in the distal end 208b of the anchor receptacle 208, with the proximal end 220a inserted first, the outer surface 220c of the proximal end 220a of the anchor cartridge 212 interferes with the engagement member 230c on the arm 230 of the pawl 226, thereby causing the proximal end 230a of the arm 230 to deflect outwardly, away from the anchor cartridge 212. As the anchor cartridge 212 is further inserted, the engagement member 230c falls into the first of the annular ridges 224, and will snap back into its non-deflected state. At this point, the anchor cartridge 212 will be in an extended state, as depicted in FIG. 15A. The engagement member 230c will hug the annular ridge 224 that it engages, thereby preventing the anchor cartridge 212 from inadvertently backing out of the bore 210. As the anchor cartridge 212 is advanced further into the bore 210, the engagement member 230c rides up along each subsequent annular ridge 224, the proximal end 230a of the arm deflecting outwardly away from the anchor cartridge 212, then snapping back into its non-deflected state as is passes by the apex of each successive annular ridge 224. Eventually the anchor cartridge 212 becomes fully inserted into the bore 210, as illustrated in FIG. 15B. It should be noted that the annular ridges 224 and complimentary pawl 226 are merely example implementations that facilitate the axial translation of the anchor cartridge, and the scope of the instant disclosure should not be limited thereto.


In preferred embodiments, the tube type retractor 202 and the mounting post 115 are configured to allow the retractor 202 to be rotatable or polyaxially positionable about the mounting post 115 when the retractor 202 is connected to the mounting post 115. When the tube type retractor 202 is connected to the mounting post 115, for example bone anchor 116, and positioned as desired within the surgical site, the retractor body 204 can be fixed with respect to the mounting post 115 by engaging the locking assembly 500 disposed in the aperture 222 of the anchor cartridge 212 to a locked configuration. In the example embodiment the locking assembly 500 includes the locking components depicted in FIGS. 10-14, including a collet 232, an intermediate wedge 244, the locking cap 138, and a peg 256 that rotatably secures the collet 232 and the intermediate wedge 244. In alternative embodiments, the locking assembly 500 can include locking components similar to those described above with respect to the locking assembly 400 that is disposed within the aperture 108 of the anchor receptacle 106. In particular, the locking assembly 500 can include a collet (e.g., collets 128, 154, 156, or 232), a locking cap 138 usable with select ones of the collets, an intermediate wedge (e.g., intermediate wedges 144 or 244), and the peg 256.


The collet 232 includes an annular body 234 that defines a proximal end 234a, a distal end 234b opposite the proximal end, a concave inner surface 234c, and an opposing convex outer surface 234d. The annular body 234 can define the shape of a segment of a sphere, having a diameter or cross-sectional dimension that is greater at a location between the proximal and distal ends than at either of the proximal and distal ends 234a and 234b. The collet 232 has a pair of notches 236 formed in the proximal end 234a. The notches 236 are configured to engage complimentary tabs 252 formed on the lower surface 246b of the intermediary wedge 244.


The concave inner surface 234c may define a spherical shape that substantially matches the curved outer surface 122c of the head 120 of the bone anchor 116, such that the concave inner surface 234c engages the curved outer surface 122c when the head 120 of the bone anchor 116 is received in the collet 232. The inner surface of the socket 220d may be configured in the shape of a segment of a sphere with a spherical volume that is substantially the same as or slightly greater in magnitude than the spherical volume of the convex outside surface 234d of the collet 232. The annular body 234 further includes a plurality of circumferentially spaced retention fingers 240 formed within the distal end 234b of the annular body 234. The retention fingers 240 are configured such that circumferentially adjacent fingers are separated by a slot 242 that extends proximally upwards into the body 234 from the distal end 234b.


The retention fingers 240 are configured to retain the head 120 of the bone anchor 116. As the collet 232 is first placed over the head 120 of the bone anchor 116, the retention fingers 240 deflect, spreading outwardly from the center of the collet 232 along the curved outer surface 122c of the head 120. Once the tips of the fingers 240 move beyond the portion of the curved outer surface 122c with the largest diameter between the proximal and distal ends 122a and 122b, the fingers 240 “snap” back to their original shape, thus releasably retaining the head 120 of the bone anchor within the collet 232 via a snap fit. The spherical inner surface of the socket 220d is sufficiently sized to accommodate snapping the collet 232 into place over the head 120 of the bone anchor 116, and for removal of the bone anchor 116 from the collet 232, while the collet 232 and the bone anchor 116 are disposed within the anchor cartridge 212.


The locking assembly 500 can further include a locking cap 138 and an intermediate wedge 244 that retain the collet 232 in the aperture 222 of the anchor cartridge 212. The intermediate wedge 244 may be disposed within the aperture 222 of the anchor cartridge 212 at a location between the collet 232 and the locking cap 138. The intermediate wedge 244 includes a generally cylindrical shaped body 246 defining an upper surface 246a at the proximal end of the body 246 and an opposing lower surface 246b at the distal end of the body 246. The body 246 further includes a raised collar 248 extending upwardly from the center of the upper surface 246a at the proximal end of the body 246. The collar 248 is configured to be received within the longitudinal aperture 140d of the locking cap 138. A longitudinal aperture 250 may be formed through the raised collar 248 and the body 246, the diameter of the aperture 250 sufficiently large to allow a guide wire to pass through. The intermediate wedge 244 includes a pair of tabs 252 that extend downward in a distal direction from the lower surface 246b of the body 246. The tabs 252 are configured to engage the notches 236 of the collet 232. The intermediate wedge 244 can define a radial aperture 254 formed in the wedge body 246 at a location between the upper and lower surfaces 246a and 246b.


The locking assembly 500 further includes a peg 256 that can be inserted into the slot 220f formed in the anchor cartridge 212 and received in the radial aperture 254 when the collet 232 and the intermediate wedge 244 are disposed in the aperture 222 and engaged with each other, so as to prevent axial rotation of the collet 232 and the intermediate wedge 244 within the aperture 222. The peg 256 can be configured such that tip of the peg 256 protrudes from the slot 220f when the peg 256 is seated within the radial aperture 254, such that when the anchor cartridge 212 is inserted into the bore 210 of the anchor receptacle 208, the tip of the peg is slidably engaged within a longitudinal groove 257 defined in the bore 210 and extending upwardly in a proximal direction from the distal end 208b of the anchor receptacle 208. When the tip of the peg 256 is disposed within the longitudinal groove 257, axial rotation of the anchor cartridge 212, and thus the collet 232 and the intermediate wedge 244, with respect to the bore 210 is prevented. Additionally, the peg 256 can be configured to limit axial translation of the collet 232 and the intermediate wedge 244 within the anchor receptacle 212 when the peg is disposed in the slot 220f and received in the radial aperture 254, as illustrated in FIG. 14.


It should be noted that the locking assembly 400 described above with reference to the blade type patient-mounted retractor 102, in particular the collets 128, 154, and 156, and the intermediate wedge 144, may be disposed within the aperture 222 of the anchor cartridge 212, in lieu of the collet 232 and the intermediary wedge 244. Similarly, it should be noted that the locking assembly 500 described above with reference to the tube type patient-mounted retractor 202, in particular the collet 232 and the intermediate wedge 244, may be disposed within the aperture 108 of the anchor receptacle 106 in lieu of the collets 128, 154, and 156, and the intermediate wedge 144.


In an example method of using the tube type patient-mounted retractor 202, the mounting post 115, for example the bone anchor 116, is inserted into the target location 109 of a patient. A tube type retractor 202 may then be connected to the head 120 of the bone anchor 116. The anchor receptacle 208 can be disposed at the distal end 204b of the body 204. The anchor receptacle 208 may include the anchor cartridge 212 carried in the bore 210. The anchor cartridge 212 may retain the components of the locking assembly 500. To aide deployment of the tube type patient-mounted retractor 202, it may be desirable to first locate a desired insertion point for the bone anchor via the insertion of a guide wire. A cannulated version of the bone anchor 116 may then be inserted into the surgical site over the guide wire to guide the trajectory of the bone anchor as it is driven into place. The guide wire may also be passed through the anchor cartridge 212 and the locking components therein, and used to guide the alignment of the collet with the head of the bone anchor.


The retractor 202 may be connected to the bone anchor 116 by snapping the collet 232 that is disposed in the anchor cartridge 212 over the head 120 of the bone anchor 116. When the retractor body 204 is connected to the head 120 of the bone anchor 116, the retractor 202 is rotatably positionable about the head 120 of the bone anchor 116. The retractor 202 is also axially translatable on the anchor cartridge 212. The retractor 202 may be moved closer to the underlying anatomy at the surgical site, for instance the target location 109, by applying a downward force to the retractor body 204, causing the anchor cartridge 212 to advance within the bore 210. The anchor cartridge 212 may be backed out of the bore 210 by applying a downward force, for example by an instrument inserted into access channel 208d, on the release tab 230d, causing the arm 230 of the pawl 226, and thus the engagement member 230c, to deflect away from the anchor cartridge 212 and to disengage from the annular rings 224. The retractor 202 can then be backed out of the bore 210, or translated away from the target location 109 by lifting up on the retractor body 204. When positioning the retractor 202 within the surgical site at the target location 109, one or more dilators configured for use with the retractor 202 may be used to initially retract patient anatomy from the surgical site.


Referring now to FIGS. 16-18 in particular, once the tube type retractor 202 has been positioned to provide the desired access portal into the surgical site, the retractor body 202 may be positionally fixed with respect to the bone anchor 116 by activating the locking assembly 500 to a locked configuration. In one example, a driving instrument may be inserted into the access channel 208c of the retractor 202, and a rotational driving force can be applied to the locking cap 138, thereby advancing the locking 138 cap in a distal, or downward, direction within the anchor cartridge 212, toward the collet 232. The advancing locking cap 138 transfers downward force to the intermediate wedge 244, causing the intermediate wedge 244 to be advanced in a downward direction within the anchor receptacle 212. As the intermediate wedge 244 advances downward, the tabs 252 of the intermediate wedge 244 engage the slots 236 of the collet 232, transferring downward force from the intermediate wedge 244 to the collet 232, thereby causing the retention fingers 240 to interfere with the inner surface of the socket 220d at the distal end 220b of the anchor cartridge 212, and to collapse around the head 120 of the bone anchor 116, thereby fixing the anchor receptacle, and thus the retractor body 204, in position with respect to the head 120 of the bone anchor 116 via a crush lock between the collet 232 and the bone anchor 116.


If a surgeon performing a procedure desires to reposition the tube type patient-mounted retractor 202 during a procedure, a rotational driving force of the opposite direction to that applied during activation of the locking assembly 500 may be applied to release the locking assembly 500 to an unlocked configuration, thereby allowing the retractor 202 to be polyaxially positionable with respect to the bone anchor 116. The retractor 202 can further be axially translated with respect to the anchor cartridge 212 by applying a downward force to the release tab 230d of the pawl 226. When the retractor 202 is repositioned as desired, the locking assembly 500 can be activated again to its locked configuration as described above to re-lock the retractor body 204 in position with respect to the head 120 of the bone anchor 116. The tube type patient-mounted retractor 202 can be removed from the surgical site by releasing the locking assembly 500 and applying an upward force to the retractor body 204, thereby causing the collet 232 to disengage from the head 120 of the bone anchor 116. The bone anchor 116 may then be removed from the surgical site, or may be re-used, for example as a bone anchoring element of a bottom-loading pedicle screw assembly. It should be noted that while the instant example method is discussed within reference to the tube type patient-mounted retractor 202, it is possible to use blade type patient-mounted retractors 102 in combination with tube type patient-mounted retractors 202 during a single procedure. For example, if a procedure calls for incisions into multiple target locations 107 and/or 109, one or more blade type retractors 102 may be disposed at the target location 107, while a tube type retractor 202 may be disposed at the target location 209.


It should be appreciated that a variety of kits, for example surgical kits assembled for particular procedures, can be provided that include one or more components of the patient mounted retractor assemblies 100, 200 and systems disclosed herein. The components of the kits may be configured the same or differently. For example, within a single kit, a variety of blade type patient-mounted retractors 102 may be provided that have different retractor body geometries, different materials of manufacture, different locking assembly components or none at all, may or may not include an anchor receptacle, may or may not have a bore within the anchor receptacle for receiving an anchor cartridge, may or may not have one or more flanges formed thereon, may or may not have tabs formed at the distal ends of the flanges, may or may not have one or more sections of flexible skirting affixed to the distal ends of the flanges, etc., depending, for example, on the type of procedure being performed by a surgeon, on the particular surgical site location within a patient, on the size and/or anatomy of a patient, and the like. Alternatively, a kit may be configured with a plurality of identical blade type patient-mounted retractors 102. Within another single kit, a variety of tube type patient-mounted retractors 202 may be provided that have different retractor body geometries and/or different bore geometries, different heights, different materials of manufacture, different locking assembly components or none at all, may or may not include an anchor receptacle, may or may not have a bore within the anchor receptacle for receiving an anchor cartridge, may or may not have tabs formed at the distal ends of the retractor bodies, may or may not have one or more sections of flexible skirting affixed to the distal ends of the retractor bodies, etc., depending, for example, on the type of procedure being performed by a surgeon, on the particular surgical site location within a patient, on the size and/or anatomy of a patient, and the like. Alternatively, a kit may be configured with a plurality of identical tube type patient-mounted retractors 102.


The kits may also be configured differently with respect to which components of the individual patient-mounted retractor assemblies 100, 200 are included in the kits. For example, a single kit may include one or more blade and tube type patient-mounted retractors of various configurations and/or geometries, various locking assembly components, mounting posts of various types, for example bone anchors of varying lengths with polyaxial heads, dilators, guide wires of various lengths and/or diameters, and the like. Example kits may also include driving instruments.


Although blade and tube type patient-mounted retractors have been described herein with reference to preferred embodiments or preferred methods, it should be understood that the words which have been used herein are words of description and illustration, rather than words of limitation. For example, it should be appreciated that the various structure, features, and methods described above with respect to the blade type patient-mounted retractors may be combined with or otherwise integrated with the various structure, features, and methods described above with respect to the tube type patient-mounted retractors, and that similarly the various structure, features, and methods described above with respect to the tube type patient-mounted retractors may be combined with or otherwise integrated with the various structure, features, and methods described above with respect to the blade type patient-mounted retractors. Furthermore, it should be noted that although the blade and tube type patient-mounted retractors have been described herein with reference to particular structure, methods, and/or embodiments, the scope of the instant disclosure is not intended to be limited to those particulars, but rather is meant to extend to all structures, methods, and/or uses of blade and/or tube type patient-mounted retractors. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the blade and/or tube type patient mounted retractors and their corresponding assemblies as described herein, and changes may be made without departing from the scope and spirit of the instant disclosure, for instance as recited in the appended claims.

Claims
  • 1. A retractor assembly comprising: a retractor body including a proximal end defined along a first axis and a distal end opposite the proximal end, the proximal end defining an inner surface that faces the first axis, and an outer surface opposed to the inner surface, wherein at least a portion of the retractor body is open so as to define a channel, the channel being elongate along the first axis, and the retractor body further defines at least one flange extending outwardly therefrom between the proximal and distal ends;an anchor receptacle disposed at the distal end of the retractor body, the anchor receptacle defined along a second axis that extends through the channel, the anchor receptacle having an anchor receptacle proximal end and an anchor receptacle distal end that is spaced from the anchor receptacle proximal end along the second axis, wherein the channel is open from the proximal end of the retractor body toward the anchor receptacle proximal end,wherein the second axis is offset with respect to the first axis such that 1) an entirety of the proximal end of the retractor body is offset from the second axis in a direction that is perpendicular to the second axis, and 2) the outer surface of the proximal end of the retractor body faces the second axis; anda locking assembly carried by the anchor receptacle, the locking assembly configured to attach to the retractor body and to a bone anchor that is configured to be driven into an underlying target location of a patient such that the bone anchor is connectable to the retractor body.
  • 2. The retractor assembly of claim 1, wherein when the retractor body is connected to the bone anchor, the locking assembly is configured to lock or unlock rotation of the retractor body relative to the bone anchor.
  • 3. The retractor assembly as recited in claim 2, wherein when the locking assembly is locked, the retractor body is configured to be positionally fixed relative to the bone anchor, and when the locking assembly is unlocked, the retractor body is not positionally fixed relative to the bone anchor.
  • 4. The retractor assembly as recited in claim 3, wherein the locking assembly comprises: a collet having a proximal end, a distal end opposite the proximal end, and an interior volume defined within the distal end of the collet, the interior volume configured to capture and retain a head of the bone anchor; anda locking cap having a threaded outer surface configured to engage complimentary threads formed within the anchor receptacle,wherein application of a rotational force to the locking cap advances the locking cap within the anchor receptacle, thereby causing the collet to create an interference force between the head of the bone anchor and the anchor receptacle.
  • 5. The retractor assembly as recited in claim 4, wherein the collet has a plurality of slots formed in the distal end of the collet, the slots defining a plurality of deflectable fingers.
  • 6. The retractor assembly as recited in claim 4, wherein the proximal end of the collet has an upper surface with an engagement structure formed thereon, the engagement structure configured to engage a lower surface of the locking cap.
  • 7. The retractor assembly as recited in claim 4, further comprising a wedge disposed between the collet and the locking cap, the wedge configured to distribute force from the locking cap to the collet when the locking cap is advanced within the anchor receptacle.
  • 8. The retractor assembly as recited in claim 1, further comprising the bone anchor.
  • 9. The retractor assembly as recited in claim 8, wherein the bone anchor has a polyaxial head.
  • 10. The retractor assembly as recited in claim 9, wherein the retractor body is rotatably positionable about the polyaxial head of the bone anchor when the polyaxial head of the bone anchor is received in the anchor receptacle.
  • 11. The retractor assembly as recited in claim 1, wherein the retractor body defines an aperture formed therethrough, the aperture extending along an aperture axis that is aligned with the second axis, the aperture configured to receive a driving instrument.
  • 12. The retractor assembly as recited in claim 1, wherein the retractor body includes a first lateral edge and a second lateral edge, and the first and second lateral edges extend from the proximal end of the retractor body toward the distal end of the retractor body, wherein retractor body, the first lateral edge and the second lateral edge define the channel, and the retractor body is open from the proximal end of the retractor body to the anchor receptacle proximal end.
  • 13. The retractor assembly as recited in claim 12, wherein the anchor receptacle extends around an entirety of the second axis.
  • 14. The retractor assembly as recited in claim 1, the retractor body further defining an intermediate portion that extends between the proximal and distal ends along a third axis that is offset with respect to the first and second axes, wherein the channel surrounds the first, second, and third axes.
  • 15. The retractor assembly as recited in claim 14, wherein the intermediate portion is open.
  • 16. The retractor assembly as recited in claim 15, wherein the intermediate portion defines at least a portion of the channel.
  • 17. The retractor assembly as recited in claim 16, wherein the intermediate portion of the retractor body has an aperture formed therethrough, the aperture configured to receive a driving instrument.
  • 18. The retractor assembly as recited in claim 14, wherein a cross sectional dimension of the intermediate portion varies in magnitude between the proximal and distal ends.
  • 19. The retractor assembly as recited in claim 18, wherein the cross sectional dimension of the intermediate portion increases in magnitude between the proximal and distal ends.
  • 20. The retractor assembly as recited in claim 18, wherein the cross sectional dimension of the intermediate portion decreases in magnitude between the proximal and distal ends.
  • 21. The retractor assembly as recited in claim 14, wherein the intermediate portion is defined along the third axis, and the intermediate portion defines an offset region between the proximal and distal ends.
  • 22. The retractor assembly as recited in claim 1, wherein the retractor body defines a lateral edge that extends between the proximal and distal ends of the retractor body, and the at least one flange extends along the lateral edge of the retractor body adjacent the channel.
  • 23. The retractor assembly as recited in claim 1, wherein the at least one flange extends along a chord defined between two points on a circumference of the retractor body.
  • 24. The retractor assembly as recited in claim 1, wherein the at least one flange has a tab formed at a distal end of the flange.
  • 25. The retractor assembly as recited in claim 24, wherein the tab is configured to flexibly conform to bony geometry within a surgical site.
  • 26. The retractor assembly as recited in claim 25, wherein the tab comprises a flexible skirt.
  • 27. The retractor assembly as recited in claim 1, wherein the at least one flange is configured to form at least a portion of an access portal within a surgical site.
  • 28. The retractor assembly as recited in claim 1, wherein the retractor body defines an accessory attachment point configured to releasably engage an optional accessory.
  • 29. The retractor assembly as recited in claim 1, wherein the first and second axes are substantially parallel with respect to each other.
  • 30. The retractor assembly of claim 1, wherein the locking assembly comprises a collet having a proximal end, a distal end opposite the proximal end of the collet, and an interior volume defined within the distal end of the collet, the interior volume configured to capture and retain a head of the bone anchor by snapping the collet over the head of the bone anchor.
  • 31. The retractor assembly as recited in claim 1, wherein the channel is open from the proximal end to the proximal end of the anchor receptacle.
  • 32. The retractor assembly of claim 1, wherein the anchor receptacle defines a bore that extends from the anchor receptacle proximal end to the anchor receptacle distal end, and at least a portion of the locking assembly is disposed in the bore.
  • 33. The retractor assembly of claim 1, wherein the channel partially surrounds the first axis and the second axis such that the retractor body faces the first and second axes.
  • 34. A retractor assembly comprising: a cannulated retractor body having a proximal end, a distal end spaced apart from the proximal end along a first axis, and a bore that extends from the proximal end to the distal end along the first axis, the proximal end being centrally disposed along the first axis;a bone anchor including a distal end configured to be removably mounted to a vertebral body of a patient, the bone anchor having a head spaced from the distal end of the bone anchor;an anchor receptacle that is configured to receive the bone anchor and extends from the cannulated retractor body along a second axis that is angularly offset with respect to the first axis, such that a distance between the first and second axes at the proximal end of the cannulated retractor body is less than a distance between the first and second axes at the distal end of the cannulated retractor body, the anchor receptacle having a first end disposed along the cannulated retractor body and a second end spaced apart from the first end along the second axis, wherein an entirety of the second end of the anchor receptacle is spaced from the distal end of the cannulated retractor body along a direction that is transverse to the first axis; anda locking assembly configured to attach to the cannulated retractor body and within the anchor receptacle, the locking assembly further configured to attach to the head of the bone anchor such that when the cannulated retractor body is attached to the head of the bone anchor the second axis extends through the head of the bone anchor and the cannulated retractor body is selectively 1) polyaxially positionable with respect to the bone anchor or, 2) locked in a fixed position with respect to the bone anchor.
  • 35. The retractor assembly as recited in claim 34, wherein the locking assembly is disposed within an anchor cartridge, the anchor cartridge configured to be received within the anchor receptacle.
  • 36. The retractor assembly as recited in claim 35, wherein the anchor cartridge is configured for axially adjustable engagement within the anchor receptacle.
  • 37. The retractor assembly as recited in claim 36, wherein the anchor cartridge has an outer surface with a plurality of annular ridges formed thereon, the annular ridges configured to releasably engage with a complimentary engagement member of the anchor receptacle.
  • 38. The retractor assembly of claim 34, wherein the bore of the cannulated retractor body extends from a proximal opening disposed at the proximal end of the cannulated retractor body to a distal opening disposed at the distal end of the cannulated retractor body, wherein the anchor receptacle defines a bore that extends along the second axis.
  • 39. The retractor assembly as recited in claim 38, wherein the anchor receptacle defines a channel having a first end that is open to the bore of the cannulated retractor body at a location between the proximal and distal openings and a second end that is adjacent to the anchor receptacle.
  • 40. The retractor assembly of claim 34, wherein the locking assembly comprises: a collet having a proximal end, a distal end opposite the proximal end, and an interior volume defined within the distal end of the collet, the interior volume configured to capture and retain the head of the bone anchor; anda locking cap having a threaded outer surface configured to engage complimentary threads formed within the anchor receptacle.
  • 41. The retractor assembly of claim 34, wherein the anchor receptacle defines a bore that extends along the second axis, and the second axis intersects the first axis.
  • 42. A surgical kit comprising: a first retractor body extending between a first proximal end and a first distal end opposed to the first proximal end, the first proximal end defined along a first axis, the first distal end of the first retractor body defining a first mounting member, the first mounting member being defined along a second axis that is offset with respect to the first axis such that the first mounting member is spaced apart from the first axis along a direction that is transverse to the first axis, the first mounting member extending around an entirety of the second axis, the first mounting member configured to rotatably attach to a first bone anchor that is configured to be disposed in a patient, wherein the first retractor body is rotatable about the first bone anchor when the mounting member is attached to the first bone anchor, and the retractor body defines a channel that extends from the first proximal end to the first distal end, such that the first and second axes extend through the channel; anda second retractor body extending between a second proximal end defined along a third axis and an opposed second distal end defined along a fourth axis that is offset with respect to the third axis, the second retractor body having a second mounting member defined along the fourth axis, the second mounting member configured to rotatably attach to a second bone anchor disposed in the patient such that the second retractor body is rotatable about the fourth axis.
  • 43. The surgical kit as recited in claim 42, further comprising a plurality of bone anchors, wherein the first and second mounting members comprise first and second anchor receptacles, respectively, and the first and second anchor receptacles are each configured to connect to a respective one of the plurality of bone anchors.
  • 44. The surgical kit as recited in claim 43, further comprising a plurality of locking components configured to be received within the first and second anchor receptacles.
  • 45. The surgical kit as recited in claim 42, wherein the first and second retractor bodies define identical body geometries.
  • 46. The surgical kit as recited in claim 42, wherein the first and second retractor bodies define different body geometries.
  • 47. The surgical kit of claim 42, wherein an entirety of the first mounting member is spaced apart from the first axis along the direction that is transverse to the first axis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.S. provisional patent application No. 61/179,924, filed May 20, 2009, which is incorporated herein by reference in its entirety.

US Referenced Citations (497)
Number Name Date Kind
2250417 Ettinger Jul 1941 A
2373478 Kuhn Apr 1945 A
3575405 Harding Apr 1971 A
3604487 Gilbert et al. Sep 1971 A
4335715 Kirkley Jun 1982 A
4409968 Drummond Oct 1983 A
4411259 Drummond Oct 1983 A
4545374 Jacobson Oct 1985 A
4733657 Kluger Mar 1988 A
4817587 Janese Apr 1989 A
4827918 Olerud May 1989 A
4904010 Lacey et al. Feb 1990 A
4957495 Kluger Sep 1990 A
5015247 Michelson May 1991 A
5020519 Hayes et al. Jun 1991 A
5047029 Aebi Sep 1991 A
D331625 Price et al. Dec 1992 S
5171279 Mathews Dec 1992 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5219349 Krag et al. Jun 1993 A
5242443 Kambin Sep 1993 A
5312404 Asher et al. May 1994 A
5344422 Frigg Sep 1994 A
5352231 Brumfield et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5431658 Moskovich Jul 1995 A
5433467 Easterwood Jul 1995 A
5439464 Shapiro Aug 1995 A
5443467 Biedermann et al. Aug 1995 A
5474555 Puno et al. Dec 1995 A
5484440 Allard Jan 1996 A
5487744 Howland Jan 1996 A
5498262 Bryan Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5507211 Wagner Apr 1996 A
5520690 Errico et al. May 1996 A
5529571 Daniel Jun 1996 A
5531746 Errico et al. Jul 1996 A
5547873 Magneson et al. Aug 1996 A
5562661 Yoshimi et al. Oct 1996 A
5605458 Bailey et al. Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5611800 Davis et al. Mar 1997 A
5613968 Lin Mar 1997 A
5624441 Sherman et al. Apr 1997 A
5624442 Mellinger et al. Apr 1997 A
5647873 Errico et al. Jul 1997 A
5649931 Bryant et al. Jul 1997 A
5667506 Sutterlin Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5676664 Allard et al. Oct 1997 A
5690630 Errico et al. Nov 1997 A
5707371 Metz-Stavenhagen Jan 1998 A
5720751 Jackson Feb 1998 A
5725588 Errico et al. Mar 1998 A
5728046 Mayer Mar 1998 A
5732992 Mauldin Mar 1998 A
5782830 Farris Jul 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5810878 Burel et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
5876402 Errico et al. Mar 1999 A
5879350 Sherman et al. Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885285 Simonson Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5888204 Ralph et al. Mar 1999 A
5910141 Morrison et al. Jun 1999 A
5928139 Koros et al. Jul 1999 A
5938663 Petreto Aug 1999 A
5946988 Metz-Stavenhagen Sep 1999 A
5951559 Burkhart Sep 1999 A
5964760 Richelsoph Oct 1999 A
5964761 Kambin Oct 1999 A
5991997 Schley et al. Nov 1999 A
6010503 Richelsoph et al. Jan 2000 A
6022350 Ganem Feb 2000 A
6030388 Yoshimi et al. Feb 2000 A
6053917 Sherman et al. Apr 2000 A
6055456 Gerber Apr 2000 A
6066174 Farris May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6090113 Le Couedic et al. Jul 2000 A
6132432 Richelsoph Oct 2000 A
6139493 Koros et al. Oct 2000 A
6139549 Keller Oct 2000 A
6146383 Studer et al. Nov 2000 A
6149653 Deslauriers Nov 2000 A
6159214 Michelson Dec 2000 A
6179838 Fiz Jan 2001 B1
6183472 Lutz Feb 2001 B1
6187005 Brace et al. Feb 2001 B1
6189422 Stihl Feb 2001 B1
6200322 Branch et al. Mar 2001 B1
6206826 Mathews et al. Mar 2001 B1
6214006 Metz-Stavenhagen Apr 2001 B1
6224598 Jackson May 2001 B1
6224603 Marino May 2001 B1
6235028 Brumfield et al. May 2001 B1
6251112 Jackson Jun 2001 B1
6261287 Metz-Stavenhagen Jul 2001 B1
6280442 Barker et al. Aug 2001 B1
6302410 Wentworth et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6355040 Richelsoph et al. Mar 2002 B1
6360750 Gerber et al. Mar 2002 B1
6361535 Jackson Mar 2002 B2
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6402749 Ashman Jun 2002 B1
6415693 Simon et al. Jul 2002 B1
6440113 Brisebois et al. Aug 2002 B1
6440133 Beale et al. Aug 2002 B1
6475218 Gournay et al. Nov 2002 B2
6485491 Farris et al. Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6488682 Kikuchi et al. Dec 2002 B2
6512958 Swoyer et al. Jan 2003 B1
6520907 Foley et al. Feb 2003 B1
6530926 Davison Mar 2003 B1
6530929 Justis et al. Mar 2003 B1
6537276 Metz-Stavenhagen Mar 2003 B2
6543317 Rinner et al. Apr 2003 B1
6554834 Crozet et al. Apr 2003 B1
6558387 Errico et al. May 2003 B2
6565565 Yuan et al. May 2003 B1
6579291 Keith et al. Jun 2003 B1
6579292 Taylor Jun 2003 B2
6610065 Branch et al. Aug 2003 B1
6613091 Zdeblick et al. Sep 2003 B1
6623485 Doubler et al. Sep 2003 B2
6626347 Ng Sep 2003 B2
6626905 Schmiel et al. Sep 2003 B1
6626906 Young Sep 2003 B1
6648888 Shluzas Nov 2003 B1
6660004 Barker et al. Dec 2003 B2
6669729 Chin Dec 2003 B2
6673074 Shluzas Jan 2004 B2
6676661 Martin et al. Jan 2004 B1
6716214 Jackson Apr 2004 B1
6719758 Beger et al. Apr 2004 B2
6726692 Bette Apr 2004 B2
6736816 Ritland May 2004 B2
6743231 Gray et al. Jun 2004 B1
6755830 Minfelde et al. Jun 2004 B2
6780186 Errico et al. Aug 2004 B2
6783527 Drewry et al. Aug 2004 B2
6790208 Oribe et al. Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6821277 Teitelbaum Nov 2004 B2
6827722 Schoenefeld Dec 2004 B1
6835196 Biedermann et al. Dec 2004 B2
6843791 Serhan Jan 2005 B2
6849064 Hamada Feb 2005 B2
6866664 Schår et al. Mar 2005 B2
6872209 Morrison Mar 2005 B2
6929606 Ritland Aug 2005 B2
6945933 Branch et al. Sep 2005 B2
7008422 Foley et al. Mar 2006 B2
7011658 Young Mar 2006 B2
7011660 Sherman et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
RE39089 Ralph et al. May 2006 E
7066939 Taylor Jun 2006 B2
7083621 Shaolian et al. Aug 2006 B2
7094237 Gradel et al. Aug 2006 B2
7104992 Bailey Sep 2006 B2
7128743 Metz-Stavenhagen Oct 2006 B2
7160300 Jackson Jan 2007 B2
7166109 Biedermann et al. Jan 2007 B2
7179225 Shluzas et al. Feb 2007 B2
7179261 Sicvol et al. Feb 2007 B2
7186255 Baynham Mar 2007 B2
7188626 Foley et al. Mar 2007 B2
7211087 Young May 2007 B2
7250052 Landry et al. Jul 2007 B2
7261714 Richelsoph Aug 2007 B2
7270665 Morrison et al. Sep 2007 B2
7282064 Chin Oct 2007 B2
7303562 Cavagna Dec 2007 B2
7306603 Boehm, Jr. et al. Dec 2007 B2
7371239 Dec et al. May 2008 B2
7422597 Alby Sep 2008 B1
7442597 Tsui et al. Oct 2008 B2
7455685 Justis Nov 2008 B2
7462182 Lim Dec 2008 B2
7465306 Pond, Jr. et al. Dec 2008 B2
7470279 Jackson Dec 2008 B2
7476240 Raymond et al. Jan 2009 B2
7491207 Keyer et al. Feb 2009 B2
7491208 Pond et al. Feb 2009 B2
7491218 Landry et al. Feb 2009 B2
7497869 Justis Mar 2009 B2
7520879 Justis et al. Apr 2009 B2
7527638 Anderson et al. May 2009 B2
7547318 Birkmeyer et al. Jun 2009 B2
7563264 Landry et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7597694 Lim et al. Oct 2009 B2
7608081 Abdelgany Oct 2009 B2
7608096 Foley et al. Oct 2009 B2
7618424 Wilcox Nov 2009 B2
7621918 Jackson Nov 2009 B2
7648522 David Jan 2010 B2
7651502 Jackson Jan 2010 B2
7651516 Petit et al. Jan 2010 B2
7666189 Gerber et al. Feb 2010 B2
7678112 Rezach Mar 2010 B2
7678136 Doubler et al. Mar 2010 B2
7686809 Triplett et al. Mar 2010 B2
7691132 Landry et al. Apr 2010 B2
7704270 DeConinck Apr 2010 B2
7708763 Selover et al. May 2010 B2
7717944 Foley et al. May 2010 B2
7722645 Bryan May 2010 B2
7744635 Sweeney et al. Jun 2010 B2
7753940 Veldman et al. Jul 2010 B2
7758584 Bankoski et al. Jul 2010 B2
7763047 Ritland Jul 2010 B2
7763054 Clement et al. Jul 2010 B2
7763055 Foley Jul 2010 B2
7776040 Markworth et al. Aug 2010 B2
7776051 Colleran et al. Aug 2010 B2
7789897 Sanders Sep 2010 B2
7799059 Kramer et al. Sep 2010 B2
7811288 Jones et al. Oct 2010 B2
7815664 Sherman et al. Oct 2010 B2
7819902 Abdelgany et al. Oct 2010 B2
7824411 Varieur et al. Nov 2010 B2
7824413 Varieur et al. Nov 2010 B2
7837715 Petit et al. Nov 2010 B2
7842044 Runco et al. Nov 2010 B2
7842073 Richelsoph et al. Nov 2010 B2
7850715 Banouskou et al. Dec 2010 B2
7850716 Taylor Dec 2010 B2
7850719 Gournay et al. Dec 2010 B2
7854751 Sicvol et al. Dec 2010 B2
7862587 Jackson Jan 2011 B2
7862595 Foley et al. Jan 2011 B2
7867259 Foley et al. Jan 2011 B2
7887539 Dunbar, Jr. et al. Feb 2011 B2
7896902 Jeon et al. Mar 2011 B2
7914558 Landry et al. Mar 2011 B2
7918792 Drzyzga Apr 2011 B2
7931677 Abdelgany Apr 2011 B2
7955355 Chin Jun 2011 B2
7955363 Richelsoph Jun 2011 B2
7976569 Justis Jul 2011 B2
7985242 Forton et al. Jul 2011 B2
8002798 Chin et al. Aug 2011 B2
8021398 Sweeney et al. Sep 2011 B2
8029546 Capote et al. Oct 2011 B2
8034084 Landry et al. Oct 2011 B2
8043343 Miller et al. Oct 2011 B2
8066739 Jackson Nov 2011 B2
8075592 Landry et al. Dec 2011 B2
8088152 Schumacher Jan 2012 B2
8092494 Butler et al. Jan 2012 B2
8096996 Gutierrez et al. Jan 2012 B2
8097027 Lim et al. Jan 2012 B2
8100828 Frey et al. Jan 2012 B2
8100913 Abdelgany Jan 2012 B2
8100915 Jackson Jan 2012 B2
8100951 Justis et al. Jan 2012 B2
8105361 Anderson et al. Jan 2012 B2
8118737 Perez-Cruet et al. Feb 2012 B2
8123751 Shluzas Feb 2012 B2
8128665 Banouskou et al. Mar 2012 B2
8152810 Jackson Apr 2012 B2
8172855 Abdou May 2012 B2
8177817 Fallin May 2012 B2
8221472 Peterson et al. Jul 2012 B2
8262662 Beardsley et al. Sep 2012 B2
8262702 Giger et al. Sep 2012 B2
8287546 King et al. Oct 2012 B2
8292892 Jackson Oct 2012 B2
8317796 Stihl et al. Nov 2012 B2
8357184 Woolley Jan 2013 B2
8460308 Marino et al. Jun 2013 B2
8469960 Hutton et al. Jun 2013 B2
8480713 Rezach Jul 2013 B2
8518082 Sicvol et al. Aug 2013 B2
8535318 Peterson et al. Sep 2013 B2
8585741 Gabelberger et al. Nov 2013 B2
8679129 Sorrenti et al. Mar 2014 B2
9314274 Amstutz et al. Apr 2016 B2
9402663 Peterson et al. Aug 2016 B2
20020020255 Simon et al. Feb 2002 A1
20020035367 Ritland Mar 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020193802 Zdeblick et al. Dec 2002 A1
20030040752 Kitchens Feb 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030135220 Cauthen Jul 2003 A1
20030149341 Clifton Aug 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030191371 Smith et al. Oct 2003 A1
20030199872 Markworth et al. Oct 2003 A1
20030208203 Lim et al. Nov 2003 A1
20030216768 Gitis et al. Nov 2003 A1
20030225408 Nichols et al. Dec 2003 A1
20030236447 Ritland Dec 2003 A1
20040002629 Branch et al. Jan 2004 A1
20040024398 Hovda et al. Feb 2004 A1
20040034351 Sherman et al. Feb 2004 A1
20040039384 Boehm et al. Feb 2004 A1
20040092930 Petit et al. May 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040147937 Dunbar et al. Jul 2004 A1
20040153068 Janowski et al. Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040176763 Foley et al. Sep 2004 A1
20040215190 Nguyen et al. Oct 2004 A1
20040254574 Morrison et al. Dec 2004 A1
20040267275 Cournoyer et al. Dec 2004 A1
20050004593 Simonson Jan 2005 A1
20050010220 Casutt et al. Jan 2005 A1
20050021031 Foley et al. Jan 2005 A1
20050021040 Bertagnoli Jan 2005 A1
20050036244 Carey et al. Feb 2005 A1
20050038432 Shaolian et al. Feb 2005 A1
20050038433 Young Feb 2005 A1
20050065517 Chin Mar 2005 A1
20050065518 Michelson Mar 2005 A1
20050070765 Abdelgany et al. Mar 2005 A1
20050070901 David Mar 2005 A1
20050074445 Papas et al. Apr 2005 A1
20050075644 DiPoto et al. Apr 2005 A1
20050080418 Simonson et al. Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050090824 Shluzas et al. Apr 2005 A1
20050096654 Lin May 2005 A1
20050131408 Sicvol et al. Jun 2005 A1
20050131419 McCord et al. Jun 2005 A1
20050131420 Techiera et al. Jun 2005 A1
20050131421 Anderson et al. Jun 2005 A1
20050131422 Anderson et al. Jun 2005 A1
20050149036 Varieur et al. Jul 2005 A1
20050149053 Varieur et al. Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050159650 Raymond et al. Jul 2005 A1
20050171540 Lim et al. Aug 2005 A1
20050182410 Jackson Aug 2005 A1
20050192570 Jackson Sep 2005 A1
20050192579 Jackson Sep 2005 A1
20050192589 Raymond et al. Sep 2005 A1
20050203532 Ferguson Sep 2005 A1
20050215999 Birkmeyer et al. Sep 2005 A1
20050228380 Moore et al. Oct 2005 A1
20050228382 Richelsoph et al. Oct 2005 A1
20050228400 Chao et al. Oct 2005 A1
20050234449 Aferzon Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050277934 Vardiman Dec 2005 A1
20060009780 Foley et al. Jan 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060036255 Pond et al. Feb 2006 A1
20060036260 Runco et al. Feb 2006 A1
20060069391 Jackson Mar 2006 A1
20060074418 Jackson Apr 2006 A1
20060074445 Gerber et al. Apr 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079909 Runco et al. Apr 2006 A1
20060084993 Landry et al. Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060106380 Colleran et al. May 2006 A1
20060106394 Colleran May 2006 A1
20060111712 Jackson May 2006 A1
20060111713 Jackson May 2006 A1
20060111714 Foley et al. May 2006 A1
20060111715 Jackson May 2006 A1
20060122597 Jones et al. Jun 2006 A1
20060136380 Purcell Jun 2006 A1
20060142716 Long et al. Jun 2006 A1
20060142761 Landry et al. Jun 2006 A1
20060167454 Ludwig et al. Jul 2006 A1
20060167455 Clement et al. Jul 2006 A1
20060173454 Spitler et al. Aug 2006 A1
20060184172 Michelson et al. Aug 2006 A1
20060184178 Jackson Aug 2006 A1
20060200135 Sherman et al. Sep 2006 A1
20060206114 Ensign et al. Sep 2006 A1
20060229614 Foley et al. Oct 2006 A1
20060241596 Rezach Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241649 Vasta et al. Oct 2006 A1
20060247624 Banouskou et al. Nov 2006 A1
20060247658 Pond et al. Nov 2006 A1
20060253118 Bailey Nov 2006 A1
20060264942 Lim et al. Nov 2006 A1
20060264962 Chin et al. Nov 2006 A1
20060276803 Salerni Dec 2006 A1
20060293678 Davison et al. Dec 2006 A1
20060293680 Jackson Dec 2006 A1
20060293693 Farr et al. Dec 2006 A1
20070016188 Boehm et al. Jan 2007 A1
20070016198 Boehm et al. Jan 2007 A1
20070016199 Boehm et al. Jan 2007 A1
20070016200 Jackson Jan 2007 A1
20070025132 Liaw Feb 2007 A1
20070032162 Jackson Feb 2007 A1
20070073294 Chin et al. Mar 2007 A1
20070083210 Hestad Apr 2007 A1
20070106123 Gorek et al. May 2007 A1
20070129731 Sicvol et al. Jun 2007 A1
20070135817 Ensign Jun 2007 A1
20070161987 Capote et al. Jul 2007 A1
20070161998 Whipple Jul 2007 A1
20070162046 Vandewalle Jul 2007 A1
20070167946 Triplett et al. Jul 2007 A1
20070167954 Sicvol et al. Jul 2007 A1
20070173745 Diederich et al. Jul 2007 A1
20070185491 Foley et al. Aug 2007 A1
20070198015 Foley et al. Aug 2007 A1
20070233067 Taylor Oct 2007 A1
20070233079 Fallin et al. Oct 2007 A1
20070238335 Veldman et al. Oct 2007 A1
20070260125 Strauss Nov 2007 A1
20070270842 Bankoski et al. Nov 2007 A1
20070276803 Shakib et al. Nov 2007 A1
20080005174 Stephenson Jan 2008 A1
20080009864 Forton et al. Jan 2008 A1
20080039838 Landry et al. Feb 2008 A1
20080045957 Landry et al. Feb 2008 A1
20080051794 Dec et al. Feb 2008 A1
20080051897 Lopez et al. Feb 2008 A1
20080077139 Landry et al. Mar 2008 A1
20080077155 Diederich et al. Mar 2008 A1
20080081951 Frasier Apr 2008 A1
20080086132 Biedermann et al. Apr 2008 A1
20080091213 Jackson Apr 2008 A1
20080140132 Perez-Cruet Jun 2008 A1
20080154278 Abdelgany Jun 2008 A1
20080167688 Fauth et al. Jul 2008 A1
20080177270 Sorrenti et al. Jul 2008 A1
20080255567 Accordino Oct 2008 A1
20080262318 Gorek et al. Oct 2008 A1
20080288005 Jackson Nov 2008 A1
20080294198 Jackson Nov 2008 A1
20080294202 Peterson et al. Nov 2008 A1
20080300638 Beardsley et al. Dec 2008 A1
20090005814 Miller Jan 2009 A1
20090088604 Lowry Apr 2009 A1
20090093684 Schorer Apr 2009 A1
20090138056 Anderson et al. May 2009 A1
20090163924 Justis Jun 2009 A1
20090171391 Hutton et al. Jul 2009 A1
20090228052 Beardsley et al. Sep 2009 A1
20090228055 Jackson Sep 2009 A1
20090228056 Jackson Sep 2009 A1
20090264926 Taylor et al. Oct 2009 A1
20090270916 Ramsay et al. Oct 2009 A1
20090287253 Felix et al. Nov 2009 A1
20090318972 Jackson Dec 2009 A1
20090326585 Baccelli et al. Dec 2009 A1
20100024487 Khoo et al. Feb 2010 A1
20100030283 King et al. Feb 2010 A1
20100036443 Hutton et al. Feb 2010 A1
20100049253 Miller Feb 2010 A1
20100063546 Miller et al. Mar 2010 A1
20100094346 Matityahu Apr 2010 A1
20100131016 Gerber et al. May 2010 A1
20100168796 Eliasen et al. Jul 2010 A1
20100174325 Won et al. Jul 2010 A1
20100198272 Keyer et al. Aug 2010 A1
20100241171 Clement et al. Sep 2010 A1
20100268279 Gabelberger et al. Oct 2010 A1
20100268284 Bankoski et al. Oct 2010 A1
20100274252 Bottomley et al. Oct 2010 A1
20100331849 Riesinger et al. Dec 2010 A1
20110054537 Miller et al. Mar 2011 A1
20110130634 Solitario, Jr. et al. Jun 2011 A1
20110166606 Stihl et al. Jul 2011 A1
20110184465 Boehm Jul 2011 A1
20110184469 Ballard et al. Jul 2011 A1
20110263945 Peterson Oct 2011 A1
20120089191 Altarac et al. Apr 2012 A1
20120290012 Rutledge Nov 2012 A1
20120303062 Guetlin Nov 2012 A1
20130253598 Jackson Sep 2013 A1
20130274804 Hutton et al. Oct 2013 A1
20130331892 Solitario, Jr. Dec 2013 A1
20140012321 Hutton et al. Jan 2014 A1
20140074171 Hutton et al. Mar 2014 A1
20140114360 Gephart et al. Apr 2014 A1
20160199100 Amstutz et al. Jul 2016 A1
Foreign Referenced Citations (88)
Number Date Country
A-13672-95 Sep 1995 AU
0697705 Oct 1998 AU
1913836 Feb 2007 CN
9215561 Jan 1993 DE
4238339 May 1994 DE
19726754 Feb 1999 DE
10027988 Jan 2002 DE
0528177 Feb 1993 EP
0558883 Sep 1993 EP
0483242 May 1995 EP
0836835 Apr 1998 EP
0885598 Dec 1998 EP
0947174 Oct 1999 EP
0938872 Jul 2002 EP
0746255 Sep 2002 EP
0814716 Jul 2003 EP
0981301 Aug 2003 EP
0934027 Dec 2003 EP
0814713 Feb 2004 EP
1392190 Mar 2004 EP
1087711 May 2004 EP
0934028 Jun 2004 EP
1196102 Sep 2004 EP
1459215 Sep 2004 EP
1214006 Oct 2005 EP
1316295 Oct 2005 EP
1330196 Oct 2005 EP
1119304 Dec 2005 EP
1317215 Dec 2005 EP
1642542 Apr 2006 EP
0986338 Jul 2006 EP
1248573 Aug 2006 EP
1635722 Jun 2008 EP
1708630 Nov 2009 EP
2757761 Jul 1998 FR
11076247 Mar 1999 JP
2000-032359 Jan 2000 JP
2001-507259 Jun 2001 JP
2004-512134 Apr 2004 JP
2004-516040 Jun 2004 JP
2006-504505 Feb 2006 JP
2007-532258 Nov 2007 JP
2010-533547 Oct 2010 JP
2012-501809 Jan 2012 JP
10-2009-0005316 Jan 2009 KR
9101115 Feb 1991 WO
WO 9514437 Jun 1995 WO
9627340 Sep 1996 WO
9628104 Sep 1996 WO
9812976 Apr 1998 WO
9812977 Apr 1998 WO
9834554 Aug 1998 WO
0152758 Jul 2001 WO
0202022 Jan 2002 WO
0222030 Mar 2002 WO
0236026 May 2002 WO
0294114 Nov 2002 WO
WO 03052634 Jun 2003 WO
0019923 Apr 2004 WO
2004041100 May 2004 WO
WO 2004058082 Jul 2004 WO
2005020829 Mar 2005 WO
2005058141 Jun 2005 WO
WO 2005060534 Jul 2005 WO
2005072632 Aug 2005 WO
2005104970 Nov 2005 WO
2006042188 Apr 2006 WO
WO 2006060430 Jun 2006 WO
2006116305 Nov 2006 WO
WO 2006116662 Nov 2006 WO
2007022790 Mar 2007 WO
WO 2007025132 Mar 2007 WO
2007038350 Apr 2007 WO
WO 2007067443 Jun 2007 WO
WO 2007070757 Jun 2007 WO
2007117366 Oct 2007 WO
WO 2007121271 Oct 2007 WO
WO 2007146833 Dec 2007 WO
2008014477 Jan 2008 WO
2008022268 Feb 2008 WO
WO 2009011929 Jan 2009 WO
WO 2009014540 Jan 2009 WO
2009055026 Apr 2009 WO
2009133539 Nov 2009 WO
2010030916 Mar 2010 WO
2010103198 Sep 2010 WO
2010150140 Dec 2010 WO
2011012690 Feb 2011 WO
Non-Patent Literature Citations (18)
Entry
“Xia Spinal System”, Stryker Howmedica Osteonics, 1999,8 pages.
Aperture™, “Spinal Access System”, DePuy AcroMed, 2003, 6 pages.
Atavi™, “Atraumatic Spine Fusion System—Endoscopic Posterolateral Fusion”, Endius, 2001, 10 pages.
Branch et al., “Tangent: Posterior Impacted Instrument Set Technique”, Medtronic Sofamor Danek, 2000, 17 pages.
Foley et al., “Cd Horizon Sextant Rod Insertion System Surgical Technique”, Medtronic Sofamor Danek, 2002, 30 pages.
Harms, “Polyaxial Reduction Screw: Surgical Technique”, Depuy AcroMed, 1998, 13 pages.
Hilton et al., “Metrx: Microdiscectomy Surgical Technique”, Medtronic Sofamor Danek, 2002, 20 pages.
Kambin, “The Role of Minimally Invasive Surgery in Spinal Disorders”, Advances in Operative Orthopedics, 1995, 3, 147-171.
Muller et al., “Techniques and Applications : A Keyhole Approach for Endoscopically assisted Pedicle Screw Fixation in Lumbar Spine Inability”, Jul. 2000 Neurosurgery, 47(1), 11 pages.
Synthes Spine, “Constellation CP System: A Minimally Invasive System for use with Cannulated Pangea”, Technique Guide, Synthes Spinem, 2008, 42 pages.
Thongtrangan et al., “Minimally Invasive Spinal Surgery: A Historical Perspective”, Neurosurg Focus, Jan. 2004, 16(1), article 13, 9 pages.
Turner et al., “A New Radially Expanding Access System for Laparoscopic Procedures versus Conventional Cannulas”, The Journal of the American Association of Gynecologic Laparoscopists, Aug. 1996, 3(4), 7 pages.
Wiltse et al., “New Uses and Refinements of the Paraspinal Approach to the Lumbar Spine” Jan. 18, 1988, 22 pages.
Viper 2 System Guide, DePuy Spine, 2011, 60 pages.
Synthes Spine, “USS Fracture System: Technique Guide”, 2001, 20 pages.
Muller, et al., “A Keyhole Approach for Endoscopically Assisted Pedicle Screw Fixation in Lumbar Spine Instability [Techniques and Applications]”, Department of Neurosurgery, 18 pages, Received, Sep. 14, 1999, Accepted Mar. 2, 2000.
Matrix Spine System—Deformity Technique Guide, “A Posterior Pedicle Screw, Hook, and Rod Fixation System,” Synthes, copyrights 2010, 75 pages.
International Patent Application No. PCT/US2007/066469: International Search Report dated Aug. 1, 2008, 6 pages.
Related Publications (1)
Number Date Country
20110130634 A1 Jun 2011 US
Provisional Applications (1)
Number Date Country
61179924 May 2009 US