Patient-specific alignment guide

Information

  • Patent Grant
  • 8858561
  • Patent Number
    8,858,561
  • Date Filed
    Thursday, June 18, 2009
    15 years ago
  • Date Issued
    Tuesday, October 14, 2014
    10 years ago
Abstract
An orthopedic apparatus includes an alignment guide attachable to one of a femoral joint surface of a femur of a patient. The alignment guide has a patient-specific three-dimensional engagement surface, and at least one guiding portion defining a guiding passage. The engagement surface anatomically matches a corresponding portion of the femoral joint surface.
Description
INTRODUCTION

Various custom made, patient-specific orthopedic implants and associated templates and alignment guides are known in the art. Such implants and guides can be developed using commercially available software. Custom implant guides are used to accurately place pins, guide bone cuts, and insert implants during orthopedic procedures. The guides can be made from a pre-operative plan formed from MRI or CT scans of the patient and rely on matching a subcutaneous anatomic feature for correct positioning.


The present teachings provide a patient-specific alignment guide for a femoral resurfacing or replacement procedure.


SUMMARY

The present teachings provide an orthopedic apparatus including an alignment guide attachable to a femoral joint surface of a femur of a patient. The alignment guide has a patient-specific three-dimensional engagement surface, and at least one guiding portion defining a guiding passage. The engagement surface anatomically matches a corresponding portion of the femoral joint surface.


The present teachings provide an orthopedic apparatus including a frame including a body and a longitudinal post extending from the body, a securing member threadably couplable to the post; and a plurality of arms coupled to the body and movable between an open configuration and a closed configuration. The plurality of arms can be engaged to a femoral joint surface of a patient in the closed configuration. Each arm has a clamping portion with a patient-specific three-dimensional engagement surface. The engagement surface anatomically matches a corresponding portion of the femoral joint surface.


In various embodiments, the present teachings provide an orthopedic apparatus including a reusable frame having a body and a plurality of arms coupled the body. The plurality of arms can be engaged to a femoral joint surface of a patient. The apparatus also includes a plurality of disposable clamping portions. Each clamping portion can be removably coupled to a corresponding arm, and each clamping portion can include a patient-specific three-dimensional engagement surface. The engagement surface anatomically matches a corresponding portion of the femoral joint surface of the patient.


Further areas of applicability of the present invention will become apparent from the description provided hereinafter. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a flowchart of an exemplary method of preparing patient specific alignment guides according to the present teachings;



FIG. 2 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 3 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 3A is a sectional view of FIG. 3 taken along axis 3A;



FIG. 4 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 4A is a sectional view of FIG. 4 taken along axis 4A;



FIG. 5 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 5A is a sectional view of FIG. 5 taken along axis 5A;



FIG. 6 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 6A is an exploded view of an exemplary connection for patient-specific guide of FIG. 6;



FIG. 6B is an exploded view of an exemplary connection for patient-specific guide of FIG. 6;



FIG. 7 is an environmental view of a patient-specific guide according to the present teachings;



FIG. 7A is a sectional view of FIG. 7 taken along axis 7A;



FIG. 7B is an exploded view of an exemplary modular component of the patient-specific guide of FIG. 7;



FIG. 7C is an exploded view of an exemplary modular component of the patient-specific guide of FIG. 7;



FIG. 7D is an exploded view of an exemplary component of the patient-specific guide of FIG. 7;



FIG. 8 is a perspective view of a patient-specific guide according to the present teachings;



FIG. 8A is a plan view of patient-specific guide of FIG. 8;



FIG. 8B is an environmental sectional view of a patient-specific component of a guide according to the present teachings;



FIG. 8C is an environmental sectional view of a patient-specific component of a guide according to the present teachings, the sectional view taken along a plane perpendicular to the axis of a femoral neck of a patient;



FIG. 8D is an environmental perspective view of a patient-specific guide according to the present teachings;



FIG. 8E is a sectional view of FIG. 8D taken along axis 8E; and



FIG. 9 is a perspective environmental view of a patient-specific guide according to the present teachings.





DESCRIPTION OF VARIOUS EMBODIMENTS

The following description is merely exemplary in nature and is in no way intended to limit the scope of the present teachings, applications, or uses. For example, although the present teachings are illustrated for alignment guides in knee surgery, the present teachings can be used for other guides, templates, jigs, drills, rasps or other instruments used in various orthopedic procedures.


The present teachings provide a method for preparing patient-specific alignment guides for use in orthopedic surgery for a joint, such as, for example, the knee joint. Conventional, not patient-specific, prosthesis components available in different sizes can be used with the alignment guides, although patient-specific femoral and tibial prosthesis components prepared with computer-assisted image methods can also be used. Computer modeling for obtaining three dimensional images of the relevant patient's anatomy, patient-specific prosthesis components, and the alignment guides and templates can be provided by various CAD programs and/or software available from various vendors or developers, such as, for example, from Materialise USA, Ann Arbor, Mich.


Referring to FIG. 1, in preoperative planning, imaging data can be obtained of an entire leg including a joint to be reconstructed at a medical facility or doctor's office, at aspect 10. The imaging data can include a detailed scan of a hip, knee and ankle. The imaging data can be obtained using MRI, CT, X-Ray, ultrasound or any other imaging system. In some cases, the scan may be performed with the patient wearing an unloader brace to stress the ligaments. The scan data obtained can be sent to a manufacturer, at aspect 20. The scan data can be used by the manufacturer to construct a three-dimensional image of the joint and prepare an initial implant fitting and alignment protocol detailing the fit of the implant. The fitting and alignment protocol can be stored in any computer storage medium, in a computer file form or any other computer or digital representation. The initial implant fitting and alignment protocol can be obtained using standard alignment methods or using alignment methods provided by or based on the preferences of individual surgeons.


As discussed above, in the preoperative planning stage of a surgical procedure, multiple image scans of portions of the patient's anatomy related to the procedure are obtained. Image markers visible in the scan can be placed on the patient's anatomy to allow image scaling and orientation. The obtained scans of the desired anatomy can be correlated to one another to reconstruct an image of the patient's specific anatomy in three-dimensions.


The outcome of the initial fitting is an initial surgical plan that can be printed or represented in electronic form with corresponding viewing software. The initial surgical plan can be surgeon-specific, when using surgeon-specific alignment protocols. The initial surgical plan, in a computer file form associated with interactive software, can be sent to the surgeon, or other medical practitioner, for review, at 30. Using the interactive software, the surgeon can manipulate the position of images of various implant components relative to an image of the joint. The surgeon can modify the plan and send it to the manufacturer with recommendations or changes. The interactive review process can be repeated until a final, approved plan is sent to the manufacturer, at 40.


Various methods of sending the initial and final surgeon-approved surgical plans can be used. The surgical plans can be, for example, transferred to an electronic storage medium, such as CD, DVD, flash memory, which can then be mailed using regular posting methods. In various embodiments, the surgical plan can be e-mailed in electronic form or transmitted through the internet or other web-based service.


After the surgical plan is approved by the surgeon, patient-specific alignment guides for the femur and tibia can be developed using a CAD program or other three-dimensional modeling software, such as the software provided by Materialise, for example, according to the surgical plan, at 50. Computer instructions of tool paths for machining the patient-specific alignment guides can be generated and stored in a tool path data file, at 60. The tool path can be provided as input to a CNC mill or other automated machining system, and the alignment guides can be machined from polymer, ceramic, metal or other suitable material, and sterilized, at 70. The sterilized alignment guides can be shipped to the surgeon or medical facility, at 75 for use during the surgical procedure. Patient-specific components or portions are defined as those constructed by a surgical plan approved by the doctor using three-dimensional images of the specific patient's anatomy and made to closely conform and mate substantially as a negative mold of corresponding portions of the patient's anatomy, including bone surfaces with or without associated soft tissue, such as articular cartilage, for example.


Images of the knee joint anatomy can include images of the joint surfaces of the distal femur and proximal tibial with or without the associated soft tissues, such as articular cartilage, on the respective bone surfaces. The alignment procedure can make use of the mechanical, anatomic, transepicondylar and cylindrical axes in various degrees. Multiple alignment procedures can be provided to accommodate the experience and preference of individual surgeons. For example, the alignment procedure can be based on the anatomic and mechanical axes, or can be substantially based on the cylindrical axis. Further, the alignment procedure can be deformity-specific, such that the procedure is adapted, for example, to a valgus or varus deformity.


Similarly, images of the hip joint anatomy of the joint surface of the proximal femur with or without the associated soft tissues, such as articular cartilage, on the respective bone surfaces can be used in the alignment procedure. The alignment procedure can include, for example, the selection of an anteversion angle, a femoral neck angle and other orientations for positioning a femoral implant, such as a resurfacing component, without notching or impinging on the femoral neck.


Referring to FIG. 2, an exemplary multiple-component femoral alignment guide 100 that can be manufactured using the method of FIG. 1 is illustrated. In this exemplary embodiment, the alignment guide 100 is shown with first and second adjacent components 102 and 104, although more than two components can be similarly included in the alignment guide 100. The first and second components 102, 104 can be movably and/or removably connected to one another with a coupling mechanism referenced at 120. The coupling mechanism 120 can be selected from a variety of mechanisms that provide easy intra-operative assembly. In various embodiments, for example, the coupling mechanism 120 can be a snap-on connection between the two components. In various embodiments, the coupling mechanism 120 can be an interlocking mechanism, such as a keyway-and-key mechanism, a dovetail mechanism, a puzzle-like interlocking mechanism, or any other interlocking mechanism. In various embodiments, the coupling mechanism 120 can include a permanent or temporary hinge or other pivotable structure that allows relative motion between the adjacent components, such that one component can be rotated relative to the other component for ease of positioning on the patient. The components can be permanently pivotably coupled with the hinge or can be detachable.


The exemplary alignment guide 100 can be configured as patient-specific for the femoral neck 86 of a proximal femur, as illustrated in FIG. 2. The alignment guide 100, when assembled, can wrap around and mate in three dimensions with the femoral neck 86 for assisting in the placement of an alignment pin for femoral head resurfacing. The first component 102 can include a guiding portion or formation 108 and a portion 112 having a first three-dimensional inner bone engagement surface 113 that can anatomically match or mate with a portion of the femoral neck 86 in three dimensions. The guiding formation 108 can be in the form of a sleeve including a guiding passage 109, a bore, a hole, or other opening through which an alignment pin or drill bit or other tool or fastener can be inserted. The second component 104 can be coupled to the first component 102 by the coupling mechanism 120. The second component 104 can include a second three-dimensional inner bone engagement surface 105 that can anatomically match and mate with substantially the remaining portion of the femoral neck 86 in three dimensions, without requiring other supports to retain the guide 100 on the proximal femur.



FIGS. 3-5 illustrate various exemplary patient-specific, unitary or single-component alignment guides 100 for the patient's proximal femur. Same reference numbers are used to refer to similar parts or features throughout various embodiments. New or additional elements are identified with new reference numbers.


Referring to FIGS. 3 and 3A, a patient-specific alignment guide 100 according to the various embodiments can be constructed as a one-piece integral or monolithic component that has a three-dimensional inner patient-specific engagement surface 113 conforming to the corresponding anatomy of a specific patient, including subchondral bone with or without soft tissue. The alignment guide 100 can include first and second arms 130 that are patient-specific, curved and substantially concave toward the femoral neck 86 and extend anteriorly and posteriorly around the femoral neck 86 without, however, fully encircling the femoral neck 86. The alignment guide 100 can be generally saddle-shaped and can include a first portion 131 conforming to a portion of the femoral head 84. The first portion 131 can be patient-specific, curved and substantially concave toward the femoral head 84. A guiding portion 108 with an internal passage 109 can extend from the first portion 131 for guiding a pin, a drill bit or other tool. The alignment guide 100 can also include a second portion 132 extending from the first portion 131 along the femoral neck 86 and abutting the greater trochanter 76. The second portion 132 can be patient-specific, conforming to the anatomy of the femoral neck 86, such that the second portion 132 can be, for example, convex where the anatomy of the femoral neck. 86 is concave. The first portion 131, the second portion 132 and the first and second arms 130 form the saddle shape of the alignment guide 100, as shown in FIG. 3. The engagement surface 113 includes the inner surfaces of the first portion 131, the second portion 132 and the first and second arms 130. The first and second arms 130 can be oriented substantially perpendicularly to the first and second portions 131, 132. The alignment guide 100 can be positioned superiorly relative to the femur, as shown in FIG. 3.


Referring to FIGS. 4 and 4A, an alignment guide 100 according to the various embodiments can include a second portion 132 that can abut the lesser trochanter 78 of the patient's femur. In the embodiment illustrated in FIG. 4, the alignment guide 100 can be positioned anteriorly or posteriorly relative to the femur and the first and second arms 130 can extend superiorly and inferiorly relative to the femur. The alignment guide 100 shown in FIG. 4 can be substantially saddle-shaped and patient-specific in three dimensions. The first portion 131 is patient-specific, curved and substantially concave inward and toward the femoral head 84. The second portion 132 is patient-specific, curved and substantially convex inward and toward the neck, and the first and second arms 130 are patient-specific, curved and substantially concave inward and toward the femoral neck 86. The engagement surface 113 includes the inner surfaces of the first portion 131, the second portion 132 and the first and second arms 130. The first and second arms 130 can be oriented substantially perpendicularly to the first and second portions 131, 132.


Referring to FIGS. 5 and 5A, an alignment guide 100 according to various embodiments can be positioned inferiorly relative to the femur and the first and second arms 130 can extend around the femoral neck 86 posteriorly and anteriorly relative to the femur. The alignment guide 100 shown in FIG. 5 is also saddle-shaped and patient-specific in three dimensions, with the first portion 131 being patient-specific, curved and substantially concave inward and toward the femoral head 84, the second portion 132 being patient-specific, curved and substantially convex inward and toward the neck, and the first and second arms 130 being curved and concave inward and toward the femoral neck 86. The engagement surface 113 includes the inner surfaces of the first portion 131, the second portion 132 and the first and second arms 130. The first and second arms 130 can be oriented substantially perpendicularly to the first and second portions 131, 132.


The alignment guides 100 shown in FIGS. 3A-5A can be made of biocompatible polymer or other material such that the first and second arms 130 that can flex to allow the alignment guide 100 to be snap on and held around the femoral neck 86 without any other temporary fixation. The alignment guide 100 can be also supported on the femur with removable fixators, such as pins.


In various embodiments, and referring to FIGS. 6, 6A and 6B, the alignment guide 100 can be in the form of a complete or partial shell encompassing the femoral head 84 and having a patient-specific three-dimensional inner engagement surface 113. The alignment guide 100 can include first and second members 102, 104 coupled with first and second connecting portions 140, 142 at a connection 141. In various embodiments, the first and second members 102, 104 can be flexible such that the alignment guide 100 can be mounted by opening up the connecting portions 140, 142 at one or more connections 141. In various embodiments, the first and second members 102, 104 can also include a hinge or a split connection (not shown) opposite to the connection 141. The first and second members 102, 104 can be patient-specific and curved, as shown in FIG. 6, with the inner surface 113 closely conforming to the substantially convex surface of the head 84 and to the substantially concave surface of the neck 86. The first and second connecting portions 140, 142 can form a tongue and groove connection (142a, 140a) or a other clasp or snap-on connection (142b, 140b), as shown in the exemplary illustrations of FIGS. 6A and 6B.


It will be appreciated that other single or multiple-component guides can be similarly constructed for guiding and preparing other bone joints for receiving prosthetic components. Patient-specific guides can be, for example, constructed for the knee, the hip, the shoulder, etc, and can include two or more relatively movable and interconnected components. When more than two components are used, the same or different coupling mechanisms can be provided along the interfaces of the adjacent components. Each of the components can match a corresponding anatomic portion in three dimensions and can be configured for surgical placement on the patient and can include a guiding formation that is related to an axis associated with the anatomic portion. Such axes can be tangential or perpendicular or at other specified angle relative to the anatomic portion and relative to various anatomic axes of the joint, such as, for example, the mechanical axis, the epicondylar axis or other anatomic axis.


Referring to FIGS. 7-9, a patient-specific alignment guide 200 according to various embodiments is illustrated. The alignment guide 200 can include a frame 211 including a nut or other securing member 202, a body 213, a removable target member 212, and first and second arms 204, 206 movable between an open (non-engaging) and closed (engaging or clamping) configuration and pivotably coupled to the body 213 with pins or other pivots 207. The securing member 202 can be threadably connected to a threaded portion of a post 219 extending from the body 213. First and second tabs or extensions 208, 210 can extend from the corresponding first and second arms 204, 206 in the direction of the post 219. When the securing member 202 is fully threaded to the post 219, the securing member 202 pushes against the first and second extensions 208, 210 forcing and securing the first and second arms 204, 206 to the closed/clamping configuration around the patient's anatomy, as shown in FIG. 7. The post 219 can include a plurality of longitudinal passages 201 (shown in FIG. 8A) having different orientations relative to and converging toward a longitudinal axis A of the post 219, as shown in FIGS. 7, 8A and 9. The passages 201 can be arranged to form a tool guide and can be used for passing guide wires, fixation pins, drills or other tools. The first and second arms 204, 206 can include patient-specific clamping portions 220, 222, as described below.


The frame 211 (excluding the patient-specific portions discussed below) can be any instrument guiding frame for femoral resurfacing procedures, such as, for example, the RECAP® KS Alignment Device, commercially available from Biomet, Inc. of Warsaw, Ind. Further details of a related frame can be found in WIPO publication WO 2008/040961, the disclosure of which is incorporated herein by reference. Other embodiments of a frame 211 according to the present teachings are discussed below.


Referring to FIGS. 7A and 7B, in various embodiments according to the present teachings, each clamping portion 220, 222 can be made to be patient-specific using the methods described above and can conform to the three-dimensional anatomy of the femoral neck 86 or a femoral head 84 of a specific patient, as shown in FIGS. 7A and 8E, for example. The clamping portions 220, 222 can be integral to the corresponding arms 206, 208 and made of the same material, such as a biocompatible metal. As illustrated in FIG. 7, the second arm 204 can include a pair of spaced-apart clamping portions 222 that are coupled to one another. It should be noted that one or both of the first and second arms 204, 206, can utilize this dual clamping configuration,


Referring to FIGS. 7B and 7C, in various embodiments according to the present teachings, the first and second arms 204, 206 can be modular, such that the corresponding patient-specific clamping portions 220, 222 can be removably coupled to the first and second arms 204, 206. The modular connection can be a groove-and-tab connection, as illustrated in FIG. 7B, which shows an exemplary groove/slot 230 and tab 231 in arm 206 and a corresponding tab/extension/hook 233 and groove/slot 232 associated with clamping portion 220. The tab 231 can be received in slot 232 while the tab 233 can be received in slot 230. It will be appreciated that the relative locations of the groove and tab can be reversed. Different types of removable connections can be used, including snap-on, dovetail, or other quick-coupling and de-coupling connections. The modular clamping portions 220, 222 can be of single-use, while the frame 211 can be sterilizable and reusable. In various embodiments, the modular clamping portions 220, 222 can be non patient-specific and provided in different sizes and/or in a kit form. Different biocompatible materials can be used for the modular clamping portions 220, 222 and the frame 211, such as metallic materials for the frame 211 and plastic materials for the modular clamping portions 220, 222, although other materials biocompatible materials can also be used.


Referring to FIG. 7D the clamping portions 220, 222 can be generic metallic portions, which can be fitted with patient-specific clamping covers 240. Each patient-specific cover 240 can include a three-dimensional patient specific surface 242. The patient-specific surface can be constructed from three-dimensional image data of the patient, as described above, and can closely match or conform, for example as negative mold, to a corresponding surface of the specific patient's femoral anatomy, such as the femoral neck 86, as shown in FIG. 7A or the femoral head 84, as shown in FIG. 8E. The patient specific cover 240 can include a groove or slot or opening 244 for fitting the cover 240 onto the corresponding clamping portion 220, 222. The covers 240 can be made of a compliant, soft and flexible material, such as a plastic, for easy fitting onto the clamping portions 220, 222 and can be single use or disposable covers that can be used with a sterilizable and reusable frame 211, such as a metallic frame. The covers 240 can also be provided in different sizes for non patient-specific uses.


Referring to FIGS. 8-8D, the patient-specific alignment guide 200 can be provided with more than two arms, such as first, second and third arms 204, 206, 205 with corresponding clamping portions 220. The first, second and third arms 204, 206, 205 can be arranged circumferentially at 120 degrees apart relative to the body 113. The clamping portions 220 can be patient specific for direct and full contact with the three-dimensional anatomy of the femoral neck 86, as shown in FIGS. 8B and 8C, or the three-dimensional anatomy of the femoral head 84, as shown in FIG. 8E, correspondingly providing curved surface contact with the femoral neck or femoral head. The clamping portions 220 can be modular, snap-on patient-specific components, such as those illustrated in FIG. 7B, or can be provided patient-specific disposable covers 240, such as those illustrated in FIG. 7D. In various embodiments, the clamping portions 220 can include pointed tips 221 for point-contact at relative distances determined for a specific patient, as shown in FIG. 8C. Instead of point tips 221, line edges can be used for patient-specific line contact in three dimensions.


In various embodiments, and referring to FIG. 9, the various clamping portions 220, 222 and patient-specific covers described above can be selectively used with a frame 211 in which the first and second arms 204, 206 can be spring-loaded at the pivot pins 207 and biased in the closed or clamping position around the femoral neck 86 or femoral head 84. The first and second arms 204, 206 can be released from the clamping position by applying pressure on corresponding first and second extensions 208, 210 in the direction of the arrows B shown in FIG. 9.


The foregoing discussion discloses and describes merely exemplary arrangements of the present teachings. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein, so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation or material to the present teachings without departing from the essential scope thereof. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the present teachings.

Claims
  • 1. An orthopedic apparatus comprising: an alignment guide attachable to a femoral head and a femoral neck portion of a femur of a specific patient, the alignment guide including first and second members coupled with corresponding first and second connecting portions and forming a complete shell for encompassing the femoral head, the alignment guide having a patient-specific three-dimensional bone engagement surface constructed from a three dimensional image of the femoral head surface and femoral neck surface obtained from medical imaging of the femoral joint surface of the specific patient, the engagement surface including a substantially concave portion and configured to closely conform and matingly contact as a negative mold of the femoral head surface, the engagement surface including a substantially convex portion configured to closely conform and mate as a negative mold of the femoral neck surface of the specific patient, the alignment guide including at least one guiding portion defining a guiding passage.
  • 2. The orthopedic apparatus of claim 1, wherein the patient specific engagement surface includes portions oriented along first and second substantially orthogonal planes of the femoral joint.
  • 3. The orthopedic device of claim 1, wherein the first and second connecting portions form a tongue and groove connection.
  • 4. The orthopedic device of claim 1, wherein the first and second members are flexible.
  • 5. The orthopedic device of claim 1, wherein the first and second connecting portions form a snap-on connection.
  • 6. An orthopedic apparatus comprising an alignment guide attachable to a femoral joint surface of a femur of a patient, the alignment guide having a patient-specific three-dimensional engagement surface configured to closely conform and matingly contact as a negative surface of a corresponding surface of a femoral head and femoral neck of the femoral joint surface, the alignment guide shaped as a complete shell for encompassing the femoral head and including: first and second members configured to completely surround and encompass and matingly contact the femoral head of the femoral joint surface, wherein the first and second members are patient-specific, curved and substantially concave toward the femoral head;first and second connecting portions coupled to the first and second members and configured to contact and surround and encompass the femoral neck of the femoral joint surface, wherein the first and second connecting portions are patient specific and convex toward the femoral neck and are connected to one another with a releasable connection; anda longitudinal guiding portion extending perpendicularly from the shell and defining a guiding passage configured to receive a tool.
  • 7. The orthopedic device of claim 6, wherein the releasable connection is a tongue and groove connection.
  • 8. The orthopedic device of claim 6, wherein the first and second members are flexible.
  • 9. The orthopedic device of claim 6, wherein the releasable connection is a snap-on connection.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 12/039849, filed on Feb. 29, 2008, now U.S. Pat. No. 8,282,646, which claims the benefit of provisional application 60/892349, filed Mar. 1, 2007, and which is a continuation-in-part of U.S. application Ser. No. 11/756057, filed on May 31, 2007, now U.S. Pat. No. 8,092,465, which claims the benefit of U.S. Provisional Application No. 60/812694, filed on Jun. 9, 2006. This application is also a continuation-in-part of U.S. application Ser. No. 12/025414, filed on Feb. 4, 2008, now U.S. Pat. No. 8,298,237, which claims the benefit of U.S. Provisional Application No. 60/953637, filed on Aug. 2, 2007. The disclosures of the above applications are incorporated herein by reference.

US Referenced Citations (872)
Number Name Date Kind
1480285 Moore Jan 1924 A
2181746 Siebrandt Nov 1939 A
2407845 Nemeyer Sep 1946 A
2416228 Sheppard Feb 1947 A
2618913 Plancon et al. Nov 1952 A
2910978 Urist Nov 1959 A
3840904 Tronzo Oct 1974 A
4246895 Rehder Jan 1981 A
4306866 Weissman Dec 1981 A
4324006 Charnley Apr 1982 A
4421112 Mains et al. Dec 1983 A
4436684 White Mar 1984 A
4457306 Borzone Jul 1984 A
4475549 Oh Oct 1984 A
4506393 Murphy Mar 1985 A
4524766 Petersen Jun 1985 A
4528980 Kenna Jul 1985 A
4619658 Pappas et al. Oct 1986 A
4621630 Kenna Nov 1986 A
4632111 Roche Dec 1986 A
4633862 Petersen Jan 1987 A
4663720 Duret et al. May 1987 A
4689984 Kellner Sep 1987 A
4695283 Aldinger Sep 1987 A
4696292 Heiple Sep 1987 A
4703751 Pohl Nov 1987 A
4704686 Aldinger Nov 1987 A
4706660 Petersen Nov 1987 A
4719907 Banko et al. Jan 1988 A
4721104 Kaufman et al. Jan 1988 A
4722330 Russell et al. Feb 1988 A
4778474 Homsy Oct 1988 A
4800874 David et al. Jan 1989 A
4821213 Cline et al. Apr 1989 A
4822365 Walker et al. Apr 1989 A
4841975 Woolson Jun 1989 A
4846161 Roger Jul 1989 A
4871975 Nawata et al. Oct 1989 A
4893619 Dale et al. Jan 1990 A
4896663 Vandewalls Jan 1990 A
4927422 Engelhardt May 1990 A
4936862 Walker et al. Jun 1990 A
4952213 Bowman et al. Aug 1990 A
4959066 Dunn et al. Sep 1990 A
4976737 Leake Dec 1990 A
4979949 Matsen, III et al. Dec 1990 A
4985037 Petersen Jan 1991 A
5002579 Copf et al. Mar 1991 A
5007936 Woolson Apr 1991 A
5030221 Buechel et al. Jul 1991 A
5041117 Engelhardt Aug 1991 A
5053037 Lackey Oct 1991 A
5053039 Hofmann et al. Oct 1991 A
5056351 Stiver et al. Oct 1991 A
5086401 Glassman et al. Feb 1992 A
5098383 Hemmy et al. Mar 1992 A
5098436 Ferrante et al. Mar 1992 A
5108425 Hwang Apr 1992 A
5122144 Bert et al. Jun 1992 A
5129908 Petersen Jul 1992 A
5129909 Sutherland Jul 1992 A
5133760 Petersen et al. Jul 1992 A
5140777 Ushiyama et al. Aug 1992 A
5150304 Berchem et al. Sep 1992 A
5176684 Ferrante et al. Jan 1993 A
5194066 Van Zile Mar 1993 A
5246444 Schreiber Sep 1993 A
5253506 Davis et al. Oct 1993 A
5258032 Bertin Nov 1993 A
5261915 Durlacher et al. Nov 1993 A
5274565 Reuben Dec 1993 A
5299288 Glassman et al. Mar 1994 A
5300077 Howell Apr 1994 A
5320529 Pompa Jun 1994 A
5320625 Bertin Jun 1994 A
5323697 Schrock Jun 1994 A
5342366 Whiteside et al. Aug 1994 A
5344423 Dietz et al. Sep 1994 A
5360446 Kennedy Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5368858 Hunziker Nov 1994 A
5370692 Fink et al. Dec 1994 A
5370699 Hood et al. Dec 1994 A
5405395 Coates Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5411521 Putnam et al. May 1995 A
5415662 Ferrante et al. May 1995 A
5417694 Marik et al. May 1995 A
5438263 Dworkin et al. Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5448489 Reuben Sep 1995 A
5449360 Schreiber Sep 1995 A
5452407 Crook Sep 1995 A
5454816 Ashby Oct 1995 A
5472415 King et al. Dec 1995 A
5474559 Bertin et al. Dec 1995 A
5490854 Fisher et al. Feb 1996 A
5496324 Barnes Mar 1996 A
5507833 Bohn Apr 1996 A
5514519 Neckers May 1996 A
5520695 Luckman May 1996 A
5527317 Ashby et al. Jun 1996 A
5539649 Walsh et al. Jul 1996 A
5540695 Levy Jul 1996 A
5545222 Bonutti Aug 1996 A
5549688 Ries et al. Aug 1996 A
5554190 Draenert Sep 1996 A
5560096 Stephens Oct 1996 A
5571110 Matsen, III et al. Nov 1996 A
5578037 Sanders et al. Nov 1996 A
5595703 Swaelens et al. Jan 1997 A
5607431 Dudasik et al. Mar 1997 A
5613969 Jenkins, Jr. Mar 1997 A
5620448 Puddu Apr 1997 A
5634927 Houston et al. Jun 1997 A
5641323 Caldarise Jun 1997 A
5658294 Sederholm Aug 1997 A
5662656 White Sep 1997 A
5662710 Bonutti Sep 1997 A
5671018 Ohara et al. Sep 1997 A
5677107 Neckers Oct 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683469 Johnson et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5697933 Gundlapalli et al. Dec 1997 A
5702460 Carls et al. Dec 1997 A
5702464 Lackey et al. Dec 1997 A
5704941 Jacober et al. Jan 1998 A
5722978 Jenkins, Jr. Mar 1998 A
5725376 Poirier Mar 1998 A
5725593 Caracciolo Mar 1998 A
5735277 Schuster Apr 1998 A
5748767 Raab May 1998 A
5749875 Puddu May 1998 A
5749876 Duvillier et al. May 1998 A
5762125 Mastrorio Jun 1998 A
5768134 Swaelens et al. Jun 1998 A
5769092 Williamson, Jr. Jun 1998 A
5776200 Johnson et al. Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5792143 Samuelson et al. Aug 1998 A
5798924 Eufinger et al. Aug 1998 A
5799055 Peshkin et al. Aug 1998 A
5860980 Axelson, Jr. et al. Jan 1999 A
5860981 Bertin et al. Jan 1999 A
5871018 Delp et al. Feb 1999 A
5876456 Sederholm et al. Mar 1999 A
5879398 Swarts et al. Mar 1999 A
5879402 Lawes et al. Mar 1999 A
5880976 DiGioia, III et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5888219 Bonutti Mar 1999 A
5895389 Schenk et al. Apr 1999 A
5899907 Johnson May 1999 A
5901060 Schall et al. May 1999 A
5911724 Wehrli Jun 1999 A
5921988 Legrand Jul 1999 A
5925049 Gustilo et al. Jul 1999 A
5942370 Neckers Aug 1999 A
5967777 Klein et al. Oct 1999 A
5976149 Masini Nov 1999 A
5980526 Johnson et al. Nov 1999 A
6033415 Mittelstadt et al. Mar 2000 A
6042612 Voydeville Mar 2000 A
6056754 Haines et al. May 2000 A
6059789 Dinger et al. May 2000 A
6059833 Doets May 2000 A
6086593 Bonutti Jul 2000 A
6120510 Albrektsson et al. Sep 2000 A
6120544 Grundei et al. Sep 2000 A
6126690 Ateshian et al. Oct 2000 A
6126692 Robie et al. Oct 2000 A
6136033 Suemer Oct 2000 A
6156069 Amstutz Dec 2000 A
6159217 Robie et al. Dec 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6162257 Gustilo et al. Dec 2000 A
6187010 Masini Feb 2001 B1
6195615 Lysen Feb 2001 B1
6203546 MacMahon Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6238435 Meulink et al. May 2001 B1
6254604 Howell Jul 2001 B1
6258097 Cook et al. Jul 2001 B1
6264698 Lawes et al. Jul 2001 B1
6270529 Terrill-Grisoni et al. Aug 2001 B1
6273891 Masini Aug 2001 B1
6290727 Otto et al. Sep 2001 B1
6293971 Nelson et al. Sep 2001 B1
6310269 Friese et al. Oct 2001 B1
6312258 Ashman Nov 2001 B1
6312473 Oshida Nov 2001 B1
6319285 Chamier et al. Nov 2001 B1
6325829 Schmotzer Dec 2001 B1
6338738 Bellotti et al. Jan 2002 B1
6343987 Hayama et al. Feb 2002 B2
6354011 Albrecht Mar 2002 B1
6361563 Terrill-Grisoni et al. Mar 2002 B2
6379299 Borodulin et al. Apr 2002 B1
6379388 Ensign et al. Apr 2002 B1
6383228 Schmotzer May 2002 B1
6391251 Keicher et al. May 2002 B1
6395005 Lovell May 2002 B1
6424332 Powell Jul 2002 B1
6427698 Yoon Aug 2002 B1
6459948 Ateshian et al. Oct 2002 B1
6463351 Clynch Oct 2002 B1
6475243 Sheldon et al. Nov 2002 B1
6482236 Habecker Nov 2002 B2
6488715 Pope et al. Dec 2002 B1
6503255 Albrektsson et al. Jan 2003 B1
6510334 Schuster et al. Jan 2003 B1
6514259 Picard et al. Feb 2003 B2
6517583 Pope et al. Feb 2003 B1
6519998 Ertl et al. Feb 2003 B2
6520964 Tallarida et al. Feb 2003 B2
6533737 Brosseau et al. Mar 2003 B1
6547823 Scarborough et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556008 Thesen Apr 2003 B2
6558391 Axelson, Jr. et al. May 2003 B2
6558428 Park May 2003 B2
6564085 Meaney et al. May 2003 B2
6567681 Lindequist May 2003 B1
6575980 Robie et al. Jun 2003 B1
6575982 Bonutti Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6605293 Giordano et al. Aug 2003 B1
6622567 Hamel et al. Sep 2003 B1
6629999 Serafin, Jr. Oct 2003 B1
6641617 Merrill et al. Nov 2003 B1
6682566 Draenert Jan 2004 B2
6696073 Boyce et al. Feb 2004 B2
6697664 Kienzle III et al. Feb 2004 B2
6701174 Krause et al. Mar 2004 B1
6709462 Hanssen Mar 2004 B2
6711431 Sarin et al. Mar 2004 B2
6711432 Krause et al. Mar 2004 B1
6712856 Carignan et al. Mar 2004 B1
6716249 Hyde Apr 2004 B2
6725077 Balloni et al. Apr 2004 B1
6738657 Franklin et al. May 2004 B1
6740092 Lombardo et al. May 2004 B2
6749638 Saladino Jun 2004 B1
6750653 Zou et al. Jun 2004 B1
6772026 Bradbury et al. Aug 2004 B2
6780190 Maroney Aug 2004 B2
6786930 Biscup Sep 2004 B2
6799066 Steines et al. Sep 2004 B2
6823871 Schmieding Nov 2004 B2
6827723 Carson Dec 2004 B2
6887247 Couture et al. May 2005 B1
6905514 Carignan et al. Jun 2005 B2
6923817 Carson et al. Aug 2005 B2
6923831 Fell et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6942475 Ensign et al. Sep 2005 B2
6944518 Roose Sep 2005 B2
6945976 Ball et al. Sep 2005 B2
6953480 Mears et al. Oct 2005 B2
6960216 Kolb et al. Nov 2005 B2
6990220 Ellis et al. Jan 2006 B2
7029479 Tallarida et al. Apr 2006 B2
7042222 Zheng et al. May 2006 B2
7048741 Swanson May 2006 B2
7050877 Iseki et al. May 2006 B2
7060074 Rosa et al. Jun 2006 B2
7074241 McKinnon Jul 2006 B2
RE39301 Bertin Sep 2006 E
7104997 Lionberger et al. Sep 2006 B2
7105026 Johnson et al. Sep 2006 B2
7115131 Engh et al. Oct 2006 B2
7121832 Hsieh et al. Oct 2006 B2
7141053 Rosa et al. Nov 2006 B2
D533664 Buttler et al. Dec 2006 S
7169185 Sidebotham Jan 2007 B2
7176466 Rousso et al. Feb 2007 B2
7184814 Lang et al. Feb 2007 B2
7198628 Ondrla et al. Apr 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7239908 Alexander et al. Jul 2007 B1
7241315 Evans Jul 2007 B2
7255702 Serra et al. Aug 2007 B2
7258701 Aram et al. Aug 2007 B2
7275218 Petrella et al. Sep 2007 B2
7282054 Steffensmeier et al. Oct 2007 B2
7294133 Zink et al. Nov 2007 B2
7297164 Johnson et al. Nov 2007 B2
7309339 Cusick et al. Dec 2007 B2
7333013 Berger Feb 2008 B2
7335231 McLean Feb 2008 B2
7371260 Malinin May 2008 B2
7383164 Aram et al. Jun 2008 B2
7385498 Dobosz Jun 2008 B2
7388972 Kitson Jun 2008 B2
7390327 Collazo et al. Jun 2008 B2
7392076 Moctezuma de La Barrera Jun 2008 B2
7427200 Noble et al. Sep 2008 B2
7427272 Richard et al. Sep 2008 B2
7468075 Lang et al. Dec 2008 B2
7474223 Nycz et al. Jan 2009 B2
7488325 Qian Feb 2009 B2
7494510 Zweymuller Feb 2009 B2
7517365 Carignan et al. Apr 2009 B2
7527631 Maroney et al. May 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7559931 Stone Jul 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578851 Dong et al. Aug 2009 B2
7582091 Duncan et al. Sep 2009 B2
7591821 Kelman Sep 2009 B2
7601155 Petersen Oct 2009 B2
7604639 Swanson Oct 2009 B2
7611516 Maroney Nov 2009 B2
7618451 Berez et al. Nov 2009 B2
7621915 Frederick et al. Nov 2009 B2
7625409 Saltzman et al. Dec 2009 B2
7646161 Albu-Schaffer et al. Jan 2010 B2
7651501 Penenberg et al. Jan 2010 B2
7670345 Plassky et al. Mar 2010 B2
7682398 Croxton et al. Mar 2010 B2
7695477 Creger et al. Apr 2010 B2
7695521 Ely et al. Apr 2010 B2
7699847 Sheldon et al. Apr 2010 B2
7704253 Bastian et al. Apr 2010 B2
7723395 Ringeisen et al. May 2010 B2
7780672 Metzger et al. Aug 2010 B2
7780740 Steinberg Aug 2010 B2
7794466 Merchant et al. Sep 2010 B2
7794467 McGinley et al. Sep 2010 B2
7794504 Case Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7809184 Neubauer et al. Oct 2010 B2
7819925 King et al. Oct 2010 B2
7828806 Graf et al. Nov 2010 B2
7850698 Straszheim-Morley et al. Dec 2010 B2
7879109 Borden et al. Feb 2011 B2
7892261 Bonutti Feb 2011 B2
7896921 Smith et al. Mar 2011 B2
7935119 Ammann et al. May 2011 B2
7935150 Carignan et al. May 2011 B2
7938861 King et al. May 2011 B2
7959637 Fox et al. Jun 2011 B2
7962196 Tuma Jun 2011 B2
7963968 Dees, Jr. Jun 2011 B2
7967823 Ammann et al. Jun 2011 B2
7967868 White et al. Jun 2011 B2
7974677 Mire et al. Jul 2011 B2
7981158 Fitz et al. Jul 2011 B2
7993353 Rossner et al. Aug 2011 B2
8062301 Ammann et al. Nov 2011 B2
8070752 Metzger et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8083746 Novak Dec 2011 B2
8083749 Taber Dec 2011 B2
8086336 Christensen Dec 2011 B2
8092465 Metzger et al. Jan 2012 B2
8133230 Stevens et al. Mar 2012 B2
8133234 Meridew et al. Mar 2012 B2
8137406 Novak et al. Mar 2012 B2
8167951 Ammann et al. May 2012 B2
8170641 Belcher May 2012 B2
8182489 Horacek May 2012 B2
8192441 Collazo Jun 2012 B2
8192495 Simpson et al. Jun 2012 B2
8211112 Novak et al. Jul 2012 B2
8241292 Collazo Aug 2012 B2
8241293 Stone et al. Aug 2012 B2
8265790 Amiot et al. Sep 2012 B2
D669176 Frey Oct 2012 S
8282646 Schoenefeld et al. Oct 2012 B2
8298237 Schoenefeld et al. Oct 2012 B2
8303596 Plaβky et al. Nov 2012 B2
D672038 Frey Dec 2012 S
8333772 Fox et al. Dec 2012 B2
8355773 Leitner et al. Jan 2013 B2
8377066 Katrana et al. Feb 2013 B2
8398646 Metzger et al. Mar 2013 B2
8407067 Uthgenannt et al. Mar 2013 B2
8439675 De Moyer May 2013 B2
8439925 Marino et al. May 2013 B2
8469961 Alleyne et al. Jun 2013 B2
8473305 Belcher et al. Jun 2013 B2
8486150 White et al. Jul 2013 B2
8532807 Metzger Sep 2013 B2
8535387 Meridew et al. Sep 2013 B2
8568487 Witt et al. Oct 2013 B2
8591516 Metzger et al. Nov 2013 B2
8597365 Meridew Dec 2013 B2
8603180 White et al. Dec 2013 B2
8608749 Meridew et al. Dec 2013 B2
8632547 Maxson et al. Jan 2014 B2
20010005797 Barlow et al. Jun 2001 A1
20010011190 Park Aug 2001 A1
20010021876 Terrill-Grisoni et al. Sep 2001 A1
20010054478 Watanabe et al. Dec 2001 A1
20020007294 Bradbury et al. Jan 2002 A1
20020029045 Bonutti Mar 2002 A1
20020052606 Bonutti May 2002 A1
20020059049 Bradbury et al. May 2002 A1
20020082741 Mazumder et al. Jun 2002 A1
20020087274 Alexander et al. Jul 2002 A1
20020092532 Yoon Jul 2002 A1
20020107522 Picard et al. Aug 2002 A1
20020128872 Giammattei Sep 2002 A1
20020147415 Martelli Oct 2002 A1
20020193797 Johnson et al. Dec 2002 A1
20030009171 Tornier Jan 2003 A1
20030009234 Treacy et al. Jan 2003 A1
20030011624 Ellis Jan 2003 A1
20030018338 Axelson et al. Jan 2003 A1
20030039676 Boyce et al. Feb 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030105526 Bryant et al. Jun 2003 A1
20030109784 Loh et al. Jun 2003 A1
20030120276 Tallarida et al. Jun 2003 A1
20030130741 McMinn Jul 2003 A1
20030139817 Tuke et al. Jul 2003 A1
20030158606 Coon et al. Aug 2003 A1
20030171757 Coon et al. Sep 2003 A1
20030216669 Lang et al. Nov 2003 A1
20040018144 Briscoe Jan 2004 A1
20040030245 Noble et al. Feb 2004 A1
20040054372 Corden et al. Mar 2004 A1
20040068187 Krause et al. Apr 2004 A1
20040092932 Aubin et al. May 2004 A1
20040098133 Carignan et al. May 2004 A1
20040102852 Johnson et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040106926 Leitner et al. Jun 2004 A1
20040115586 Andreiko et al. Jun 2004 A1
20040122439 Dwyer et al. Jun 2004 A1
20040128026 Harris et al. Jul 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040143336 Burkinshaw Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040148026 Bonutti Jul 2004 A1
20040153079 Tsougarakis et al. Aug 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040158254 Eisermann Aug 2004 A1
20040162619 Blaylock et al. Aug 2004 A1
20040167390 Alexander et al. Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040172137 Blaylock et al. Sep 2004 A1
20040181144 Cinquin et al. Sep 2004 A1
20040204644 Tsougarakis et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040212586 Denny Oct 2004 A1
20040220583 Pieczynski et al. Nov 2004 A1
20040236341 Petersen Nov 2004 A1
20040236424 Berez et al. Nov 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20040254584 Sarin et al. Dec 2004 A1
20040260301 Lionberger et al. Dec 2004 A1
20050008887 Haymann et al. Jan 2005 A1
20050010227 Paul Jan 2005 A1
20050010300 Disilvestro et al. Jan 2005 A1
20050015022 Richard et al. Jan 2005 A1
20050019664 Matsumoto Jan 2005 A1
20050027303 Lionberger et al. Feb 2005 A1
20050027361 Reiley Feb 2005 A1
20050043806 Cook et al. Feb 2005 A1
20050043837 Rubbert et al. Feb 2005 A1
20050049524 Lefevre et al. Mar 2005 A1
20050049603 Calton et al. Mar 2005 A1
20050059873 Glozman et al. Mar 2005 A1
20050060040 Auxepaules et al. Mar 2005 A1
20050065628 Roose Mar 2005 A1
20050070897 Petersen Mar 2005 A1
20050071015 Sekel Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050096535 de la Barrera May 2005 A1
20050113841 Sheldon et al. May 2005 A1
20050113846 Carson May 2005 A1
20050119664 Carignan et al. Jun 2005 A1
20050131662 Ascenzi et al. Jun 2005 A1
20050137708 Clark Jun 2005 A1
20050148843 Roose Jul 2005 A1
20050149042 Metzger Jul 2005 A1
20050171545 Walsh et al. Aug 2005 A1
20050177245 Leatherbury et al. Aug 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050203540 Broyles Sep 2005 A1
20050209597 Long et al. Sep 2005 A1
20050216305 Funderud Sep 2005 A1
20050222573 Branch et al. Oct 2005 A1
20050228393 Williams et al. Oct 2005 A1
20050234461 Burdulis et al. Oct 2005 A1
20050234465 McCombs et al. Oct 2005 A1
20050234468 Carson Oct 2005 A1
20050240195 Axelson et al. Oct 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050244239 Shimp Nov 2005 A1
20050245934 Tuke et al. Nov 2005 A1
20050245936 Tuke et al. Nov 2005 A1
20050251147 Novak Nov 2005 A1
20050267353 Marquart et al. Dec 2005 A1
20050267485 Cordes et al. Dec 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20050273114 Novak Dec 2005 A1
20050283252 Coon et al. Dec 2005 A1
20050283253 Coon et al. Dec 2005 A1
20060004284 Grunschlager et al. Jan 2006 A1
20060015120 Richard et al. Jan 2006 A1
20060030853 Haines Feb 2006 A1
20060038520 Negoro et al. Feb 2006 A1
20060052725 Santilli Mar 2006 A1
20060058803 Cuckler et al. Mar 2006 A1
20060058884 Aram et al. Mar 2006 A1
20060058886 Wozencroft Mar 2006 A1
20060089621 Fard Apr 2006 A1
20060093988 Swaelens et al. May 2006 A1
20060094951 Dean et al. May 2006 A1
20060095044 Grady et al. May 2006 A1
20060100832 Bowman May 2006 A1
20060111722 Bouadi May 2006 A1
20060122616 Bennett et al. Jun 2006 A1
20060136058 Pietrzak Jun 2006 A1
20060142657 Quaid et al. Jun 2006 A1
20060149283 May et al. Jul 2006 A1
20060155380 Clemow et al. Jul 2006 A1
20060161167 Myers et al. Jul 2006 A1
20060172263 Quadling et al. Aug 2006 A1
20060178497 Gevaert et al. Aug 2006 A1
20060184177 Echeverri Aug 2006 A1
20060184250 Bandoh et al. Aug 2006 A1
20060190086 Clemow et al. Aug 2006 A1
20060192319 Solar Aug 2006 A1
20060195111 Couture Aug 2006 A1
20060195194 Gunther Aug 2006 A1
20060195198 James Aug 2006 A1
20060200158 Farling et al. Sep 2006 A1
20060204932 Haymann et al. Sep 2006 A1
20060210644 Levin Sep 2006 A1
20060217808 Novak et al. Sep 2006 A1
20060235421 Rosa et al. Oct 2006 A1
20060241635 Stumpo et al. Oct 2006 A1
20060241636 Novak et al. Oct 2006 A1
20060271058 Ashton et al. Nov 2006 A1
20060276796 Creger et al. Dec 2006 A1
20060276797 Botimer Dec 2006 A1
20060287733 Bonutti Dec 2006 A1
20060293681 Claypool et al. Dec 2006 A1
20070015995 Lang et al. Jan 2007 A1
20070016209 Ammann et al. Jan 2007 A1
20070027680 Ashley et al. Feb 2007 A1
20070066917 Hodorek et al. Mar 2007 A1
20070073137 Schoenefeld Mar 2007 A1
20070083214 Duncan et al. Apr 2007 A1
20070083266 Lang Apr 2007 A1
20070100258 Shoham et al. May 2007 A1
20070100450 Hodorek May 2007 A1
20070100462 Lang et al. May 2007 A1
20070118055 McCombs May 2007 A1
20070118138 Seo et al. May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070150068 Dong et al. Jun 2007 A1
20070156066 McGinley et al. Jul 2007 A1
20070156171 Lang et al. Jul 2007 A1
20070162038 Tuke Jul 2007 A1
20070162039 Wozencroft Jul 2007 A1
20070173946 Bonutti Jul 2007 A1
20070173948 Meridew et al. Jul 2007 A1
20070185498 Lavallee Aug 2007 A2
20070191962 Jones et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070203430 Lang et al. Aug 2007 A1
20070203605 Melton et al. Aug 2007 A1
20070219639 Otto et al. Sep 2007 A1
20070219640 Steinberg Sep 2007 A1
20070224238 Mansmann et al. Sep 2007 A1
20070226986 Park et al. Oct 2007 A1
20070233121 Carson et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233140 Metzger et al. Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070233272 Boyce et al. Oct 2007 A1
20070238069 Lovald et al. Oct 2007 A1
20070239282 Caylor et al. Oct 2007 A1
20070239481 DiSilvestro et al. Oct 2007 A1
20070244487 Ammann et al. Oct 2007 A1
20070250169 Lang Oct 2007 A1
20070253617 Arata et al. Nov 2007 A1
20070255288 Mahfouz et al. Nov 2007 A1
20070255412 Hajaj et al. Nov 2007 A1
20070262867 Westrick et al. Nov 2007 A1
20070272747 Woods et al. Nov 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276400 Moore et al. Nov 2007 A1
20070276501 Betz et al. Nov 2007 A1
20070288029 Justin et al. Dec 2007 A1
20070288030 Metzger et al. Dec 2007 A1
20080009952 Hodge Jan 2008 A1
20080015599 D'Alessio et al. Jan 2008 A1
20080015603 Collazo Jan 2008 A1
20080015604 Collazo Jan 2008 A1
20080015605 Collazo Jan 2008 A1
20080021299 Meulink Jan 2008 A1
20080021494 Schmelzeisen-Redeker et al. Jan 2008 A1
20080021567 Meulink et al. Jan 2008 A1
20080027563 Johnson et al. Jan 2008 A1
20080033442 Amiot et al. Feb 2008 A1
20080039850 Rowley et al. Feb 2008 A1
20080051799 Bonutti Feb 2008 A1
20080051910 Kammerzell et al. Feb 2008 A1
20080058945 Hajaj et al. Mar 2008 A1
20080058947 Earl et al. Mar 2008 A1
20080062183 Swaelens Mar 2008 A1
20080065225 Wasielewski et al. Mar 2008 A1
20080097451 Chen et al. Apr 2008 A1
20080112996 Harlow et al. May 2008 A1
20080114370 Schoenefeld May 2008 A1
20080133022 Caylor Jun 2008 A1
20080140081 Heavener et al. Jun 2008 A1
20080140209 Iannotti et al. Jun 2008 A1
20080140213 Ammann et al. Jun 2008 A1
20080146969 Kurtz Jun 2008 A1
20080147072 Park et al. Jun 2008 A1
20080147073 Ammann et al. Jun 2008 A1
20080161815 Schoenefeld et al. Jul 2008 A1
20080161816 Stevens et al. Jul 2008 A1
20080172125 Ek Jul 2008 A1
20080195099 Minas Aug 2008 A1
20080195107 Cuckler et al. Aug 2008 A1
20080195108 Bhatnagar et al. Aug 2008 A1
20080195109 Hunter et al. Aug 2008 A1
20080195216 Philipp Aug 2008 A1
20080200926 Verard et al. Aug 2008 A1
20080208200 Crofford Aug 2008 A1
20080208353 Kumar et al. Aug 2008 A1
20080215059 Carignan et al. Sep 2008 A1
20080230422 Pleil et al. Sep 2008 A1
20080234664 May et al. Sep 2008 A1
20080234683 May Sep 2008 A1
20080234685 Gjerde Sep 2008 A1
20080234833 Bandoh et al. Sep 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080255674 Rahaman et al. Oct 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080262500 Collazo Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080269906 Iannotti et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080287926 Abou El Kheir Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20080294170 O'Brien Nov 2008 A1
20080294266 Steinberg Nov 2008 A1
20080300600 Guelat et al. Dec 2008 A1
20080306485 Coon et al. Dec 2008 A1
20080306558 Hakki Dec 2008 A1
20080312659 Metzger et al. Dec 2008 A1
20080319448 Lavallee et al. Dec 2008 A1
20090012526 Fletcher Jan 2009 A1
20090018546 Daley Jan 2009 A1
20090018666 Grundei et al. Jan 2009 A1
20090024131 Metzger et al. Jan 2009 A1
20090024169 Triplett et al. Jan 2009 A1
20090043556 Axelson et al. Feb 2009 A1
20090076371 Lang et al. Mar 2009 A1
20090076512 Ammann et al. Mar 2009 A1
20090076520 Choi Mar 2009 A1
20090076555 Lowry et al. Mar 2009 A1
20090082770 Worner et al. Mar 2009 A1
20090082774 Oti et al. Mar 2009 A1
20090087276 Rose Apr 2009 A1
20090088674 Caillouette et al. Apr 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088754 Aker et al. Apr 2009 A1
20090088755 Aker et al. Apr 2009 A1
20090088758 Bennett Apr 2009 A1
20090088759 Aram et al. Apr 2009 A1
20090088760 Aram et al. Apr 2009 A1
20090088761 Roose et al. Apr 2009 A1
20090088763 Aram et al. Apr 2009 A1
20090088865 Brehm Apr 2009 A1
20090088866 Case Apr 2009 A1
20090089034 Penney et al. Apr 2009 A1
20090089081 Haddad Apr 2009 A1
20090093815 Fletcher et al. Apr 2009 A1
20090093816 Roose et al. Apr 2009 A1
20090096613 Westrick Apr 2009 A1
20090099567 Zajac Apr 2009 A1
20090105837 Lafosse et al. Apr 2009 A1
20090118736 Kreuzer May 2009 A1
20090118769 Sixto, Jr. et al. May 2009 A1
20090131941 Park et al. May 2009 A1
20090131942 Aker et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090149964 May et al. Jun 2009 A1
20090149965 Quaid Jun 2009 A1
20090149977 Schendel Jun 2009 A1
20090151736 Belcher et al. Jun 2009 A1
20090157083 Park et al. Jun 2009 A1
20090163922 Meridew et al. Jun 2009 A1
20090163923 Flett et al. Jun 2009 A1
20090164024 Rudan et al. Jun 2009 A1
20090177282 Bureau et al. Jul 2009 A1
20090187193 Maroney et al. Jul 2009 A1
20090209884 Van Vorhis et al. Aug 2009 A1
20090209961 Ferrante et al. Aug 2009 A1
20090222014 Bojarski et al. Sep 2009 A1
20090222015 Park et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228016 Alvarez Sep 2009 A1
20090234360 Alexander Sep 2009 A1
20090248044 Amiot et al. Oct 2009 A1
20090250413 Hoeppner Oct 2009 A1
20090254367 Belcher et al. Oct 2009 A1
20090259312 Shterling et al. Oct 2009 A1
20090270868 Park et al. Oct 2009 A1
20090274350 Pavlovskaia et al. Nov 2009 A1
20090287217 Ammann et al. Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090307893 Burdulis, Jr. et al. Dec 2009 A1
20090318836 Stone et al. Dec 2009 A1
20090318921 White et al. Dec 2009 A1
20100010493 Dower Jan 2010 A1
20100016984 Trabish Jan 2010 A1
20100016986 Trabish Jan 2010 A1
20100023015 Park Jan 2010 A1
20100030231 Revie et al. Feb 2010 A1
20100036404 Yi et al. Feb 2010 A1
20100042105 Park et al. Feb 2010 A1
20100049195 Park et al. Feb 2010 A1
20100057088 Shah Mar 2010 A1
20100076439 Hatch Mar 2010 A1
20100076505 Borja Mar 2010 A1
20100076563 Otto et al. Mar 2010 A1
20100076571 Hatch Mar 2010 A1
20100082034 Remia Apr 2010 A1
20100082035 Keefer Apr 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100094295 Schnieders et al. Apr 2010 A1
20100105011 Karkar et al. Apr 2010 A1
20100121334 Couture et al. May 2010 A1
20100121335 Penenberg et al. May 2010 A1
20100137869 Borja et al. Jun 2010 A1
20100137924 Tuke et al. Jun 2010 A1
20100145343 Johnson et al. Jun 2010 A1
20100145344 Jordan et al. Jun 2010 A1
20100152782 Stone et al. Jun 2010 A1
20100160917 Fitz et al. Jun 2010 A1
20100168752 Edwards Jul 2010 A1
20100168754 Fitz et al. Jul 2010 A1
20100168857 Hatch Jul 2010 A1
20100179663 Steinberg Jul 2010 A1
20100185202 Lester et al. Jul 2010 A1
20100191244 White et al. Jul 2010 A1
20100198224 Metzger et al. Aug 2010 A1
20100212138 Carroll et al. Aug 2010 A1
20100217109 Belcher Aug 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217336 Crawford et al. Aug 2010 A1
20100217338 Carroll et al. Aug 2010 A1
20100228257 Bonutti Sep 2010 A1
20100249657 Nycz et al. Sep 2010 A1
20100249796 Nycz Sep 2010 A1
20100256649 Capsal et al. Oct 2010 A1
20100262150 Lian Oct 2010 A1
20100274253 Ure Oct 2010 A1
20100281678 Burdulis, Jr. et al. Nov 2010 A1
20100286700 Snider et al. Nov 2010 A1
20100292743 Singhal et al. Nov 2010 A1
20100305574 Fitz et al. Dec 2010 A1
20100318088 Warne et al. Dec 2010 A1
20100324692 Uthgenannt et al. Dec 2010 A1
20110004317 Hacking et al. Jan 2011 A1
20110009869 Marino et al. Jan 2011 A1
20110015636 Katrana et al. Jan 2011 A1
20110015639 Metzger et al. Jan 2011 A1
20110015752 Meridew Jan 2011 A1
20110022049 Huebner et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110029116 Jordan et al. Feb 2011 A1
20110035012 Linares Feb 2011 A1
20110040303 Iannotti Feb 2011 A1
20110040334 Kaes et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110054478 Vanasse et al. Mar 2011 A1
20110066193 Lang et al. Mar 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071528 Carson Mar 2011 A1
20110071529 Carson Mar 2011 A1
20110071530 Carson Mar 2011 A1
20110071532 Carson Mar 2011 A1
20110071533 Metzger et al. Mar 2011 A1
20110092804 Schoenefeld et al. Apr 2011 A1
20110093086 Witt et al. Apr 2011 A1
20110106254 Abel et al. May 2011 A1
20110125264 Bagga et al. May 2011 A1
20110130795 Ball Jun 2011 A1
20110151027 Clineff et al. Jun 2011 A1
20110151259 Jarman-Smith et al. Jun 2011 A1
20110153025 McMinn Jun 2011 A1
20110160736 Meridew et al. Jun 2011 A1
20110160867 Meridew et al. Jun 2011 A1
20110166578 Stone et al. Jul 2011 A1
20110172672 Dubeau et al. Jul 2011 A1
20110184419 Meridew et al. Jul 2011 A1
20110184526 White et al. Jul 2011 A1
20110190899 Pierce et al. Aug 2011 A1
20110190901 Weissberg et al. Aug 2011 A1
20110213376 Maxson et al. Sep 2011 A1
20110214279 Park et al. Sep 2011 A1
20110218545 Catanzarite et al. Sep 2011 A1
20110224674 White et al. Sep 2011 A1
20110238071 Fernandez-Scoma Sep 2011 A1
20110251617 Ammann et al. Oct 2011 A1
20110257657 Turner et al. Oct 2011 A1
20110269100 Furrer et al. Nov 2011 A1
20110275032 Tardieu et al. Nov 2011 A1
20110295887 Palmese et al. Dec 2011 A1
20120010619 Barsoum Jan 2012 A1
20120010710 Frigg Jan 2012 A1
20120010711 Antonyshyn et al. Jan 2012 A1
20120041445 Roose et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120065640 Metzger et al. Mar 2012 A1
20120078254 Ashby et al. Mar 2012 A1
20120078259 Meridew Mar 2012 A1
20120089595 Jaecksch Apr 2012 A1
20120101586 Carson Apr 2012 A1
20120109137 Iannotti et al. May 2012 A1
20120109138 Meridew et al. May 2012 A1
20120109226 Iannotti et al. May 2012 A1
20120123422 Agnihotri et al. May 2012 A1
20120130382 Iannotti et al. May 2012 A1
20120136365 Iannotti et al. May 2012 A1
20120141034 Iannotti et al. Jun 2012 A1
20120143197 Lang et al. Jun 2012 A1
20120143267 Iannotti et al. Jun 2012 A1
20120209276 Schuster Aug 2012 A1
20120215225 Philippon et al. Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120226283 Meridew et al. Sep 2012 A1
20120232596 Ribeiro Sep 2012 A1
20120245587 Fang et al. Sep 2012 A1
20120259335 Scifert et al. Oct 2012 A1
20120265208 Smith Oct 2012 A1
20120271131 Kling et al. Oct 2012 A1
20120271314 Stemniski et al. Oct 2012 A1
20120271366 Katrana et al. Oct 2012 A1
20120276509 Iannotti et al. Nov 2012 A1
20120277751 Catanzarite et al. Nov 2012 A1
20120289965 Gelaude et al. Nov 2012 A1
20120296339 Iannotti et al. Nov 2012 A1
20120303004 Uthgenannt et al. Nov 2012 A1
20120303033 Weiner et al. Nov 2012 A1
20120310399 Metzger Dec 2012 A1
20120316564 Serbousek et al. Dec 2012 A1
20120323246 Catanzarite et al. Dec 2012 A1
20130001121 Metzger Jan 2013 A1
20130006250 Metzger et al. Jan 2013 A1
20130035766 Meridew Feb 2013 A1
20130085500 Meridew et al. Apr 2013 A1
20130119579 Iannotti et al. May 2013 A1
20130123850 Schoenefeld et al. May 2013 A1
20130197528 Zakaria et al. Aug 2013 A1
20130218163 Frey Aug 2013 A1
20130338673 Keppler Dec 2013 A1
Foreign Referenced Citations (145)
Number Date Country
2447694 Dec 2002 CA
2501041 Apr 2004 CA
2505371 May 2004 CA
2505419 Jun 2004 CA
2506849 Jun 2004 CA
2546958 Jun 2005 CA
2546965 Jun 2005 CA
2588907 Jun 2006 CA
2590534 Jun 2006 CA
1630495 Jun 2005 CN
1728976 Feb 2006 CN
1729483 Feb 2006 CN
1729484 Feb 2006 CN
1913844 Feb 2007 CN
101111197 Jan 2008 CN
3447365 Jul 1986 DE
04219939 Dec 1993 DE
4421153 Dec 1995 DE
102009028503 Feb 2011 DE
102011082902 Mar 2012 DE
102012205820 Oct 2012 DE
112010003901 Nov 2012 DE
0114505 Aug 1984 EP
0326768 Aug 1989 EP
0579868 Jan 1994 EP
0591985 Apr 1994 EP
0650706 May 1995 EP
0916324 May 1999 EP
1321107 Jun 2003 EP
1327424 Jul 2003 EP
1437102 Jul 2004 EP
01486900 Dec 2004 EP
1588669 Oct 2005 EP
1634551 Mar 2006 EP
1852072 Jul 2007 EP
1832239 Sep 2007 EP
1852072 Nov 2007 EP
1852072 Nov 2007 EP
2029061 Mar 2009 EP
2168507 Mar 2010 EP
2303146 Apr 2011 EP
2303192 Apr 2011 EP
2352445 Aug 2011 EP
2396741 Dec 2011 EP
2398381 Dec 2011 EP
2403437 Jan 2012 EP
2491873 Aug 2012 EP
2659226 Sep 1991 FR
2721195 Dec 1995 FR
2768916 Apr 1999 FR
2094590 Sep 1982 GB
2197790 Jun 1988 GB
2423021 Aug 2006 GB
2442441 Apr 2008 GB
2447702 Sep 2008 GB
2483980 Mar 2012 GB
2486390 Jun 2012 GB
2490220 Oct 2012 GB
2491526 Dec 2012 GB
59157715 Sep 1984 JP
60231208 Nov 1985 JP
2011505080 Feb 2011 JP
2011527885 Nov 2011 JP
20050072500 Jul 2005 KR
20050084024 Aug 2005 KR
2083179 Jul 1997 RU
2113182 Jun 1998 RU
2125835 Feb 1999 RU
2138223 Sep 1999 RU
2175534 Nov 2001 RU
2187975 Aug 2002 RU
231755 May 2005 TW
WO-8807840 Oct 1988 WO
WO-9107139 May 1991 WO
WO-9325157 Dec 1993 WO
WO-9528688 Oct 1995 WO
WO-9952473 Oct 1999 WO
WO-9959106 Nov 1999 WO
WO-0170142 Sep 2001 WO
WO-0184479 Nov 2001 WO
WO-0217821 Mar 2002 WO
WO-0226145 Apr 2002 WO
WO-0236024 May 2002 WO
WO-02096268 Dec 2002 WO
WO-03051210 Jun 2003 WO
WO-03051211 Jun 2003 WO
WO-2004032806 Apr 2004 WO
WO-2004049981 Jun 2004 WO
WO-2004051301 Jun 2004 WO
WO-2004078069 Sep 2004 WO
WO-2005051209 Jun 2005 WO
WO-2005051239 Jun 2005 WO
WO-2005051240 Jun 2005 WO
WO-2005077039 Aug 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006060795 Jun 2006 WO
WO-2006092600 Sep 2006 WO
WO-2006127486 Nov 2006 WO
WO-2006134345 Dec 2006 WO
WO-2006136955 Dec 2006 WO
WO-2007041375 Apr 2007 WO
WO-2007053572 May 2007 WO
WO-2007062079 May 2007 WO
WO-2007092841 Aug 2007 WO
WO-2007137327 Dec 2007 WO
WO-2007145937 Dec 2007 WO
WO-2008014618 Feb 2008 WO
WO-2008021494 Feb 2008 WO
WO-2008040961 Apr 2008 WO
WO-2008044055 Apr 2008 WO
WO-2008091358 Jul 2008 WO
WO-2008101090 Aug 2008 WO
WO-2008109751 Sep 2008 WO
WO-2008112996 Sep 2008 WO
WO-2008140748 Nov 2008 WO
WO-2009001083 Dec 2008 WO
WO-2009025783 Feb 2009 WO
WO-2009073781 Jun 2009 WO
WO-2009129063 Oct 2009 WO
WO-2009129067 Oct 2009 WO
WO-2010033431 Mar 2010 WO
WO-2010093902 Aug 2010 WO
WO-2010096553 Aug 2010 WO
WO-2010096557 Aug 2010 WO
WO-2010124164 Oct 2010 WO
WO-2010144705 Dec 2010 WO
WO-2010148103 Dec 2010 WO
WO-2011018458 Feb 2011 WO
WO-2011041398 Apr 2011 WO
WO-2011060536 May 2011 WO
WO-2011019797 Jul 2011 WO
WO-2011106711 Sep 2011 WO
WO-2011109260 Sep 2011 WO
WO-2011110374 Sep 2011 WO
WO-2012006444 Jan 2012 WO
WO-2012033821 Mar 2012 WO
WO-2012058344 May 2012 WO
WO-2012061042 May 2012 WO
WO-2012058353 Jun 2012 WO
WO-2012058355 Jul 2012 WO
WO-2012058349 Aug 2012 WO
WO-2012116206 Aug 2012 WO
WO-2012158917 Nov 2012 WO
WO-2012173929 Dec 2012 WO
WO-2012174008 Dec 2012 WO
Non-Patent Literature Citations (95)
Entry
Great Britain Search Report mailed Dec. 18, 2006 for GB0619534.1 filed Oct. 3, 2006 of which PCT/GB2007/003737 filed Oct. 2, 2007 claims benefit; of which U.S. Appl. No. 12/444,143, filed Jul. 9, 2010 claims benefit.
International Preliminary Report on Patentability issued Apr. 7, 2009 for PCT/GB2007/003737 filed Oct. 2, 2007 of which U.S. Appl. No. 12/444,143 claims benefit.
International Search Report and Written Opinion for PCT/US2009/056670 mailed Mar. 2, 2010 claiming benefit of U.S. Appl. No. 12/211,407, filed Sep. 16, 2008 (which is a CIP of U.S. Appl. No. 12/039,849, filed Feb. 29, 2008, which is a CIP of U.S. Appl. No. 11/971,390, filed Jan. 9, 2008, which is a CIP of U.S. Appl. No. 11/756,957, filed May 31, 2007).
International Search Report and Written Opinion mailed Apr. 22, 2010 for PCT/US2010/024579 claiming benefit of U.S. Appl. No. 12/389930, filed Feb. 20, 2009.
International Search Report and Written Opinion mailed Jan. 25, 2008 for PCT/GB2007/003737 filed Oct. 2, 2007 of which U.S. Appl. No. 12/444,143 claims benefit.
Lombardi, Adolph, et al., “Patient-Specific Approach in Total Knee Arthroplasty,” Knee Orthopedics, ORTHOSuperSite (Sep. 1, 2008), 5 pages, http://www.orthosupersite.com/view.aspx?rid=31419, printed May 20, 2010.
International Preliminary Report on Patentability mailed Aug. 25, 2011 for PCT/US2010/024073 filed Feb. 12, 2010, claiming benefit of U.S. Appl. No. 12/371,096, filed Feb. 13, 2009.
International Preliminary Report on Patentability mailed Sep. 1, 2011 for PCT/US2010/024579 claiming benefit of U.S. Appl. No. 12/389,930, filed Feb. 20, 2009.
International Preliminary Report on Patentability mailed Sep. 1, 2011 for PCT/US2010/024584 claiming benefit of U.S. Appl. No. 12/389,901, filed Feb. 20, 2009.
International Search Report and Written Opinion mailed Aug. 9, 2011 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
Botha, Chart P., Technical Report: DeVIDE—The Delft Visualisation and Image processing Development Environment, pp. 1-49 (May 31, 2006.)
Eckhoff, Donald G., et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality,” The Journal of Bone & Joint Surgery, vol. 81 (Dec. 4, 2005) pp. 71-80.
International Preliminary Report on Patentability for PCT/US2007/013223 issued Nov. 26, 2007.
International Search Report and Written Opinion for PCT/US2007/013223 mailed Nov. 26, 2007.
International Search Report and Written Opinion for PCT/US2009/039507 mailed Jul. 14, 2009.
International Search Report and Written Opinion for PCT/US2009/039578 mailed Jul. 31, 2009.
Invitation to Pay Additional Fees with Partial International Search mailed Nov. 26, 2009 for PCT/US2009/056670.
Nicholls, Paul, M.D., “Trauma Grand Rounds PMI (Patient-Matched Implants)” brochure, Biomet Orthopedics, Inc., (Feb. 29, 2000) 1 page.
Radermacher, K., et al., “Technique for Better Execution of CT Scan Planned Orthopedic Surgery on Bone Structures,” Supplied by the British Library—“The world's knowledge” 2nd Congress of ISCAS Conference in Berlin Germany (Jun. 1995) pp. 933-938.
Sharp, S. Michael, Ph.D., Patient-Specific, Resurfacing Bi-Compartmental Arthuroplasty, Futuretech, Orthopaedic Product News (Mar./Apr. 2008) pp. 12-15.
Slammin, John et al, “Do You Have This Implant in My Size?”, MDT Medical Design Technology, 3 pages, http://www.mdtmag.com/scripts/ShowPR.asp?PUBCODE=046&ACCT=0007796&ISSUE . . . accessed Jul. 31, 2008.
“Amazing Precision. Beautiful Results. The next evolution of MAKOplasty® is here,” brochure. (Feb. 2009) MAKO Surgical Corp. 6 pages.
“Knee tensor combined with laser femoral head locator,” Research Disclosure. Jul. 2006. Number 507; p. 903.
“Method for constructing an allograft sleeve.” Research Disclosure (Dec. 2003) No. 476, p. 1294.
International Preliminary Report on Patentability and Written Opinion for PCT/US2009/039578 mailed Oct. 28, 2010 claiming benefit of U.S. Appl. No. 12/103,834, filed Apr. 16, 2008.
International Preliminary Report on Patentability and Written Opinion mailed Oct. 28, 2010 for PCT/US2009/039507 claiming benefit of U.S. Appl. No. 12/103,824, filed Apr. 16, 2008.
International Preliminary Report on Patentability for PCT/US2007/013223 mailed Dec. 24, 2008 claiming benefit of U.S. Appl. No. 11/756,057, filed May 31, 2007.
International Preliminary Report on Patentability mailed Mar. 31, 2011 for PCT/US2009/056670 claiming benefit of U.S. Appl. No. 12/211,407, filed Sep. 16, 2008.
International Search Report and Written Opinion mailed Aug. 19, 2010 for PCT/US2010/024584 claiming benefit of U.S. Appl. No. 12/389,901, filed Feb. 20, 2009.
International Search Report and Written Opinion mailed Dec. 7, 2010 for PCT/US2010/050701 claiming benefit of U.S. Appl. No. 12/571,969, filed Oct. 1, 2009.
International Search Report and Written Opinion mailed Jun. 10, 2010 for PCT/US2010/038177 claiming benefit of U.S. Appl. No. 12/483,807, filed Jun. 12, 2009.
International Search Report and Written Opinion mailed Jun. 4, 2010 for PCT/US2010/024073 filed Feb. 12, 2010, claiming benefit of U.S. Appl. No. 12/371,096, filed Feb. 13, 2009.
International Search Report and Written Opinion mailed May 9, 2011 for PCT/US2011/026412 claiming benefit of U.S. Appl. No. 12/872,663, filed Aug. 31, 2010.
International Search Report and Written Opinion mailed Oct. 5, 2010 for PCT/US2010/038845 claiming benefit of U.S. Appl. No. 12/486,992, filed Jun. 18, 2009.
Invitation to Pay Additional Fees mailed May 3, 2011 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
Radermacher, Klaus, et al. “Computer Assisted Orthopaedic Individual Templates.” Clinical Orthopaedics and Related Research. (Sep. 1998) No. 354; pp. 28-38.
“Ascent Total Knee System,” brochure. Biomet, Inc. (Oct. 31, 1999) 16 sheets.
“Customized Patient Instruments, Patient specific instruments for patient specific needs,” brochure. (2008) DePuy Orthopaedics, Inc. 14 sheets.
“Customized Patient Instruments, Primary Cruciate Retaining Surgical Technique for use with the Sigma® Knee System Utilizing Specialist® 2 Instrumentation,” brochure. (2008) DePuy Orthopaedics, Inc. pp. 1-23.
“Discovery® Elbow System Surgical Technique,” brochure. Biomet Orthopedics, Inc. (Dec. 31, 2008) pp. 1-25.
“Discovery® Elbow System,” brochure. Biomet Orthopedics, Inc. (Nov. 30, 2007) 3 sheets.
“OSS™ Orthopaedic Salvage System, Femoral/Tibial Augmentation,” brochure. Biomet Orthopedics, Inc., (Mar. 31, 2004) pp. 1-8 (12 sheets).
“Patient Matched PMI Implants, C.A.M.R.A. 3-D Imaging,” brochure, Biomet, Inc. (Jan. 31, 1991) 6 pages.
“Regenerex® Tibial Cone Augment, Surgical Technique Addendum to the Vanguard® SSK Revision System,” brochure. Biomet® Orthopedics. (revised Mar. 31, 2010) pp. 1-8 (12 sheets).
“Signature™ Personalized Patient Care, Surgical Technique Addendum to the Vanguard Knee System” brochure. Biomet® Orthopedics, Inc. (May 15, 2009) pp. 1-8.
“TruMatch™ Personalized knee replacement solutions,” tri-fold brochure. (2009) SIGMA® DePuy Orthopaedics, Inc. 2 pages.
“Vanguard® PFR Partial Knee Patellofemoral Replacement System,” Surgical Technique brochure. Biomet Orthopaedics, (revised Aug. 31, 2010) pp. 1-25.
“Zimmer® UniSpacer® Knee System,” brochure. (2005) Zimmer, Inc. 4 sheets.
Birnbaum, Klaus, M.D., “Computer-Assisted Orthopedic Surgery With Individual Templates and Comparison to Conventional Method,” SPINE vol. 26, No. 4, pp. 365-370 (2001) Lippincott Williams & Wilkins, Inc.
Cohen, Zohara A., et al. “Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements.” Journal of the OsteoArthritis Research Society International. Osteoarthritis and Cartilage, (1999) vol. 7; No. 1 pp. 95-109.
Fortin, Thomas, D.D.S., Ph.D., et al., “Precise Dental Implant Placement in Bone Using Surgical Guides in Conjunction with Medical Imaging Techniques,” Journal of Oral Implantology, Clinical, vol. 26, No. 4 (2000) pp. 300-303.
Haaker, R.G., et al., “Minimal-invasive navigiert implantierte unikondyläre Knieendoprothese,” Orthopäde 2006 35:1073-1079 (Sep. 13, 2006) Spinger Medizin Verlag.
Hafez, M.A., et al., “Computer-assisted Total Knee Arthroplasty Using Patient-specific Templating,” Clinical Orthopaedics and Related Research, No. 444 (pp. 184-192) 2006 Lippincott Williams & Wilkins.
Hazen, Eric J., M.D., “Computer-Assisted Orthopaedic Sugery, A New Paradigm,” Techniques in Orthopaedics® vol. 18, No. 2, (2003) pp. 221-229.
Hutmacher, Dietmar, W., “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, 2000 Elsevier Science Ltd. (pp. 2529-2543).
Kaus, Michael R., Ph.D., “Automated Segmentation of MR Images of Brain Tumors,” Radiology, vol. 218, No. 2, (2001) pp. 586-591.
Klein, M., “Robot assisted insertion of craniofacial implants—clinical experience,” CARS 2001, pp. 133-138 (2001) Elsevier Science B.V.
Lynch, John A., et al., “Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours,” Medical Imaging 2000: Image Processing SPIE vol. 3979 (2000) pp. 925-935.
Overhoff, H.M., et al., “Total Knee Arthroplasty: Coordinate System Definition and Planning based on 3-D Ultrasound Image Volumes,” CARS 2001, pp. 283-288, (2001) Elsevier Science B.V.
Portheine, F., “CT-basierte Planung und DISOS-Schablonennavigation in der Kniegelenkendoprothetik,” in Navigation und Robotic in der Gelenk—und Wirbelsäulenchirugie, Kapitel 32, Springer Verlag (2003) pp. 262-269.
Portheine, F., et al., Entwicklung eines klinischen Demonstrators für die computerunterstützte Orthopädische Chirurgie mit CT-Bildbasierten Individualschablonen, Bildverarbeitung fur die Medizin (1998) 5 pages.
Portheine, K., “Development of a clinical demonstrator for computer assisted orthopedic surgery with CT-image based individual templates,” Computer Assisted Radiology and Surgery, pp. 944-949, (1997) Elsevier Science B.V.
Radermacher, “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research No. 354, pp. 28-38 (Sep. 1998) Lippincott Williams & Wilkins.
Radermacher, K., et al., “Computer Integrated Orthopaedic Surgery: Connection of Planning and Execution in Surgical Intervention,” Computer-integrated surgery: technology and clinical applications, (1996) pp. 451-463.
Radermacher, K., et al., “CT Image-Based Planning and Execution of Interventions in Orthopedic Surgery Using Individual Templates, Experimental Results and Aspects of Clinical Applications,” Computer Assisted Orthopedic Surgery (CAOS), pp. 42-52, (1995) Hogrefe & Huber Publishers.
Radermacher, K., et al., “Image Guided Orthopedic Surgery Using Individual Templates,” Springer Berlin/Heidelberg, CVRMed-MRCAS'97, vol. 1205/1997 pp. 606-615), (1997).
Schuller-Götzburg, P., et al., 3D-Implantatplanung und Stereolithographie-Implantatbohrschablonen, Stomatologie 101.3, pp. 55-59 (May 2004).
Sisto, Domenick, J., et al., “Custom Patellofemoral Arthroplasty of the Knee Surgical Technique,” Journal of Bone and Joint Surgery, vol. 89-A, pp. 214-225 (Jul. 2006).
Steinwachs, Matthias Reinhard, “Cartilage Repair—Autologous Chondrocyte Transplantation and Autologous Matrix-induced Chondrogenesis,” European Musculoskeletal Review (2006) pp. 65-68.
Great Britain Search Report mailed Dec. 21, 2011 for GB1116054.6, claiming benefit of U.S. Appl. No. 12/888,005, filed Sep. 22, 2010.
International Preliminary Report and Written Opinion mailed Jan. 5, 2012 for PCT/US2010/038845 claiming benefit of U.S. Appl. No. 12/486,992, filed Jun. 18, 2009.
International Preliminary Report on Patentability and Written Opinion mailed Dec. 22, 2011 for PCT/US2010/038177 claiming benefit of U.S. Appl. No. 12/483,807, filed Jun. 12, 2009.
International Search Report mailed Nov. 30, 2010 for PCT/EP2010/061630 filed Aug. 10, 2010 claiming benefit of DE102009028503.2 filed Aug. 13, 2009.
Supplementary European Search Report mailed Nov. 15, 2011 for EP07809326, which claims benefit of PCT/US2007/013223, filed Jun. 5, 2007; which claims priority to U.S. Appl. No. 11/756,057, filed May 31, 2007.
Friedman, R.J. et al., “The Use of Computerized Tomography In The Measurement of Glenoid Version”, Journal of Bone & Joint Surgery Am. (JBJS) 1992;74:1032-1037 (Aug. 1992).
International Search Report and Written Opinion mailed Dec. 18, 2012 for PCT/US2012/059189, which claims benefit of U.S. Appl. No. 13/597,478 filed Aug. 29, 2011.
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/060842, which claims benefit of U.S. Appl. No. 13/653,868 filed Oct. 17, 2012.
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/060854, which claims benefit of U.S. Appl. No. 13/653,893 filed Oct. 17, 2012.
International Search Report and Written Opinion mailed Nov. 15, 2012, for PCT/US2012/052853, which claims benefit of U.S. Appl. No. 13/221,968 filed Aug. 31, 2011.
International Search Report mailed Oct. 23, 2012, for PCT/US2012/041893, which claims benefit of U.S. Appl. No. 61/496,177 filed Jun. 13, 2011.
Invitation to Pay Additional Fees mailed Feb. 6, 2013 for PCT/US2012/060848, which claims benefit of U.S. Appl. No. 13/653,878 filed Oct. 17, 2012.
Invitation to Pay Additional Fees mailed Feb. 7, 2013 for PCT/US2012/060853, which claims benefit of U.S. Appl. No. 13/653,893 filed Oct. 17, 2012.
International Search Report and Written Opinion for PCT/US2013/026875 mailed Jun. 7, 2013, claiming benefit of U.S. Appl. No. 13/400,652, filed Feb. 21, 2012.
International Preliminary Report on Patentability mailed Sep. 6, 2013 for PCT/US2012/026356 claiming benefit of U.S. Appl. No. 13/041,883 filed Mar. 7, 2011.
International Search Report and Written Opinion mailed Oct. 14, 2013 for PCT/US2013/057097 claiming benefit of U.S. Appl. No. 13/597,478 filed Aug. 29, 2012.
International Preliminary Report on Patentability for PCT/US2010/050701 mailed Apr. 12, 2012 claiming benefit of U.S. Appl. No. 12/571,969, filed Oct. 1, 2009.
International Search Report and Written Opinion mailed Mar. 5, 2012 for PCT/US2011/057300 claiming benefit of U.S. Appl. No. 12/938,905, filed Nov. 3, 2010.
International Search Report and Written Opinion mailed May 8, 2012 for PCT/US2012/026356 claiming benefit of U.S. Appl. No. 13/041,883, filed Mar. 7, 2011.
Thoma, W., et al., “Endoprothetischen Versorgung des Kniegelenks auf der Basis eines 3D-computertomographischen Subtraktionversfahrens,” Zuma Thema: Computergestutzte orthopädische Chirugie, Der Orthopäde 29:641-644 Springer-Verlag (Jul. 2000) Translation provided: Thoma, W., “Endoprosthetic care of the knee joint based on a 3D computer chromatography subtraction process,” Topic: Computer-aided orthopedic surgery. Orthopedist 2000 29:641-644 Springer Verlag (Jul. 2000).
Biomet “Oxford® Partial Knee” brochure, 8 pages (Feb. 2011).
Biomet “The Oxford® Partial Knee Surgical Technique,” brochure, pp. 1-38, (Feb. 2010).
Biomet, “Oxford® Partial Knee Microplasty® Instrumentation Surgical Technique”, brochure, pp. 1-54 (May 2011).
International Preliminary Report on Patentability and Written Opinion mailed Sep. 7, 2012 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
International Preliminary Report on Patentability and Written Opinion mailed Jan. 3, 2014 for PCT/US2012/042081 claiming benefit of U.S. Appl. No. 13/493,509, filed Jun. 11, 2012.
International Preliminary Report on Patentability and Written Opinion mailed Nov. 28, 2013 for PCT/US2012/038351 claiming benefit of U.S. Appl. No. 13/111,007, filed May 19, 2011.
Related Publications (1)
Number Date Country
20090254093 A1 Oct 2009 US
Provisional Applications (3)
Number Date Country
60892349 Mar 2007 US
60812694 Jun 2006 US
60953637 Aug 2007 US
Continuation in Parts (3)
Number Date Country
Parent 12039849 Feb 2008 US
Child 12486992 US
Parent 11756057 May 2007 US
Child 12039849 US
Parent 12025414 Feb 2008 US
Child 11756057 US