Patient-specific elbow guides and associated methods

Abstract
A patient-specific alignment guide includes a three-dimensional engagement surface customized in a pre-operating planning stage by computer imaging to closely mate and conform to a corresponding bone portion of a patient's elbow joint. The patient-specific alignment guide defines a first longitudinal guiding bore aligned with a reference axis associated with the elbow joint of patient when the alignment guide is mounted onto the corresponding bone portion.
Description
INTRODUCTION

Various patient specific templates and other guides are used for knee arthroplasty. The present teachings provide various patient-specific alignment guides, cutting guides and other instruments for the elbow joint.


SUMMARY

The present teachings provide a patient-specific alignment guide that includes a three-dimensional engagement surface customized in a pre-operating planning stage by computer imaging to closely mate and conform to a corresponding bone portion of a patient's elbow joint.


In one embodiment, the patient-specific-alignment guide defines a first longitudinal guiding bore aligned with a reference axis associated with the elbow joint of patient when the alignment guide is mounted onto the corresponding bone portion.


In another embodiment, the patient-specific-alignment guide defines a guiding bore for guiding a pin along a reference axis and a guiding surface for guiding a blade for a bone-cut along a patient-specific resection plane, wherein the guiding bore and guiding surface are customized for the patient during a preoperative planning stage.


The present teachings provide a method of preparing an elbow joint for an implant. In one embodiment, the method includes mounting a patient-specific alignment guide including a three-dimensional engagement surface custom-made by computer imaging to a corresponding closely conforming bone portion of a patient's elbow joint, and inserting into the bone portion a first pin along an anatomic axis of the elbow joint through a first longitudinal guiding bore of the patient-specific alignment guide. The method also includes inserting into the bone portion a second pin through a second longitudinal guiding bore of the patient-specific alignment guide, and removing the patient-specific alignment guide without removing the first and second pins. The method further includes slidably mounting a first resection guide over the first and second pins, and resecting the bone portion for receiving an implant.


In another embodiment, the method includes mounting a patient-specific alignment guide including a three-dimensional engagement surface custom-made by computer imaging to a corresponding closely conforming bone portion of a patient's elbow joint. The method also includes inserting into the bone portion a first pin along an anatomic axis of the elbow joint through a first longitudinal guiding bore of the patient-specific alignment guide, and resecting the bone portion along a first plane through a first longitudinal slot of the patient-specific alignment guide for receiving an implant.


The present teachings provide a medical device for an elbow joint including a cutting component and a guiding component. The cutting component includes a planar engagement surface for engaging or contacting a planar resected surface of a bone, a first elongated slot along a first plane perpendicular to the engagement surface for guiding a first planar resection and a second elongated slot along a second plane at an oblique angle relative the first plane for guiding a second planar resection at an oblique angle relative to the first planar resection. The cutting component also includes an aperture. The guiding component includes first and second longitudinal bores aligned along first and second reference axes for receiving first and second alignment pins engageable with the bone. The guiding component includes an extension slidably received through the aperture of the cutting component for orienting the first and second planes of the cutting component in pre-planned orientations relative to the first and second reference axes.


Further areas of applicability of the present teachings will become apparent from the description provided hereinafter. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present teachings will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1A is an anterior view illustrating the bones of a right elbow;



FIG. 1B is a posterior view illustrating the bones of a right elbow;



FIG. 2A is a perspective view of the Discovery® Elbow System for total elbow joint replacement commercially available from Biomet Orthopedics, Inc., Warsaw, Ind., USA;



FIG. 2B is a perspective view of a Lateral Resurfacing Elbow (LRE™) system commercially available from Biomet UK, Ltd, Bridgend, South Wales, UK;



FIG. 3 is an environmental perspective view of a patient-specific alignment guide illustrated for the distal humerus according to the present teachings;



FIG. 4A is an environmental perspective view of a patient-specific guide illustrated for the distal humerus according to the present teachings;



FIG. 4B is a sectional of the patient-specific guide of FIG. 4A taken along line 4B-4B;



FIG. 4C is an environmental sectional view of an implant fitted to a resected elbow joint;



FIG. 5 is an environmental perspective view of a patient-specific alignment guide illustrated for the distal humerus according to the present teachings;



FIG. 6 an environmental sectional view of placement of first and second pins in locations determined by a patient-specific guide according to the present teachings;



FIGS. 7A and 7B are environmental perspective views illustrating a cutting guide supported on first and second lateral pins for performing a distal cut according to the present teachings;



FIG. 7C is a detail of a modular posterior cutting guide for performing a distal cut according to the present teachings;



FIG. 7D is a detail of a modular posterior cutting guide for performing a distal cut according to the present teachings;



FIGS. 8A and 8B are environmental perspective views illustrating a cutting guide supported on first and second lateral pins for performing an anterior cut and an angled posterior cut according to the present teachings;



FIG. 8C is an environmental sectional view illustrating a cutting guide supported on a distal resected surface and mounted on first and second lateral pins for performing an anterior cut and an angled posterior cut and the corresponding anterior and angled posterior cuts according to the present teachings;



FIG. 9 is an environmental sectional view illustrating a cutting guide supported on distal resected surface and mounted on first and second lateral pins for performing an anterior cut and an angled posterior cut after according to the present teachings;



FIG. 10 is an environmental perspective view of a patient-specific alignment guide with first and second posterior pins illustrated for the distal humerus according to the present teachings;



FIG. 11 is an environmental perspective view of a cutting guide supported on first and second posterior pins for performing a distal cut according to the present teachings;



FIG. 12 is an environmental perspective view of a cutting guide supported on first and second posterior pins for performing an anterior cut and an angled posterior cut according to the present teachings;



FIG. 13 is an environmental sectional view of a patient-specific guide illustrated for the ulna of an elbow joint according to the present teachings;



FIG. 14A is an environmental sectional view of a patient-specific alignment guide illustrated for the olecranon fossa of the distal humerus of an elbow joint according to the present teachings;



FIG. 14B is an environmental perspective view of a patient-specific cutting guide illustrated for the olecranon fossa of the distal humerus according to the present teachings; and



FIG. 15 is an environmental sectional view of a patient-specific guide illustrated for the capitellum of the distal humerus according to the present teachings.





DESCRIPTION OF VARIOUS ASPECTS

The present teachings generally provide patient-specific surgical instruments that include, for example, alignment guides, drill guides, templates, cutting/resection guides for use in elbow joint replacement, elbow resurfacing procedures and other procedures related to the elbow joint or the various bones of the elbow joint. The patient-specific instruments can be used either with conventional implant components or with patient-specific implant components prepared with computer-assisted image methods. Computer modeling for obtaining three dimensional images of the patient's anatomy using MRI or CT scans of the patient's anatomy, the patient specific prosthesis components, and the patient-specific guides, templates and other instruments can be provided by various CAD programs and/or software available, for example, by Materialise USA, Ann Arbor, Mich.


The patient-specific instruments and associated patient-specific implants disclosed herein can be generally formed using computer modeling based on the patient's 3-D anatomic image generated from image scans. The patient-specific instruments can have a three-dimensional engagement surface that is made to conformingly contact and match a three-dimensional image of the patient's bone surface (imaged selectively with associated soft tissues or without soft tissue, i.e. an actual bone surface), by the computer methods discussed above. The patient-specific instruments can include custom-made guiding formations, such as, for example, guiding bores or cannulated guiding posts or cannulated guiding extensions or receptacles that can be used for supporting or guiding other instruments, such as drill guides, reamers, cutters, cutting guides and cutting blocks or for inserting pins or other fasteners according to a surgeon-approved pre-operative plan.


In various embodiments, the patient-specific instruments can also include one or more patient-specific cutting guides for receiving and guiding a cutting blade at corresponding patient-specific resection orientations relative to a selected anatomic axis for the specific patient. The patient-specific instruments can also include guiding formations for guiding the implantation of patient-specific or off-the-shelf implants associated with the surgical procedure, such as humeral and ulnar implant components. The geometry, shape and orientation of the various features of the patient-specific instruments, as well as various patient-specific implants, if used, can be determined during the pre-operative planning stage of the procedure in connection with the computer-assisted modeling of the patient's anatomy. During the pre-operative planning stage, patient-specific instruments, custom, semi-custom or non custom implants and other non custom tools, can be selected and the patient-specific components can be manufactured for a specific-patient with input from a surgeon or other professional associated with the surgical procedure, as described in the commonly assigned and co-pending patent applications listed in the cross reference section and incorporated herein by reference.


In the following discussion, the terms “patient-specific”, “custom-made” or “customized” are defined to apply to components, including tools, implants, portions or combinations thereof, which include certain geometric features, including surfaces, curves, or other lines, and which are made to closely conform as mirror-images or negatives of corresponding geometric features of a patient's anatomy obtained or gathered during a pre-operative planning stage based on 3-D computer images of the corresponding anatomy reconstructed from image scans of the patient by computer imaging methods. Further, patient specific guiding features, such as, guiding apertures, guiding slots, guiding members or other holes or openings that are included in alignment guides, drill guides, cutting guides, rasps or other instruments or in implants are defined as features that are made to have positions, orientations, dimensions, shapes and/or define cutting planes and axes specific to the particular patient's anatomy including various anatomic or mechanical axes based on the computer-assisted pre-operative plan associated with the patient.


Referring to FIGS. 1A and 1B, anterior and posterior views of an elbow joint 70 are illustrated to highlight areas on which the patient-specific guides of the present teachings are adapted to conform to. The elbow joint 70, including subchondral bone with or without cartilage or other soft tissue depending on surgeon requirements/recommendation of a particular patient, is modeled preoperatively as three-dimensional computer image from a series of scans of the elbow joint 70 of a particular patient. As illustrated schematically for simplicity and without showing any soft tissue for further reference below, the elbow joint 70 includes the bone portions of the distal humerus 72, the proximal radius 74 and the proximal ulna 76. In the anterior view of FIG. 1A, the capitellum (capitulum humeri) is illustrated at 78, the trochlea at 80, and the lateral and medial epicondyles at 82, 84 respectively. In the posterior view of FIG. 1B, the olecranon fossa of the distal humerus 72 is illustrated at 86 and the olecranon of the proximal ulna is illustrated at 88.


Referring to FIGS. 2A and 2B, exemplary implants 100a, 100b for the elbow joint are illustrated. FIG. 2A illustrates an exemplary total elbow arthroplasty implant 100a, commercially available from Biomet Orthopedics, Inc., Warsaw, Ind., USA, as Discovery® Elbow System. The elbow arthroplasty implant 100a includes a spherical hinge 102 coupling a humeral component 104 and an ulnar component 106. The humeral component 104 includes a bowed stem 108, a cylindrical base 110 and an anti-rotation flange 112. The ulnar component 106 includes a stem 114 forming an anatomic anterior neck angle and a polyethylene insert 116.



FIG. 2B illustrates an exemplary elbow resurfacing implant 100b commercially available from Biomet UK, Ltd, Bridgend, South Wales, UK, as Lateral Resurfacing Elbow (LRE™) system. This implant 100b is modular and includes a radial head component 120 and a capitellar component 122 with optional implantation of one or both components. Details of the implantation techniques and surgical procedures for the implants are available in the manufacturers' websites.


Referring to FIG. 3, a patient-specific alignment guide 200 is illustrated. The patient-specific alignment guide 200 can be specific to portions of the lateral epicondyle 82 and/or capitellum 78 of the distal humerus 72 of the patient and includes a three-dimensional engagement surface 202, custom-made by computer imaging to conform to a corresponding portion of a patient's corresponding anatomy, such an area of the epicondyle or capitellum or other area of the distal humerus 72. The alignment guide 200 can include a patient-specific guiding feature 204, which can be computer modeled to be aligned with a reference axis, including an axis of rotation A of the elbow joint 70 of the patient. The guiding feature 204 can be a tubular or partially tubular structure with an elongated guiding bore 206 at a patient-specific orientation and location for guiding a drill bit, a pin, or other tool to make a hole through the distal humerus 72 at the reference axis A. A guiding/alignment pin 220, such as a Steinmann pin, can be inserted into the distal humerus 72 through the guiding bore 206 when the alignment guide 200 is mounted on the distal humerus 72. It should be noted that because of the patient-specific nature of the engagement surface 202, the alignment guide 200 can fit in a unique position/orientation over the capitellum 78. In some embodiments, the alignment guide 200 can automatically align the guiding bore 206 along the reference axis A, which can also be an axis of rotation of the patient's elbow joint or any other axis.


Referring to FIGS. 4A and 4B, a patient-specific combined alignment and resection/cutting guide 300 for the distal humerus is illustrated. The combined guide 300 includes a three-dimensional patient-specific engagement surface 302, a tubular guiding feature 304 with an internal guiding bore 306 at a patient-specific orientation and location for a pin and a plurality of elongated guiding slots 308 for guiding a blade to perform the cuts required for inserting an elbow implant. In some embodiments, the guiding bore 306 can reference a selected anatomic axis of the joint or any other axis. Three exemplary guiding slots 308 for distal, anterior and posterior humeral cuts are shown. It should be noted that any number of desired guiding slots 308 may be included in the guide 300. An exemplary humeral implant 350, having inner surfaces 352 corresponding to distal, anterior and posterior humeral cuts, is shown in FIG. 4C.


Referring to FIGS. 5 and 6, a patient-specific alignment guide 400 for the lateral surface 77 of the distal humerus 72 is illustrated. The alignment guide 400 includes a three-dimensional patient-specific engagement surface 402 for the lateral surface 77 of the distal humerus 72, optionally including portions of the lateral epicondyle or the capitellum or other anatomic landmarks of the lateral surface 77. The alignment guide 400 can also include a first guiding feature 404a with a first internal guiding bore 406a at a patient-specific orientation and location for a first alignment pin 220a. As discussed above, in some embodiments the guiding bore 406a can reference an anatomic axis (or first axis) A, such as an epicondylar axis or a rotation axis of the elbow joint of the specific patient, or any other selected axis. The alignment guide 400 can include a second guiding feature 404b with a second internal guiding bore 406b for a second alignment pin 220b referencing a second axis B parallel to the first axis A. The second alignment pin 220b can be provided for additional rotational stability and for supporting various resection instruments, as discussed below. The corresponding first and second alignment pins 220a, 220b extend from the lateral surface 77 toward the medial surface 79 of the distal humerus 72 and can be used for guiding osteotomy instruments or other instruments along patient specific orientations and locations of the axes A and B, as discussed below. The first and second guiding features 404a, 404b can be formed as a single integral (monolithic) structure as shown in FIG. 5, or as two separate elongated structures extending from the alignment guide 400.


After the first and second alignment pins 220a, 220b are fixed on the lateral surface 77 of the distal humerus 72, the alignment guide 400 is slid off the first and second alignment pins 220a, 220b and removed, while the first and second alignment pins 220a, 220b remain attached to the distal humerus, as illustrated in FIG. 6. Alternatively, first and second holes 90a, 90b can be drilled or marked through the first and second guiding bores 406a, 406b for the first and second alignment pins 220a, 220b, the alignment guide 400 removed, and then the first and second alignment pins 220a, 220b inserted through the pre-drilled or pre-marked holes 90a, 90b.


Referring to FIGS. 7A and 7B, a posterior resection or cutting guide 500 can be mounted on and aligned by the first and second alignment pins 220a, 220b for performing a distal cut of the distal humerus from a posterior to an anterior surface of the distal humerus. The posterior cutting guide 500 can include a cutting component 502 oriented to abut against the posterior surface of the distal humerus and a guiding component 530 oriented for lateral placement relative to the distal humerus and slidably mounted over the first and second alignment pins 220a, 220b, as illustrated in FIG. 7A. The lateral-medial orientation is illustrated with an arrow LM and the posterior-anterior orientation is illustrated with arrow PA in FIG. 7A. The cutting and guiding components 502, 530 can be modularly or integrally connected via a connector 520, as discussed below.


The cutting component 502 can be in the form of a cutting block having opposite first and second (front and back/engagement) surfaces 520a, 510b, opposite side surfaces (distal and proximal) 510c, 510d, and opposite end surfaces (lateral and medial) 510e, 510f. The cutting component 502 can include one or more elongated slots 504 extending along the lateral-medial orientation for receiving a saw blade. The elongated slots 504 are automatically aligned along patient-specific positions determined during the preoperative planning stage for the patient when the posterior cutting guide 500 is mounted over the first and second alignment pins 220a, 220b. The cutting component 502 can also include a window elongated in the lateral-medial direction. The cutting component 502 can include a plurality of holes 506 that can be arranged in clusters for locking the cutting guide 500 with pins onto the distal humerus during the cutting operation.


The guiding component 530 can include a body 531 having first and second longitudinal guiding bores 532a, 532b slidably mounted over the first and second alignment pins 220a, 220b to orient the cutting component 502 in a patient-specific orientation and position for performing the distal cut as determined in the preoperative planning stage. Although the body 531 of the guiding component 530 can have any shape, such as a cylindrical or prismatic bar, some shapes allow the posterior cutting guide 500 to be used in both the right and left humerus without increasing the bulk or size of the components. An exemplary shape of the body 531 for right and left humerus is illustrated in FIG. 7A and includes first and second portions 534a, 543b coupled at an angle β defining a body 501 with an arrow-shaped cross-section. The first guiding bore 532a for the anatomic axis A is positioned at the juncture of the first and second portions 534a, 534b (apex of the angle β). The second guiding bore 534b is defined through the second portion 534b and a third guiding bore 532c is defined through the first portion 534a symmetrically to the second guiding bore 532b. The first and second guiding bores 532a, 532b can, thus, be used for the left humerus, while the first and third guiding bore 532a, 532c can be used for the right humerus in connection with the cutting component 502 which is symmetric about a medial-lateral axis, as illustrated in FIG. 2A.


As discussed above, the connector 520 can be integrally attached to the cutting and guiding components 502, 530, as illustrated in FIG. 7A. The connector 520 can be a polygonal bar for providing a clearance between the cutting and guiding components 502, 530. For example, the connector 520 can be L-shaped with a first end portion 520a coupled to cutting component 502 and a second end portion 520b coupled to the guiding component 530. Intermediate portions may be included for certain attachment configurations. The first end portion 520a can be attached to any of the surfaces 510e, 510c, 510d.


The connector 520 can also be removably coupled to the cutting component 502, as illustrated in FIGS. 7C and 7D. In one exemplary embodiment, the first end portion 520a of the connector can be removably coupled to one of the side or end surfaces 510e, 510f, 510c, 510d of the cutting component with T-slot or dovetail or rectangular slot or other quick connect/disconnect connection. FIG. 7C illustrates a T-slot connection at the lateral end surface 510e of the cutting component 502. A split T-shaped extension 522 of the first end portion 520a can be slidably received in a corresponding T-shaped slot 512 defined on lateral end surface 510e of the cutting component 502. A locking or set screw can be threaded through a bore 524 of the first end portion 520a and through the split T-extension 522 to lock the connection. The locking screw 526 can include an enlarged head 528 received in a corresponding recess 527 of the connector 520. Similarly, FIG. 7D illustrates a rectangular slot 511 slidably receiving a corresponding rectangular end 521 of the first portion 520a. A locking screw can be threaded through a bore first end portion 520a and into a corresponding threaded hole 513 at the base of the rectangular slot 511. It will be appreciated that other slidable, snap or quick connect with locking options can be used to removably interconnect and lock the cutting component 502 and the guiding component 530 therebetween. The distal cut is performed with the cutting guide 500 assembled on the distal humerus.


Referring to FIGS. 8A-8C and 9, after a distal cut is made using the posterior cutting guide 500, the posterior cutting guide 500 can be slid off or otherwise removed from the first and second alignment pins 220a, 220b. A distal cutting guide 600 (FIGS. 8A-8C) or 600a, FIG. 9) can be mounted over the first and second alignment pins 220a, 220b on the distal resected surface 92 of the distal humerus 72. The distal cutting guide 600 can be made as an integral (monolithic) unit or can be modular including a cutting component 602 and a guiding component 630, as illustrated in FIGS. 8A-8C. The guiding component 630 can include first and second guiding bores 632a, 632b for slidably receiving the first and second alignment pins 220a, 220b. The guiding component 630 can also include an extension 634 for removably supporting the cutting component 602. The extension 634 can be oriented along a third axis C that is substantially perpendicular to the direction of the first and second parallel axes A and B of the alignment pins 220a, 220b. The distal cutting guide 600a of FIG. 9 includes a set screw 640 for locking the cutting component 602 to the guiding component 630.


The cutting component 602 can be shaped as a cutting block and include a first surface or bone engagement surface 604 and an opposite or second surface 606. The bone engagement surface 604 is substantially planar or flat for positioning the cutting component 602 on the distal resected surface 92 of the distal humerus 72. The cutting component 602 can include a first elongated planar slot 608 oriented perpendicularly to or at any desired angle relative to the bone engagement surface 604 and a second elongated planar slot 610 at an oblique angle relative to the bone engagement surface 604 for guiding, respectively, a posterior angled cut 94 and an anterior cut 96. As illustrated in FIG. 8C, the first elongated planar slot 608 and the corresponding posterior angled cut 94 are oriented at an oblique angle γ relative to the third axis C. The angle γ is an acute angle, as illustrated in FIG. 8C. The second elongated planar slot 610 and the corresponding anterior cut 96 are oriented parallel to the third axis C and perpendicular to the first and second surfaces 604, 606. The cutting component 602 can include an opening 612 slidably receiving the extension 634 for coupling the cutting component 602 to the guiding component 630 and orienting the first and second elongated slots 608, 610 and the corresponding posterior angled cut 94 and anterior cut 96 in pre-planned orientations and positions relative to the first axis A, which is an anatomic axis for the elbow joint, as discussed above. The opening 612 and the cross-section of the extension 634 can be mating and keyed or have mating non-rotatable shapes, e.g., rectangular, oval or polygonal. In other embodiments, the opening 612 can have a circular or other rotatable shape. The cutting component 602 can also include a plurality of holes 614 for securing the cutting component 602 to the bone during resection.


In the procedures described above in connection with FIGS. 5-9, the first and second alignment pins 220a, 220b were placed through the lateral surface of the distal humerus 72 extending from the lateral toward the medial direction. It is also possible to place the first and second alignment pins 220a, 220b posteriorly, i.e., from the posterior toward the anterior surface of the distal humerus 72, as illustrated in FIGS. 10-12. It will be appreciated that the selected axes A′ and B′ are different anatomic or reference axes than the first and second axes A and B and are oriented in the posterior-anterior direction. The axes A′ and B′ can be perpendicular to or at any other oblique angle relative to the rotation axis of the elbow joint. As described above, a patient-specific alignment guide 700 can assist in the placement of the first and second alignment pins 220a, 220b. The patient-specific alignment guide 700 includes a three-dimensional patient-specific engagement surface 702 for the posterior surface of the distal humerus 72, and a first and second guiding bores 704a, 704b designed during a preoperative planning stage and based on the patient's anatomy for orienting the first and second alignment pins 220a, 220b along predetermined directions of axes A′ and B′. The patient-specific alignment guide 700 can also include a removable or permanently attached handle 710. Similar handles can be used with the other patient-specific alignment guides described herein.


Referring to FIG. 11, after the patient-specific alignment guide 700 is removed, a posterior resection/cutting guide 750 can be removably mounted over the first and second alignment pins 220a, 220b through corresponding apertures 752a, 752b. The posterior cutting guide 700 can include an elongating slot 754 for guiding the distal cut of the distal humerus 72. In another embodiment, the posterior cutting guide 750 can be combined with the patient-specific alignment guide 700, either integrally or by a modular connection (dovetail, T-slot, etc.). In this regard, the combined cutting/alignment guide 700/750 can then engage the posterior surface of the distal humerus 72 with an engagement surface 758 which is patient-specific.


Referring to FIG. 12, after the distal cut is made, the posterior cutting guide 750 is removed and a distal cutting guide 800 is mounted on the resected distal surface of the distal humerus. Similarly to the distal cutting guide 600 discussed above in connection with FIGS. 8A-8C, the distal cutting guide 800 can include a cutting component 802 and a guiding component 830 with first and second bores 832a, 832b for slidably receiving the first and second alignment pins 220a, 220b. The cutting component 802 can include a first elongated planar slot 808 oriented obliquely relative to the reference axes A′, B;′ and a second elongated planar slot 810 oriented perpendicularly relative to the reference axes A′, B;′ for guiding, respectively, a posterior angled cut 94 and an anterior cut 96 (see FIG. 8C for exemplary cuts 94, 96). The cutting component 802 can include an opening 812 slidably receiving an extension 834 of the guiding component 830 and orienting the first and second elongated slots 808, 810 and the corresponding posterior angled cut 94 and anterior cut 96 in pre-planned orientations and positions relative to the reference axes A′, B′. The opening 812 can be elongated to allow adjustment in the direction of the reference axes A′ and B′ and can be secured, after adjustment, with a blocking stop inserted in the opening 812 or with pins through the holes 814. It will be appreciated that a complete posterior angled cut 94 can be obstructed by the guiding component 830 in this configuration. Accordingly, after the posterior angled cut is initiated or partially resected, the entire cutting guide 800 and the first and second alignment pins 220a, 220b can be removed and the posterior angled cut 94 finished with a saw blade. Alternatively, the guiding component 830 the first and second alignment pins 220a, 220b can be removed while the cutting component 802 remains secured on the bone with pins through the holes 814 in its original mounted position defined by the first and second alignment pins 220a, 220b.


Referring to FIG. 13, a patient-specific alignment guide 850 is illustrated. The patient-specific alignment guide 850 is specific to the olecranon 88 of proximal ulna 76 of the patient and includes a three-dimensional engagement surface 852, custom-made by computer imaging to conform and nest to a corresponding portion of a patient's olecranon 88. The alignment guide 850 can include a guiding feature 854, computer modeled to be aligned with an anatomic axis A″ of the elbow joint 70 of the patient. The guiding feature 854 can be a tubular or partially tubular structure with an elongated guiding bore 856 for guiding an alignment pin 220 into the proximal ulna 76 when the alignment guide 850 is mounted on the olecranon 88. Because of the patient-specific nature of the engagement surface 852, the alignment guide 850 can fit in a unique position/orientation over the olecranon 88 and automatically align the guiding bore 856 along the anatomic axis A″. The alignment pin 220 can be used to reference the anatomic axis A″ for additional bone preparation after the alignment guide 850 is removed.


Referring to FIG. 14A, a patient-specific posterior guide 900 for the olecranon fossa 86 of the distal humerus 72 is illustrated. The patient-specific guide 900 includes a three-dimensional engagement surface 902, custom-made by computer imaging to conform to a corresponding portion of a patient's olecranon fossa 86 (see FIG. 1B). The posterior guide 900 is designed to reference an axis of rotation D and an intramedullary axis D′. The posterior guide can include a plurality of elongated saw blade slots 904 for resecting the trochlea (see FIG. 1A) in preparation for a humeral implant. The guide 900 can be secured to the bone with one or more pins.


Referring to FIG. 14B, a modular posterior guide 930 for the olecranon fossa 86 of the distal humerus 72 is illustrated. The modular posterior guide 900 is designed to reference an axis of rotation D and an intramedullary axis D′. The modular posterior guide 930 includes a patient specific cutting guide 910 removable coupled to a guiding component 920. The patient specific cutting guide 910 includes a three-dimensional engagement surface 912, custom-made by computer imaging to conform to a corresponding portion of a patient's olecranon fossa 86 (see FIG. 1B). The cutting guide 910 can include a plurality of elongated saw blade slots 914 for resecting the trochlea (see FIG. 1A) in preparation for a humeral implant. The cutting guide 910 is coupled to the guiding component 920 which is supported on the distal humerus with a rod or pin 922 along the intramedullary axis D′. Because of the patient-specific nature of the engagement surface 912, the cutting guide 910 can fit in a unique position/orientation over the olecranon fossa 86 and automatically align the rod 922 along the anatomic axis D′.


Referring to FIG. 15, a patient-specific alignment guide 950 is illustrated. The patient-specific alignment guide 950 is specific to the capitellum 78 of the distal humerus 72 of the patient and includes a three-dimensional engagement surface 952, custom-made by computer imaging to conform to a patient's capitellum 78 (or portion thereof). The alignment guide 950 can include a guiding feature 954 including an elongated guiding bore 956 for an alignment pin 220 (similar to the pin shown in FIG. 12), computer modeled to be aligned with an anatomic axis E of the elbow joint, such as an axis center on and perpendicular to the surface of the capitellum. The alignment pin 220 can be used to reference the anatomic axis E for additional bone preparation after the alignment guide 950 is removed.


The various patient-specific alignment guides can be made of any biocompatible material, including, polymer, ceramic, metal or combinations thereof. The patient-specific alignment guides can be disposable and can be combined or used with reusable non patient-specific cutting and guiding components.


The foregoing discussion discloses and describes merely exemplary arrangements of the present teachings. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein, so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation or material to the present teachings without departing from the essential scope thereof. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the present teachings as defined in the following claims.

Claims
  • 1. A medical device for an elbow joint comprising: a patient-specific alignment guide including a three-dimensional engagement surface customized in a pre-operating planning stage by computer imaging to closely mate and conform to a corresponding surface portion of a distal humerus of a patient's elbow joint, the alignment guide defining a first longitudinal guiding bore and a second longitudinal guiding bore parallel to the first longitudinal bore, the first longitudinal bore configured to be aligned with a medial-lateral anatomic axis of the elbow joint of the patient when the alignment guide is mounted onto the corresponding surface portion.
  • 2. The medical device of claim 1, wherein the anatomic axis is an axis of rotation of the elbow joint.
  • 3. The medical device of claim 1, wherein the anatomic axis is an epicondylar axis of the elbow joint.
  • 4. The medical device of claim 1, wherein the engagement surface is customized and configured for a corresponding lateral surface of the distal humerus.
  • 5. The medical device of claim 1, wherein the three-dimensional engagement surface is shaped to conform to a lateral capitellum surface of the distal humerus of the elbow joint.
  • 6. The medical device of claim 1, further comprising: first and second alignment pins passing through the corresponding first and second guiding bores of the patient-specific alignment guide and configured for fixation to a lateral surface of the distal humerus; anda posterior cutting guide including a posterior cutting component and a posterior guiding component, the posterior cutting component configured to abut a posterior surface of the humerus, the posterior cutting component having first and second elongated cutting slots configured to be aligned along a medial-lateral direction of the distal humerus, the posterior guiding component slidably coupled to the posterior cutting component, the posterior guiding component slidably mountable over the first and second alignment pins after the the patient-specific alignment guide is removed from the humerus without removing the first and second alignment pins.
  • 7. The medical device of claim 6, wherein the posterior guiding component includes first and second planar sections defining an acute angle therebetween.
  • 8. The medical device of claim 6, further comprising: a distal cutting guide including a distal cutting component and a distal guiding component, the distal cutting component having a planar first surface for engaging a resected surface of the distal humerus and an opposite second surface, a first elongated slot along a first plane perpendicular to the second surface for guiding a first planar resection and a second elongated slot along a second plane at an oblique angle relative the first plane for guiding a second planar resection at an oblique angle relative to the first planar resection, the first and second elongated slots intersecting the second surface parallel to a medial-lateral longitudinal axis of the distal cutting component, the distal cutting component including an aperture extending between the first and second surfaces, the distal guiding component including first and second longitudinal bores receiving the first and second alignment pins after the posterior cutting guide is removed, the distal guiding component including an extension slidably received through the aperture of the distal cutting component such that the first and second longitudinal bores of the distal guiding component are parallel to the medial-lateral longitudinal axis of the distal cutting component and configured for orienting the first and second planes of the distal cutting component in pre-planned orientations relative to the resected surface.
  • 9. A medical device for an elbow joint comprising: a patient-specific alignment guide including a three-dimensional engagement surface customized in a pre-operating planning stage by computer imaging to closely mate and conform to a corresponding surface portion of a distal humerus of a patient's elbow joint, the alignment guide defining a first longitudinal guiding bore and a second longitudinal guiding bore parallel to the first longitudinal bore, the first longitudinal bore configured to be aligned along a medial-lateral anatomic axis of the elbow joint of the patient when the alignment guide is mounted onto the corresponding surface portion;first and second alignment pins received through the first and second longitudinal bores and configured to be affixed to the distal humerus in a medial-lateral direction; anda posterior cutting guide including a posterior cutting component and a posterior guiding component, the posterior cutting component configured to abut a posterior surface of the humerus and having an elongated cutting slot aligned in the medial-lateral direction for cutting the distal humerus to form a distal resected surface, the posterior guiding component slidably coupled to the posterior cutting component, the posterior guiding component slidably mountable over the first and second alignment pins after the patient-specific alignment guide is removed from the humerus without removing the first and second alignment pins.
  • 10. The medical device of claim 9, further comprising a distal cutting guide including a distal cutting component and a distal guiding component, the distal cutting component having a planar first surface for engaging the distal resected surface of the distal humerus and an opposite second surface, a first elongated slot along a first plane perpendicular to the second surface for guiding a first planar resection and a second elongated slot along a second plane at an oblique angle relative the first plane for guiding a second planar resection at an oblique angle relative to the first planar resection, the first and second elongated slots intersecting the second surface parallel to a medial-lateral longitudinal axis of the distal cutting component, the distal cutting component including an aperture extending between the first and second surfaces, the distal guiding component including first and second longitudinal bores receiving the first and second alignment pins after the posterior cutting guide is removed, the distal guiding component including an extension slidably received through the aperture of the distal cutting component such that the first and second longitudinal bores of the distal guiding component are parallel to the medial-lateral longitudinal axis of the distal cutting component and configured for orienting the first and second planes of the distal cutting component in pre-planned orientations relative to the distal resected surface.
  • 11. The medical device of claim 10, wherein the extension is perpendicular to the first surface.
  • 12. The medical device of claim 11, wherein the extension is non-rotatably keyed to the aperture of the distal cutting component.
  • 13. The medical device of claim 12, wherein the extension is an elongated bar with an elongated cross-section.
  • 14. The medical device of claim 9, further comprising an L-shaped connector coupling the posterior cutting component to the posterior guiding component.
  • 15. The medical device of claim 14, wherein the L-shaped connector is removably coupled to posterior cutting component using a T-slot connection.
  • 16. The medical device of claim 14, wherein the L-shaped connector is removably coupled to posterior cutting component using a rectangular slot and locking screw connection.
  • 17. The medical device of claim 9, wherein the posterior guiding component includes first and second planar sections defining an acute angle therebetween.
  • 18. The medical device of claim 17, wherein the posterior guiding component includes first, second and third guiding bores.
  • 19. The medical device of claim 18, wherein the first and third guiding bores are mounted of the first and second alignment pins for a right humerus.
  • 20. The medical device of claim 18, wherein the first and second guiding bores are mounted of the first and second alignment pins for a left humerus.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 12/888,005 filed on Sep. 22, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/714,023 filed Feb. 26, 2010, now U.S. Pat. No. 8,241,293 issued Aug. 14, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/571,969 filed on Oct. 1, 2009, which is a continuation-in-part of U.S. application Ser. No. 12/389,901 filed on Feb. 20, 2009, now U.S. Pat. No. 8,133,234 issued Mar. 13, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/211,407 filed on Sep. 16, 2008, which is a continuation-in-part of U.S. application Ser. No. 12/039,849 filed on Feb. 29, 2008, now U.S. Pat. No. 8,282,646 issued Oct. 9, 2012, which: (1) claims the benefit of U.S. Provisional Application No. 60/953,620 filed on Aug. 2, 2007, U.S. Provisional Application No. 60/947,813 filed on Jul. 3, 2007, U.S. Provisional Application No. 60/911,297 filed on Apr. 12, 2007, and U.S. Provisional Application No. 60/892,349 filed on Mar. 1, 2007; (2) is a continuation-in-part U.S. application Ser. No. 11/756,057 filed on May 31, 2007, now U.S. Pat. No. 8,092,465 issued Jan. 10, 2012, which claims the benefit of U.S. Provisional Application No. 60/812,694 filed on Jun. 9, 2006; (3) is a continuation-in-part of U.S. application Ser. No. 11/971,390 filed on Jan. 9, 2008, now U.S. Pat. No. 8,070,752 issued Dec. 6, 2011, which is a continuation-in-part of U.S. application Ser. No. 11/363,548 filed on Feb. 27, 2006, now U.S. Pat. No. 7,780,672 issued Aug. 24, 2010; and (4) is a continuation-in-part of U.S. application Ser. No. 12/025,414 filed on Feb. 4, 2008, now U.S. Pat. No. 8,298,237 issued Oct. 30, 2012, which claims the benefit of U.S. Provisional Application No. 60/953,637 filed on Aug. 2, 2007. This application is also a continuation-in-part of U.S. application Ser. No. 12/483,807 filed on Jun. 12, 2009, which is a continuation-in-part of U.S. application Ser. No. 12/371,096 filed on Feb. 13, 2009, which is a continuation-in-part of U.S. application Ser. No. 12/103,824 filed on Apr. 16, 2008, which claims the benefit of U.S. Provisional Application No. 60/912,178 filed on Apr. 17, 2007. This application is also a continuation-in-part of U.S. application Ser. No. 12/872,663 filed on Aug. 31, 2010, which claims the benefit of U.S. Provisional Application No. 61/310,752 filed on Mar. 5, 2010. The disclosures of the above applications are incorporated herein by reference.

US Referenced Citations (976)
Number Name Date Kind
1480285 Moore Jan 1924 A
2181746 Siebrandt Nov 1939 A
2407845 Nemeyer Sep 1946 A
2416228 Sheppard Feb 1947 A
2618913 Plancon et al. Nov 1952 A
2910978 Urist Nov 1959 A
3840904 Tronzo Oct 1974 A
4246895 Rehder Jan 1981 A
4306866 Weissman Dec 1981 A
4324006 Charnley Apr 1982 A
4421112 Mains et al. Dec 1983 A
4436684 White Mar 1984 A
4457306 Borzone Jul 1984 A
4475549 Oh Oct 1984 A
4506393 Murphy Mar 1985 A
4524766 Petersen Jun 1985 A
4528980 Kenna Jul 1985 A
4565191 Slocum Jan 1986 A
4619658 Pappas et al. Oct 1986 A
4621630 Kenna Nov 1986 A
4632111 Roche Dec 1986 A
4633862 Petersen Jan 1987 A
4663720 Duret et al. May 1987 A
4689984 Kellner Sep 1987 A
4695283 Aldinger Sep 1987 A
4696292 Heiple Sep 1987 A
4703751 Pohl Nov 1987 A
4704686 Aldinger Nov 1987 A
4706660 Petersen Nov 1987 A
4719907 Banko et al. Jan 1988 A
4721104 Kaufman et al. Jan 1988 A
4722330 Russell et al. Feb 1988 A
4759350 Dunn et al. Jul 1988 A
4778474 Homsy Oct 1988 A
4800874 David et al. Jan 1989 A
4821213 Cline et al. Apr 1989 A
4822365 Walker et al. Apr 1989 A
4841975 Woolson Jun 1989 A
4846161 Roger Jul 1989 A
4871975 Nawata et al. Oct 1989 A
4892545 Day et al. Jan 1990 A
4893619 Dale et al. Jan 1990 A
4896663 Vandewalls Jan 1990 A
4907577 Wu Mar 1990 A
4927422 Engelhardt May 1990 A
4936862 Walker et al. Jun 1990 A
4952213 Bowman et al. Aug 1990 A
4959066 Dunn et al. Sep 1990 A
4976737 Leake Dec 1990 A
4979949 Matsen, III et al. Dec 1990 A
4985037 Petersen Jan 1991 A
5002579 Copf et al. Mar 1991 A
5007936 Woolson Apr 1991 A
5030221 Buechel et al. Jul 1991 A
5041117 Engelhardt Aug 1991 A
5053037 Lackey Oct 1991 A
5053039 Hofmann et al. Oct 1991 A
5056351 Stiver et al. Oct 1991 A
5086401 Glassman et al. Feb 1992 A
5098383 Hemmy et al. Mar 1992 A
5098436 Ferrante et al. Mar 1992 A
5108425 Hwang Apr 1992 A
5122144 Bert et al. Jun 1992 A
5123927 Duncan et al. Jun 1992 A
5129908 Petersen Jul 1992 A
5129909 Sutherland Jul 1992 A
5133760 Petersen et al. Jul 1992 A
5140777 Ushiyama et al. Aug 1992 A
5150304 Berchem et al. Sep 1992 A
5176684 Ferrante et al. Jan 1993 A
5194066 Van Zile Mar 1993 A
5234433 Bert et al. Aug 1993 A
5246444 Schreiber Sep 1993 A
5253506 Davis et al. Oct 1993 A
5258032 Bertin Nov 1993 A
5261915 Durlacher et al. Nov 1993 A
5274565 Reuben Dec 1993 A
5299288 Glassman et al. Mar 1994 A
5300077 Howell Apr 1994 A
5320529 Pompa Jun 1994 A
5320625 Bertin Jun 1994 A
5323697 Schrock Jun 1994 A
5342366 Whiteside et al. Aug 1994 A
5344423 Dietz et al. Sep 1994 A
5360446 Kennedy Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5368858 Hunziker Nov 1994 A
5370692 Fink et al. Dec 1994 A
5370699 Hood et al. Dec 1994 A
5405395 Coates Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5411521 Putnam et al. May 1995 A
5415662 Ferrante et al. May 1995 A
5417694 Marik et al. May 1995 A
5438263 Dworkin et al. Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5448489 Reuben Sep 1995 A
5449360 Schreiber Sep 1995 A
5452407 Crook Sep 1995 A
5454816 Ashby Oct 1995 A
5462550 Dietz et al. Oct 1995 A
5472415 King et al. Dec 1995 A
5474559 Bertin et al. Dec 1995 A
5490854 Fisher et al. Feb 1996 A
5496324 Barnes Mar 1996 A
5507833 Bohn Apr 1996 A
5514519 Neckers May 1996 A
5520695 Luckman May 1996 A
5527317 Ashby et al. Jun 1996 A
5539649 Walsh et al. Jul 1996 A
5540695 Levy Jul 1996 A
5545222 Bonutti Aug 1996 A
5549688 Ries et al. Aug 1996 A
5554190 Draenert Sep 1996 A
5560096 Stephens Oct 1996 A
5571110 Matsen, III et al. Nov 1996 A
5578037 Sanders et al. Nov 1996 A
5593411 Stalcup et al. Jan 1997 A
5595703 Swaelens et al. Jan 1997 A
5601565 Huebner Feb 1997 A
5607431 Dudasik et al. Mar 1997 A
5611802 Samuelson et al. Mar 1997 A
5613969 Jenkins, Jr. Mar 1997 A
5620448 Puddu Apr 1997 A
5634927 Houston et al. Jun 1997 A
5641323 Caldarise Jun 1997 A
5653714 Dietz et al. Aug 1997 A
5658294 Sederholm Aug 1997 A
5662656 White Sep 1997 A
5662710 Bonutti Sep 1997 A
5671018 Ohara et al. Sep 1997 A
5676668 McCue et al. Oct 1997 A
5677107 Neckers Oct 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683469 Johnson et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5697933 Gundlapalli et al. Dec 1997 A
5702460 Carls et al. Dec 1997 A
5702464 Lackey et al. Dec 1997 A
5704941 Jacober et al. Jan 1998 A
5709689 Ferrante et al. Jan 1998 A
5720752 Elliott et al. Feb 1998 A
5722978 Jenkins, Jr. Mar 1998 A
5725376 Poirier Mar 1998 A
5725593 Caracciolo Mar 1998 A
5735277 Schuster Apr 1998 A
5748767 Raab May 1998 A
5749875 Puddu May 1998 A
5749876 Duvillier et al. May 1998 A
5762125 Mastrorio Jun 1998 A
5766251 Koshino et al. Jun 1998 A
5768134 Swaelens et al. Jun 1998 A
5769092 Williamson, Jr. Jun 1998 A
5776200 Johnson et al. Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5792143 Samuelson et al. Aug 1998 A
5798924 Eufinger et al. Aug 1998 A
5799055 Peshkin et al. Aug 1998 A
5835619 Morimoto et al. Nov 1998 A
5860980 Axelson, Jr. et al. Jan 1999 A
5860981 Bertin et al. Jan 1999 A
5871018 Delp et al. Feb 1999 A
5876456 Sederholm et al. Mar 1999 A
5879398 Swarts et al. Mar 1999 A
5879402 Lawes et al. Mar 1999 A
5880976 DiGioia, III et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5888219 Bonutti Mar 1999 A
5895389 Schenk et al. Apr 1999 A
5899907 Johnson May 1999 A
5901060 Schall et al. May 1999 A
5911724 Wehrli Jun 1999 A
5921988 Legrand Jul 1999 A
5925049 Gustilo et al. Jul 1999 A
5942370 Neckers Aug 1999 A
5967777 Klein et al. Oct 1999 A
5976149 Masini Nov 1999 A
5980526 Johnson et al. Nov 1999 A
6008433 Stone Dec 1999 A
6033415 Mittelstadt et al. Mar 2000 A
6056754 Haines et al. May 2000 A
6059789 Dinger et al. May 2000 A
6059833 Doets May 2000 A
6066175 Henderson et al. May 2000 A
6086593 Bonutti Jul 2000 A
6120510 Albrektsson et al. Sep 2000 A
6120544 Grundei et al. Sep 2000 A
6126690 Ateshian et al. Oct 2000 A
6126692 Robie et al. Oct 2000 A
6136033 Suemer Oct 2000 A
6156069 Amstutz Dec 2000 A
6159217 Robie et al. Dec 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6162257 Gustilo et al. Dec 2000 A
6187010 Masini Feb 2001 B1
6195615 Lysen Feb 2001 B1
6203546 MacMahon Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6210445 Zawadzki Apr 2001 B1
6238435 Meulink et al. May 2001 B1
6254604 Howell Jul 2001 B1
6258097 Cook et al. Jul 2001 B1
6264698 Lawes et al. Jul 2001 B1
6270529 Terrill-Grisoni et al. Aug 2001 B1
6273891 Masini Aug 2001 B1
6290727 Otto et al. Sep 2001 B1
6293971 Nelson et al. Sep 2001 B1
6310269 Friese et al. Oct 2001 B1
6312258 Ashman Nov 2001 B1
6312473 Oshida Nov 2001 B1
6319285 Chamier et al. Nov 2001 B1
6325829 Schmotzer Dec 2001 B1
6338738 Bellotti et al. Jan 2002 B1
6343987 Hayama et al. Feb 2002 B2
6354011 Albrecht Mar 2002 B1
6361563 Terrill-Grisoni et al. Mar 2002 B2
6379299 Borodulin et al. Apr 2002 B1
6379388 Ensign et al. Apr 2002 B1
6383228 Schmotzer May 2002 B1
6391251 Keicher et al. May 2002 B1
6395005 Lovell May 2002 B1
6424332 Powell Jul 2002 B1
6427698 Yoon Aug 2002 B1
6459948 Ateshian et al. Oct 2002 B1
6463351 Clynch Oct 2002 B1
6475243 Sheldon et al. Nov 2002 B1
6482236 Habecker Nov 2002 B2
6488715 Pope et al. Dec 2002 B1
6503255 Albrektsson et al. Jan 2003 B1
6510334 Schuster et al. Jan 2003 B1
6514259 Picard et al. Feb 2003 B2
6517583 Pope et al. Feb 2003 B1
6519998 Ertl et al. Feb 2003 B2
6520964 Tallarida et al. Feb 2003 B2
6533737 Brosseau et al. Mar 2003 B1
6547823 Scarborough et al. Apr 2003 B2
6551325 Neubauer et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556008 Thesen Apr 2003 B2
6558391 Axelson, Jr. et al. May 2003 B2
6558428 Park May 2003 B2
6562073 Foley May 2003 B2
6564085 Meaney et al. May 2003 B2
6567681 Lindequist May 2003 B1
6575980 Robie et al. Jun 2003 B1
6575982 Bonutti Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6605293 Giordano et al. Aug 2003 B1
6610067 Tallarida et al. Aug 2003 B2
6622567 Hamel et al. Sep 2003 B1
6629999 Serafin, Jr. Oct 2003 B1
6641617 Merrill et al. Nov 2003 B1
6682566 Draenert Jan 2004 B2
6696073 Boyce et al. Feb 2004 B2
6697664 Kienzle, III et al. Feb 2004 B2
6701174 Krause et al. Mar 2004 B1
6709462 Hanssen Mar 2004 B2
6711431 Sarin et al. Mar 2004 B2
6711432 Krause et al. Mar 2004 B1
6712856 Carignan et al. Mar 2004 B1
6716249 Hyde Apr 2004 B2
6725077 Balloni et al. Apr 2004 B1
6738657 Franklin et al. May 2004 B1
6740092 Lombardo et al. May 2004 B2
6749638 Saladino Jun 2004 B1
6750653 Zou et al. Jun 2004 B1
6772026 Bradbury et al. Aug 2004 B2
6780190 Maroney Aug 2004 B2
6786930 Biscup Sep 2004 B2
6799066 Steines et al. Sep 2004 B2
6823871 Schmieding Nov 2004 B2
6827723 Carson Dec 2004 B2
6887247 Couture et al. May 2005 B1
6905514 Carignan et al. Jun 2005 B2
6916324 Sanford et al. Jul 2005 B2
6923817 Carson et al. Aug 2005 B2
6923831 Fell et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6942475 Ensign et al. Sep 2005 B2
6944518 Roose Sep 2005 B2
6945976 Ball et al. Sep 2005 B2
6953480 Mears et al. Oct 2005 B2
6960216 Kolb et al. Nov 2005 B2
6975755 Baumberg Dec 2005 B1
6990220 Ellis et al. Jan 2006 B2
7001385 Bonutti Feb 2006 B2
7029479 Tallarida et al. Apr 2006 B2
7042222 Zheng et al. May 2006 B2
7048741 Swanson May 2006 B2
7050877 Iseki et al. May 2006 B2
7060074 Rosa et al. Jun 2006 B2
7074241 McKinnon Jul 2006 B2
RE39301 Bertin Sep 2006 E
7104997 Lionberger et al. Sep 2006 B2
7105026 Johnson et al. Sep 2006 B2
7115131 Engh et al. Oct 2006 B2
7121832 Hsieh et al. Oct 2006 B2
7141053 Rosa et al. Nov 2006 B2
D533664 Buttler et al. Dec 2006 S
7169185 Sidebotham Jan 2007 B2
7174282 Hollister et al. Feb 2007 B2
7176466 Rousso et al. Feb 2007 B2
7184814 Lang et al. Feb 2007 B2
7198628 Ondrla et al. Apr 2007 B2
7218232 DiSilvestro et al. May 2007 B2
7239908 Alexander et al. Jul 2007 B1
7241315 Evans Jul 2007 B2
7255702 Serra et al. Aug 2007 B2
7258701 Aram et al. Aug 2007 B2
7275218 Petrella et al. Sep 2007 B2
7282054 Steffensmeier et al. Oct 2007 B2
7294133 Zink et al. Nov 2007 B2
7297164 Johnson et al. Nov 2007 B2
7309339 Cusick et al. Dec 2007 B2
7333013 Berger Feb 2008 B2
7335231 McLean Feb 2008 B2
7371260 Malinin May 2008 B2
7383164 Aram et al. Jun 2008 B2
7385498 Dobosz Jun 2008 B2
7388972 Kitson Jun 2008 B2
7390327 Collazo et al. Jun 2008 B2
7392076 Moctezuma de La Barrera Jun 2008 B2
7427200 Noble et al. Sep 2008 B2
7427272 Richard et al. Sep 2008 B2
7468075 Lang et al. Dec 2008 B2
7474223 Nycz et al. Jan 2009 B2
7488325 Qian Feb 2009 B2
7494510 Zweymuller Feb 2009 B2
7517365 Carignan et al. Apr 2009 B2
7527631 Maroney et al. May 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7559931 Stone Jul 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578851 Dong et al. Aug 2009 B2
7582091 Duncan et al. Sep 2009 B2
7591821 Kelman Sep 2009 B2
7601155 Petersen Oct 2009 B2
7604639 Swanson Oct 2009 B2
7611516 Maroney Nov 2009 B2
7618451 Berez et al. Nov 2009 B2
7621915 Frederick et al. Nov 2009 B2
7625409 Saltzman et al. Dec 2009 B2
7646161 Albu-Schaffer et al. Jan 2010 B2
7651501 Penenberg et al. Jan 2010 B2
7670345 Plassky et al. Mar 2010 B2
7682398 Croxton et al. Mar 2010 B2
7695477 Creger et al. Apr 2010 B2
7695521 Ely et al. Apr 2010 B2
7699847 Sheldon et al. Apr 2010 B2
7704253 Bastian et al. Apr 2010 B2
7723395 Ringeisen et al. May 2010 B2
D622854 Otto et al. Aug 2010 S
7780672 Metzger et al. Aug 2010 B2
7780740 Steinberg Aug 2010 B2
7789885 Metzger Sep 2010 B2
7794466 Merchant et al. Sep 2010 B2
7794467 McGinley et al. Sep 2010 B2
7794504 Case Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7809184 Neubauer et al. Oct 2010 B2
7819925 King et al. Oct 2010 B2
7828806 Graf et al. Nov 2010 B2
7833245 Kaes et al. Nov 2010 B2
7837690 Metzger Nov 2010 B2
7850698 Straszheim-Morley et al. Dec 2010 B2
7879109 Borden et al. Feb 2011 B2
7892261 Bonutti Feb 2011 B2
7896921 Smith et al. Mar 2011 B2
7926363 Miller et al. Apr 2011 B2
7935119 Ammann et al. May 2011 B2
7935150 Carignan et al. May 2011 B2
7938861 King et al. May 2011 B2
7959637 Fox et al. Jun 2011 B2
7962196 Tuma Jun 2011 B2
7963968 Dees, Jr. Jun 2011 B2
7967823 Ammann et al. Jun 2011 B2
7967868 White et al. Jun 2011 B2
7974677 Mire et al. Jul 2011 B2
7981158 Fitz et al. Jul 2011 B2
7993353 Rossner et al. Aug 2011 B2
8062301 Ammann et al. Nov 2011 B2
8066708 Lang et al. Nov 2011 B2
8070752 Metzger et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8083746 Novak Dec 2011 B2
8083749 Taber Dec 2011 B2
8086336 Christensen Dec 2011 B2
8092465 Metzger et al. Jan 2012 B2
8133230 Stevens et al. Mar 2012 B2
8133234 Meridew et al. Mar 2012 B2
8137406 Novak et al. Mar 2012 B2
8160345 Pavlovskaia et al. Apr 2012 B2
8167951 Ammann et al. May 2012 B2
8170641 Belcher May 2012 B2
8182489 Horacek May 2012 B2
8192441 Collazo Jun 2012 B2
8192495 Simpson et al. Jun 2012 B2
8211112 Novak et al. Jul 2012 B2
8221430 Park et al. Jul 2012 B2
8241292 Collazo Aug 2012 B2
8241293 Stone et al. Aug 2012 B2
8265790 Amiot et al. Sep 2012 B2
D669176 Frey Oct 2012 S
8282646 Schoenefeld et al. Oct 2012 B2
8298237 Schoenefeld et al. Oct 2012 B2
8303596 Plaβky et al. Nov 2012 B2
8313491 Green, II et al. Nov 2012 B2
D672038 Frey Dec 2012 S
8333772 Fox et al. Dec 2012 B2
8355773 Leitner et al. Jan 2013 B2
8372078 Collazo Feb 2013 B2
8377066 Katrana et al. Feb 2013 B2
8388690 Singhatat et al. Mar 2013 B2
8398646 Metzger et al. Mar 2013 B2
8407067 Uthgenannt et al. Mar 2013 B2
8419741 Carignan et al. Apr 2013 B2
8430931 Acker et al. Apr 2013 B2
8439675 De Moyer May 2013 B2
8439925 Marino et al. May 2013 B2
8460302 Park et al. Jun 2013 B2
8473305 Belcher et al. Jun 2013 B2
8486150 White et al. Jul 2013 B2
8500740 Bojarski et al. Aug 2013 B2
8532361 Pavlovskaia et al. Sep 2013 B2
8532807 Metzger Sep 2013 B2
8535387 Meridew et al. Sep 2013 B2
8543234 Gao Sep 2013 B2
8545508 Collazo Oct 2013 B2
8568487 Witt et al. Oct 2013 B2
8591516 Metzger et al. Nov 2013 B2
8597365 Meridew Dec 2013 B2
8603180 White et al. Dec 2013 B2
8608748 Metzger et al. Dec 2013 B2
8608749 Meridew et al. Dec 2013 B2
8617170 Ashby et al. Dec 2013 B2
8617174 Axelson, Jr. et al. Dec 2013 B2
8617175 Park et al. Dec 2013 B2
8632547 Maxson et al. Jan 2014 B2
8652142 Geissler Feb 2014 B2
8668700 Catanzarite et al. Mar 2014 B2
8702712 Jordan et al. Apr 2014 B2
8702715 Ammann et al. Apr 2014 B2
8764760 Metzger et al. Jul 2014 B2
8777875 Park Jul 2014 B2
8828016 Major et al. Sep 2014 B2
8828089 Perez et al. Sep 2014 B1
8834568 Shapiro Sep 2014 B2
20010005797 Barlow et al. Jun 2001 A1
20010011190 Park Aug 2001 A1
20010021876 Terrill-Grisoni et al. Sep 2001 A1
20010054478 Watanabe et al. Dec 2001 A1
20020007294 Bradbury et al. Jan 2002 A1
20020029045 Bonutti Mar 2002 A1
20020052606 Bonutti May 2002 A1
20020059049 Bradbury et al. May 2002 A1
20020082741 Mazumder et al. Jun 2002 A1
20020087274 Alexander et al. Jul 2002 A1
20020092532 Yoon Jul 2002 A1
20020107522 Picard et al. Aug 2002 A1
20020128872 Giammattei Sep 2002 A1
20020147415 Martelli Oct 2002 A1
20020193797 Johnson et al. Dec 2002 A1
20020198528 Engh et al. Dec 2002 A1
20020198531 Millard et al. Dec 2002 A1
20030009171 Tornier Jan 2003 A1
20030009234 Treacy et al. Jan 2003 A1
20030011624 Ellis Jan 2003 A1
20030018338 Axelson et al. Jan 2003 A1
20030039676 Boyce et al. Feb 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030105526 Bryant et al. Jun 2003 A1
20030109784 Loh et al. Jun 2003 A1
20030120276 Tallarida et al. Jun 2003 A1
20030130741 McMinn Jul 2003 A1
20030139817 Tuke et al. Jul 2003 A1
20030158606 Coon et al. Aug 2003 A1
20030171757 Coon et al. Sep 2003 A1
20030216669 Lang et al. Nov 2003 A1
20040018144 Briscoe Jan 2004 A1
20040030245 Noble et al. Feb 2004 A1
20040054372 Corden et al. Mar 2004 A1
20040054416 Wyss et al. Mar 2004 A1
20040068187 Krause et al. Apr 2004 A1
20040092932 Aubin et al. May 2004 A1
20040098133 Carignan et al. May 2004 A1
20040102852 Johnson et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040106926 Leitner et al. Jun 2004 A1
20040115586 Andreiko et al. Jun 2004 A1
20040122436 Grimm Jun 2004 A1
20040122439 Dwyer et al. Jun 2004 A1
20040128026 Harris et al. Jul 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040143336 Burkinshaw Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040148026 Bonutti Jul 2004 A1
20040153079 Tsougarakis et al. Aug 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040158254 Eisermann Aug 2004 A1
20040162619 Blaylock et al. Aug 2004 A1
20040167390 Alexander et al. Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040172137 Blaylock et al. Sep 2004 A1
20040181144 Cinquin et al. Sep 2004 A1
20040193169 Schon et al. Sep 2004 A1
20040204644 Tsougarakis et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040212586 Denny Oct 2004 A1
20040220583 Pieczynski et al. Nov 2004 A1
20040236341 Petersen Nov 2004 A1
20040236424 Berez et al. Nov 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20040254584 Sarin et al. Dec 2004 A1
20040260301 Lionberger et al. Dec 2004 A1
20050008887 Haymann et al. Jan 2005 A1
20050010227 Paul Jan 2005 A1
20050010300 Disilvestro et al. Jan 2005 A1
20050015022 Richard et al. Jan 2005 A1
20050019664 Matsumoto Jan 2005 A1
20050027303 Lionberger et al. Feb 2005 A1
20050027361 Reiley Feb 2005 A1
20050043806 Cook et al. Feb 2005 A1
20050043837 Rubbert et al. Feb 2005 A1
20050049524 Lefevre et al. Mar 2005 A1
20050049603 Calton et al. Mar 2005 A1
20050059873 Glozman et al. Mar 2005 A1
20050060040 Auxepaules et al. Mar 2005 A1
20050065628 Roose Mar 2005 A1
20050070897 Petersen Mar 2005 A1
20050071015 Sekel Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050096535 de la Barrera May 2005 A1
20050113841 Sheldon et al. May 2005 A1
20050113846 Carson May 2005 A1
20050119664 Carignan et al. Jun 2005 A1
20050131662 Ascenzi et al. Jun 2005 A1
20050137708 Clark Jun 2005 A1
20050148843 Roose Jul 2005 A1
20050149042 Metzger Jul 2005 A1
20050171545 Walsh et al. Aug 2005 A1
20050177245 Leatherbury et al. Aug 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050203540 Broyles Sep 2005 A1
20050209605 Grimm et al. Sep 2005 A1
20050216305 Funderud Sep 2005 A1
20050222571 Ryan Oct 2005 A1
20050222573 Branch et al. Oct 2005 A1
20050228393 Williams et al. Oct 2005 A1
20050234461 Burdulis et al. Oct 2005 A1
20050234465 McCombs et al. Oct 2005 A1
20050234468 Carson Oct 2005 A1
20050240195 Axelson et al. Oct 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050244239 Shimp Nov 2005 A1
20050245934 Tuke et al. Nov 2005 A1
20050245936 Tuke et al. Nov 2005 A1
20050251147 Novak Nov 2005 A1
20050267353 Marquart et al. Dec 2005 A1
20050267485 Cordes et al. Dec 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20050273114 Novak Dec 2005 A1
20050283252 Coon et al. Dec 2005 A1
20050283253 Coon et al. Dec 2005 A1
20060004284 Grunschlager et al. Jan 2006 A1
20060015120 Richard et al. Jan 2006 A1
20060030853 Haines Feb 2006 A1
20060038520 Negoro et al. Feb 2006 A1
20060052725 Santilli Mar 2006 A1
20060058803 Cuckler et al. Mar 2006 A1
20060058884 Aram et al. Mar 2006 A1
20060058886 Wozencroft Mar 2006 A1
20060089621 Fard Apr 2006 A1
20060093988 Swaelens et al. May 2006 A1
20060094951 Dean et al. May 2006 A1
20060095044 Grady et al. May 2006 A1
20060100832 Bowman May 2006 A1
20060111722 Bouadi May 2006 A1
20060122616 Bennett et al. Jun 2006 A1
20060122618 Claypool et al. Jun 2006 A1
20060136058 Pietrzak Jun 2006 A1
20060142657 Quaid et al. Jun 2006 A1
20060149283 May et al. Jul 2006 A1
20060155380 Clemow et al. Jul 2006 A1
20060161165 Swanson Jul 2006 A1
20060161167 Myers et al. Jul 2006 A1
20060172263 Quadling et al. Aug 2006 A1
20060178497 Gevaert et al. Aug 2006 A1
20060184177 Echeverri Aug 2006 A1
20060184250 Bandoh et al. Aug 2006 A1
20060190086 Clemow et al. Aug 2006 A1
20060192319 Solar Aug 2006 A1
20060195111 Couture Aug 2006 A1
20060195194 Gunther Aug 2006 A1
20060195198 James Aug 2006 A1
20060200158 Farling et al. Sep 2006 A1
20060204932 Haymann et al. Sep 2006 A1
20060210644 Levin Sep 2006 A1
20060217808 Novak et al. Sep 2006 A1
20060235421 Rosa et al. Oct 2006 A1
20060241635 Stumpo et al. Oct 2006 A1
20060241636 Novak et al. Oct 2006 A1
20060271058 Ashton et al. Nov 2006 A1
20060276796 Creger et al. Dec 2006 A1
20060276797 Botimer Dec 2006 A1
20060287733 Bonutti Dec 2006 A1
20060293681 Claypool et al. Dec 2006 A1
20070015995 Lang et al. Jan 2007 A1
20070016209 Ammann et al. Jan 2007 A1
20070027680 Ashley et al. Feb 2007 A1
20070039205 Erb et al. Feb 2007 A1
20070043582 Peveto et al. Feb 2007 A1
20070066917 Hodorek et al. Mar 2007 A1
20070073137 Schoenefeld Mar 2007 A1
20070083214 Duncan et al. Apr 2007 A1
20070083266 Lang Apr 2007 A1
20070100258 Shoham et al. May 2007 A1
20070100450 Hodorek May 2007 A1
20070100462 Lang et al. May 2007 A1
20070106299 Manspeizer May 2007 A1
20070118055 McCombs May 2007 A1
20070118138 Seo et al. May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070150068 Dong et al. Jun 2007 A1
20070156066 McGinley et al. Jul 2007 A1
20070156171 Lang et al. Jul 2007 A1
20070162038 Tuke Jul 2007 A1
20070162039 Wozencroft Jul 2007 A1
20070173946 Bonutti Jul 2007 A1
20070173948 Meridew et al. Jul 2007 A1
20070185498 Lavallee Aug 2007 A2
20070191962 Jones et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070203430 Lang et al. Aug 2007 A1
20070203605 Melton et al. Aug 2007 A1
20070219639 Otto et al. Sep 2007 A1
20070219640 Steinberg Sep 2007 A1
20070224238 Mansmann et al. Sep 2007 A1
20070226986 Park et al. Oct 2007 A1
20070233121 Carson et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233140 Metzger et al. Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070233272 Boyce et al. Oct 2007 A1
20070238069 Lovald et al. Oct 2007 A1
20070239282 Caylor et al. Oct 2007 A1
20070239481 DiSilvestro et al. Oct 2007 A1
20070244487 Ammann et al. Oct 2007 A1
20070250169 Lang Oct 2007 A1
20070253617 Arata et al. Nov 2007 A1
20070255288 Mahfouz et al. Nov 2007 A1
20070255412 Hajaj et al. Nov 2007 A1
20070262867 Westrick et al. Nov 2007 A1
20070272747 Woods et al. Nov 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276400 Moore et al. Nov 2007 A1
20070276501 Betz et al. Nov 2007 A1
20070288029 Justin et al. Dec 2007 A1
20070288030 Metzger et al. Dec 2007 A1
20080009952 Hodge Jan 2008 A1
20080015599 D'Alessio et al. Jan 2008 A1
20080015603 Collazo Jan 2008 A1
20080015604 Collazo Jan 2008 A1
20080015605 Collazo Jan 2008 A1
20080021299 Meulink Jan 2008 A1
20080021494 Schmelzeisen-Redeker et al. Jan 2008 A1
20080021567 Meulink et al. Jan 2008 A1
20080027563 Johnson et al. Jan 2008 A1
20080033442 Amiot et al. Feb 2008 A1
20080039850 Rowley et al. Feb 2008 A1
20080051799 Bonutti Feb 2008 A1
20080051910 Kammerzell et al. Feb 2008 A1
20080058945 Hajaj et al. Mar 2008 A1
20080058947 Earl et al. Mar 2008 A1
20080062183 Swaelens Mar 2008 A1
20080065225 Wasielewski et al. Mar 2008 A1
20080097451 Chen et al. Apr 2008 A1
20080112996 Harlow et al. May 2008 A1
20080114370 Schoenefeld May 2008 A1
20080133022 Caylor Jun 2008 A1
20080140081 Heavener et al. Jun 2008 A1
20080140209 Iannotti et al. Jun 2008 A1
20080140213 Ammann et al. Jun 2008 A1
20080146969 Kurtz Jun 2008 A1
20080147072 Park et al. Jun 2008 A1
20080147073 Ammann et al. Jun 2008 A1
20080147074 Ammann et al. Jun 2008 A1
20080161815 Schoenefeld et al. Jul 2008 A1
20080161816 Stevens et al. Jul 2008 A1
20080172125 Ek Jul 2008 A1
20080195099 Minas Aug 2008 A1
20080195107 Cuckler et al. Aug 2008 A1
20080195108 Bhatnagar et al. Aug 2008 A1
20080195109 Hunter et al. Aug 2008 A1
20080195216 Philipp Aug 2008 A1
20080200926 Verard et al. Aug 2008 A1
20080208200 Crofford Aug 2008 A1
20080208353 Kumar et al. Aug 2008 A1
20080215059 Carignan et al. Sep 2008 A1
20080230422 Pleil et al. Sep 2008 A1
20080234664 May et al. Sep 2008 A1
20080234683 May Sep 2008 A1
20080234685 Gjerde Sep 2008 A1
20080234833 Bandoh et al. Sep 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080255674 Rahaman et al. Oct 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080262500 Collazo Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080269906 Iannotti et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080287926 Abou El Kheir Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20080294170 O'Brien Nov 2008 A1
20080294266 Steinberg Nov 2008 A1
20080300600 Guelat et al. Dec 2008 A1
20080306485 Coon et al. Dec 2008 A1
20080306558 Hakki Dec 2008 A1
20080312659 Metzger et al. Dec 2008 A1
20080319448 Lavallee et al. Dec 2008 A1
20090012526 Fletcher Jan 2009 A1
20090018546 Daley Jan 2009 A1
20090018666 Grundei et al. Jan 2009 A1
20090024131 Metzger et al. Jan 2009 A1
20090024169 Triplett et al. Jan 2009 A1
20090043556 Axelson et al. Feb 2009 A1
20090076371 Lang et al. Mar 2009 A1
20090076512 Ammann et al. Mar 2009 A1
20090076520 Choi Mar 2009 A1
20090076555 Lowry et al. Mar 2009 A1
20090082770 Worner et al. Mar 2009 A1
20090082774 Oti et al. Mar 2009 A1
20090087276 Rose Apr 2009 A1
20090088674 Caillouette et al. Apr 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088754 Aker et al. Apr 2009 A1
20090088755 Aker et al. Apr 2009 A1
20090088758 Bennett Apr 2009 A1
20090088759 Aram et al. Apr 2009 A1
20090088760 Aram et al. Apr 2009 A1
20090088761 Roose et al. Apr 2009 A1
20090088763 Aram et al. Apr 2009 A1
20090088865 Brehm Apr 2009 A1
20090088866 Case Apr 2009 A1
20090089034 Penney et al. Apr 2009 A1
20090089081 Haddad Apr 2009 A1
20090093815 Fletcher et al. Apr 2009 A1
20090093816 Roose et al. Apr 2009 A1
20090096613 Westrick Apr 2009 A1
20090099567 Zajac Apr 2009 A1
20090105837 Lafosse et al. Apr 2009 A1
20090116621 Yuan et al. May 2009 A1
20090118736 Kreuzer May 2009 A1
20090118769 Sixto, Jr. et al. May 2009 A1
20090131941 Park et al. May 2009 A1
20090131942 Aker et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090149964 May et al. Jun 2009 A1
20090149965 Quaid Jun 2009 A1
20090149977 Schendel Jun 2009 A1
20090151736 Belcher et al. Jun 2009 A1
20090157083 Park et al. Jun 2009 A1
20090163922 Meridew et al. Jun 2009 A1
20090163923 Flett et al. Jun 2009 A1
20090164024 Rudan et al. Jun 2009 A1
20090177282 Bureau et al. Jul 2009 A1
20090187193 Maroney et al. Jul 2009 A1
20090209884 Van Vorhis et al. Aug 2009 A1
20090209961 Ferrante et al. Aug 2009 A1
20090222014 Bojarski et al. Sep 2009 A1
20090222015 Park et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228016 Alvarez et al. Sep 2009 A1
20090234360 Alexander Sep 2009 A1
20090248044 Amiot et al. Oct 2009 A1
20090250413 Hoeppner Oct 2009 A1
20090254093 White et al. Oct 2009 A1
20090254367 Belcher et al. Oct 2009 A1
20090259312 Shterling et al. Oct 2009 A1
20090270868 Park et al. Oct 2009 A1
20090274350 Pavlovskaia et al. Nov 2009 A1
20090287217 Ammann et al. Nov 2009 A1
20090287309 Walch et al. Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090307893 Burdulis, Jr. et al. Dec 2009 A1
20090318836 Stone et al. Dec 2009 A1
20090318921 White et al. Dec 2009 A1
20100010493 Dower Jan 2010 A1
20100016984 Trabish Jan 2010 A1
20100016986 Trabish Jan 2010 A1
20100023015 Park Jan 2010 A1
20100030231 Revie et al. Feb 2010 A1
20100036404 Yi et al. Feb 2010 A1
20100042105 Park et al. Feb 2010 A1
20100049195 Park et al. Feb 2010 A1
20100057088 Shah Mar 2010 A1
20100076439 Hatch Mar 2010 A1
20100076505 Borja Mar 2010 A1
20100076563 Otto et al. Mar 2010 A1
20100076571 Hatch Mar 2010 A1
20100082034 Remia Apr 2010 A1
20100082035 Keefer Apr 2010 A1
20100082067 Kondrashov Apr 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100094295 Schnieders et al. Apr 2010 A1
20100105011 Karkar et al. Apr 2010 A1
20100121334 Couture et al. May 2010 A1
20100121335 Penenberg et al. May 2010 A1
20100137869 Borja et al. Jun 2010 A1
20100137924 Tuke et al. Jun 2010 A1
20100145343 Johnson et al. Jun 2010 A1
20100145344 Jordan et al. Jun 2010 A1
20100152782 Stone et al. Jun 2010 A1
20100160917 Fitz et al. Jun 2010 A1
20100168752 Edwards Jul 2010 A1
20100168754 Fitz et al. Jul 2010 A1
20100168857 Hatch Jul 2010 A1
20100179663 Steinberg Jul 2010 A1
20100185202 Lester et al. Jul 2010 A1
20100191244 White et al. Jul 2010 A1
20100198224 Metzger et al. Aug 2010 A1
20100212138 Carroll et al. Aug 2010 A1
20100217109 Belcher Aug 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100217336 Crawford et al. Aug 2010 A1
20100217338 Carroll et al. Aug 2010 A1
20100217399 Groh Aug 2010 A1
20100228257 Bonutti Sep 2010 A1
20100249657 Nycz et al. Sep 2010 A1
20100249796 Nycz Sep 2010 A1
20100256649 Capsal et al. Oct 2010 A1
20100262150 Lian Oct 2010 A1
20100274253 Ure Oct 2010 A1
20100281678 Burdulis, Jr. et al. Nov 2010 A1
20100286700 Snider et al. Nov 2010 A1
20100292743 Singhal et al. Nov 2010 A1
20100298894 Bojarski et al. Nov 2010 A1
20100305574 Fitz et al. Dec 2010 A1
20100318088 Warne et al. Dec 2010 A1
20100324692 Uthgenannt et al. Dec 2010 A1
20110004317 Hacking et al. Jan 2011 A1
20110009869 Marino et al. Jan 2011 A1
20110015636 Katrana et al. Jan 2011 A1
20110015639 Metzger et al. Jan 2011 A1
20110015752 Meridew Jan 2011 A1
20110022049 Huebner et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110029116 Jordan et al. Feb 2011 A1
20110035012 Linares Feb 2011 A1
20110040303 Iannotti Feb 2011 A1
20110040334 Kaes et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110054478 Vanasse et al. Mar 2011 A1
20110066193 Lang et al. Mar 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071528 Carson Mar 2011 A1
20110071529 Carson Mar 2011 A1
20110071530 Carson Mar 2011 A1
20110071532 Carson Mar 2011 A1
20110071533 Metzger et al. Mar 2011 A1
20110071581 Lang et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110092804 Schoenefeld et al. Apr 2011 A1
20110093086 Witt et al. Apr 2011 A1
20110106254 Abel et al. May 2011 A1
20110125264 Bagga et al. May 2011 A1
20110130795 Ball Jun 2011 A1
20110151027 Clineff et al. Jun 2011 A1
20110151259 Jarman-Smith et al. Jun 2011 A1
20110153025 McMinn Jun 2011 A1
20110160736 Meridew et al. Jun 2011 A1
20110160867 Meridew et al. Jun 2011 A1
20110166578 Stone et al. Jul 2011 A1
20110172672 Dubeau et al. Jul 2011 A1
20110184419 Meridew et al. Jul 2011 A1
20110184526 White et al. Jul 2011 A1
20110190899 Pierce et al. Aug 2011 A1
20110190901 Weissberg et al. Aug 2011 A1
20110213376 Maxson et al. Sep 2011 A1
20110214279 Park et al. Sep 2011 A1
20110218545 Catanzarite et al. Sep 2011 A1
20110224674 White et al. Sep 2011 A1
20110238071 Fernandez-Scoma Sep 2011 A1
20110251617 Ammann et al. Oct 2011 A1
20110257657 Turner et al. Oct 2011 A1
20110269100 Furrer et al. Nov 2011 A1
20110275032 Tardieu et al. Nov 2011 A1
20110276145 Carignan et al. Nov 2011 A1
20110282473 Pavlovskaia et al. Nov 2011 A1
20110295887 Palmese et al. Dec 2011 A1
20110313424 Bono et al. Dec 2011 A1
20110319745 Frey Dec 2011 A1
20120010619 Barsoum Jan 2012 A1
20120010710 Frigg Jan 2012 A1
20120010711 Antonyshyn et al. Jan 2012 A1
20120041445 Roose et al. Feb 2012 A1
20120041446 Wong et al. Feb 2012 A1
20120065640 Metzger et al. Mar 2012 A1
20120078254 Ashby et al. Mar 2012 A1
20120078258 Lo et al. Mar 2012 A1
20120078259 Meridew Mar 2012 A1
20120089595 Jaecksch Apr 2012 A1
20120101586 Carson Apr 2012 A1
20120109137 Iannotti et al. May 2012 A1
20120109138 Meridew et al. May 2012 A1
20120109226 Iannotti et al. May 2012 A1
20120123422 Agnihotri et al. May 2012 A1
20120130382 Iannotti et al. May 2012 A1
20120136365 Iannotti et al. May 2012 A1
20120141034 Iannotti et al. Jun 2012 A1
20120143197 Lang et al. Jun 2012 A1
20120143267 Iannotti et al. Jun 2012 A1
20120158002 Carignan et al. Jun 2012 A1
20120192401 Pavlovskaia et al. Aug 2012 A1
20120209276 Schuster Aug 2012 A1
20120215225 Philippon et al. Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120226283 Meridew et al. Sep 2012 A1
20120232596 Ribeiro Sep 2012 A1
20120245587 Fang et al. Sep 2012 A1
20120259335 Scifert et al. Oct 2012 A1
20120265208 Smith Oct 2012 A1
20120271314 Stemniski et al. Oct 2012 A1
20120271366 Katrana et al. Oct 2012 A1
20120276509 Iannotti et al. Nov 2012 A1
20120277751 Catanzarite et al. Nov 2012 A1
20120289965 Gelaude et al. Nov 2012 A1
20120296339 Iannotti et al. Nov 2012 A1
20120303004 Uthgenannt et al. Nov 2012 A1
20120303033 Weiner et al. Nov 2012 A1
20120310399 Metzger Dec 2012 A1
20120316564 Serbousek et al. Dec 2012 A1
20120323246 Catanzarite et al. Dec 2012 A1
20130001121 Metzger Jan 2013 A1
20130006250 Metzger et al. Jan 2013 A1
20130035766 Meridew Feb 2013 A1
20130046310 Ranawat et al. Feb 2013 A1
20130060253 Couture et al. Mar 2013 A1
20130072940 Dawood et al. Mar 2013 A1
20130085500 Meridew et al. Apr 2013 A1
20130119579 Iannotti et al. May 2013 A1
20130123850 Schoenefeld et al. May 2013 A1
20130131681 Katrana et al. May 2013 A1
20130144392 Hughes Jun 2013 A1
20130197528 Zakaria et al. Aug 2013 A1
20130197687 Pavlovskaia et al. Aug 2013 A1
20130218163 Frey Aug 2013 A1
20130245631 Bettenga Sep 2013 A1
20130261503 Sherman et al. Oct 2013 A1
20130289730 Gabriel et al. Oct 2013 A1
20130317511 Bojarski et al. Nov 2013 A1
20130338673 Keppler Dec 2013 A1
20140001226 Scabin et al. Jan 2014 A1
20140005672 Edwards et al. Jan 2014 A1
20140052270 Witt et al. Feb 2014 A1
20140081275 Metzger et al. Mar 2014 A1
20140088724 Meridew Mar 2014 A1
20140094816 White et al. Apr 2014 A1
20140100578 Metzger et al. Apr 2014 A1
20140107651 Meridew et al. Apr 2014 A1
20140107654 Kehres et al. Apr 2014 A1
20140107715 Heilman et al. Apr 2014 A1
20140324058 Metzger et al. Oct 2014 A1
20140378979 Stone et al. Dec 2014 A1
Foreign Referenced Citations (148)
Number Date Country
2447694 Dec 2002 CA
2501041 Apr 2004 CA
2505371 May 2004 CA
2505419 Jun 2004 CA
2506849 Jun 2004 CA
2546958 Jun 2005 CA
2546965 Jun 2005 CA
2588907 Jun 2006 CA
2590534 Jun 2006 CA
1630495 Jun 2005 CN
1728976 Feb 2006 CN
1729483 Feb 2006 CN
1729484 Feb 2006 CN
1913844 Feb 2007 CN
101111197 Jan 2008 CN
3447365 Jul 1986 DE
04219939 Dec 1993 DE
4421153 Dec 1995 DE
102009028503 Feb 2011 DE
102011082902 Mar 2012 DE
102012205820 Oct 2012 DE
112010003901 Nov 2012 DE
0114505 Aug 1984 EP
0326768 Aug 1989 EP
0579868 Jan 1994 EP
0591985 Apr 1994 EP
0645984 Apr 1995 EP
0650706 May 1995 EP
0916324 May 1999 EP
1321107 Jun 2003 EP
1327424 Jul 2003 EP
1437102 Jul 2004 EP
01486900 Dec 2004 EP
1634551 Mar 2006 EP
1832239 Sep 2007 EP
1852072 Nov 2007 EP
2029061 Mar 2009 EP
2168507 Mar 2010 EP
2303146 Apr 2011 EP
2303192 Apr 2011 EP
2352445 Aug 2011 EP
2396741 Dec 2011 EP
2398381 Dec 2011 EP
2403437 Jan 2012 EP
2491873 Aug 2012 EP
2502582 Sep 2012 EP
2709568 Mar 2014 EP
2659226 Sep 1991 FR
2721195 Dec 1995 FR
2768916 Apr 1999 FR
2094590 Sep 1982 GB
2197790 Jun 1988 GB
2442441 Apr 2008 GB
2447702 Sep 2008 GB
2483980 Mar 2012 GB
2486390 Jun 2012 GB
2490220 Oct 2012 GB
2491526 Dec 2012 GB
59157715 Sep 1984 JP
60231208 Nov 1985 JP
6-233790 Aug 1994 JP
2000245758 Sep 2000 JP
2009514612 Apr 2009 JP
2011505080 Feb 2011 JP
2011527885 Nov 2011 JP
20050072500 Jul 2005 KR
20050084024 Aug 2005 KR
2083179 Jul 1997 RU
2113182 Jun 1998 RU
2125835 Feb 1999 RU
2138223 Sep 1999 RU
2175534 Nov 2001 RU
2187975 Aug 2002 RU
231755 May 2005 TW
WO-8807840 Oct 1988 WO
WO-9107139 May 1991 WO
WO-9325157 Dec 1993 WO
WO-9528688 Oct 1995 WO
WO-9952473 Oct 1999 WO
WO-9959106 Nov 1999 WO
WO-0170142 Sep 2001 WO
WO-0184479 Nov 2001 WO
WO-0217821 Mar 2002 WO
WO-0226145 Apr 2002 WO
WO-0236024 May 2002 WO
WO-02096268 Dec 2002 WO
WO-03051210 Jun 2003 WO
WO-03051211 Jun 2003 WO
WO-2004032806 Apr 2004 WO
WO-2004049981 Jun 2004 WO
WO-2004051301 Jun 2004 WO
WO-2004078069 Sep 2004 WO
WO-2005051239 Jun 2005 WO
WO-2005051240 Jun 2005 WO
WO-2005077039 Aug 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006060795 Jun 2006 WO
WO-2006092600 Sep 2006 WO
WO-2006127486 Nov 2006 WO
WO-2006134345 Dec 2006 WO
WO-2006136955 Dec 2006 WO
WO-2007041375 Apr 2007 WO
WO-2007053572 May 2007 WO
WO-2007062079 May 2007 WO
WO-2007092841 Aug 2007 WO
WO-2007137327 Dec 2007 WO
WO-2007145937 Dec 2007 WO
WO-2008014618 Feb 2008 WO
WO-2008021494 Feb 2008 WO
WO-2008040961 Apr 2008 WO
WO-2008044055 Apr 2008 WO
WO-2008091358 Jul 2008 WO
WO-2008101090 Aug 2008 WO
WO-2008109751 Sep 2008 WO
WO-2008112996 Sep 2008 WO
WO-2008140748 Nov 2008 WO
WO-2009001083 Dec 2008 WO
WO-2009001109 Dec 2008 WO
WO-2009025783 Feb 2009 WO
WO-2009073781 Jun 2009 WO
WO-2009129063 Oct 2009 WO
WO-2009129067 Oct 2009 WO
WO-2010033431 Mar 2010 WO
WO-2010093902 Aug 2010 WO
WO-2010096553 Aug 2010 WO
WO-2010096557 Aug 2010 WO
WO-2010124164 Oct 2010 WO
WO-2010129870 Nov 2010 WO
WO-2010144705 Dec 2010 WO
WO-2010148103 Dec 2010 WO
WO-2011018458 Feb 2011 WO
WO-2011041398 Apr 2011 WO
WO-2011060536 May 2011 WO
WO-2011019797 Jul 2011 WO
WO-2011106711 Sep 2011 WO
WO-2011109260 Sep 2011 WO
WO-2011110374 Sep 2011 WO
WO-2012006444 Jan 2012 WO
WO-2012033821 Mar 2012 WO
WO-2012058344 May 2012 WO
WO-2012061042 May 2012 WO
WO-2012058353 Jun 2012 WO
WO-2012058355 Jul 2012 WO
WO-2012058349 Aug 2012 WO
WO-2012116206 Aug 2012 WO
WO-2012158917 Nov 2012 WO
WO-2012173929 Dec 2012 WO
WO-2012174008 Dec 2012 WO
Non-Patent Literature Citations (107)
Entry
International Search Report and Written Opinion for PCT/US2013/026875 mailed Jun. 7, 2013, claiming benefit of U.S. Appl. No. 13/400,652, filed Feb. 21, 2012.
International Preliminary Report on Patentability mailed Sep. 6, 2013 for PCT/US2012/026356 claiming benefit of U.S. Appl. No. 13/041,883, filed Mar. 7, 2011.
International Search Report and Written Opinion mailed Oct. 14, 2013 for PCT/US2013/057097 claiming benefit of U.S. Appl. No. 13/597,478, filed Aug. 29, 2012.
“Amazing Precision. Beautiful Results. The next evolution of MAKOplasty® is here,” brochure. (Feb. 2009) MAKO Surgical Corp. 6 pages.
“Ascent Total Knee System,” brochure. Biomet, Inc. (Oct. 31, 1999) 16 sheets.
“Comprehensive® Reverse Shoulder System Surgical Technique,” Biomet Orthopedics brochure (2009-2012), 48 pages.
“Comprehensive® Reverse Shoulder System Technical Design Features,” Biomet Orthopedics brochure (2009), 3 pages.
“Comprehensive® Reverse Shoulder System,” Biomet Orthopedics brochure (2009), 8 pages.
“Comprehensive® Shoulder System Surgical Technique,” Biomet Orthopedics brochure (2007), pp. 1-53.
“Comprehensive® Total Shoulder System,” Biomet Orthopedics brochure (2011), 4 pages.
“Customized Patient Instruments, Patient specific instruments for patient specific needs,” brochure. (2008) DePuy Orthopaedics, Inc. 14 sheets.
“Customized Patient Instruments, Primary Cruciate Retaining Surgical Technique for use with the Sigma® Knee System Utilizing Specialist® 2 Instrumentation,” brochure. (2008) DePuy Orthopaedics, Inc. pp. 1-23.
“Discovery® Elbow System Surgical Technique,” brochure. Biomet Orthopedics, Inc. (Dec. 31, 2008) pp. 1-25.
“Discovery® Elbow System,” brochure. Biomet Orthopedics, Inc. (Nov. 30, 2007) 3 sheets.
“Hipsextant Instructions of Use.” (2011) Surgical Planning Associates, Inc. 19 pages.
“Knee tensor combined with laser femoral head locator,” Research Disclosure. Jul. 2006. No. 507; p. 903.
“Method for constructing an allograft sleeve.” Research Disclosure (Dec. 2003) No. 476, p. 1294.
“OSS™ Orthopaedic Salvage System, Femoral/Tibial Augmentation,” brochure. Biomet Orthopedics, Inc., (Mar. 31, 2004) pp. 1-8 (12 sheets).
“Patient Matched PMI Implants, C.A.M.R.A. 3-D Imaging,” brochure, Biomet, Inc. (Jan. 31, 1991) 6 pages.
“Regenerex® Tibial Cone Augment, Surgical Technique Addendum to the Vanguard® SSK Revision System,” brochure. Biomet® Orthopedics. (Mar. 31, 2010) pp. 1-8 (12 sheets).
“Signature™ Personalized Patient Care, Surgical Technique Addendum to the Vanguard Knee System” brochure. Biomet® Orthopedics, Inc. (May 15, 2009) pp. 1-8.
“TruMatch™ Personalized knee replacement solutions,” tri-fold brochure. (2009) SIGMA® DePuy Orthopaedics, Inc. 2 pages.
“Vanguard® PFR Partial Knee Patellofemoral Replacement System,” Surgical Technique brochure. Biomet Orthopaedics, (Aug. 31, 2010) pp. 1-25.
“Zimmer® UniSpacer® Knee System,” brochure. (2005) Zimmer, Inc. 4 sheets.
Biomet “Oxford® Partial Knee” brochure, 8 pages (Feb. 2011).
Biomet “The Oxford® Partial Knee Surgical Technique,” brochure, pp. 1-38, (Feb. 2010).
Biomet, “Oxford® Partial Knee Microplasty® Instrumentation Surgical Technique”, brochure, pp. 1-54 (May 2011).
Birnbaum, Klaus, M.D., “Computer-Assisted Orthopedic Surgery With Individual Templates and Comparison to Conventional Method,” SPINE vol. 26, No. 4, pp. 365-370 (2001) Lippincott Williams & Wilkins, Inc.
Botha, Charl P., Technical Report: DeVIDE—The Delft Visualisation and Image processing Development Environment, pp. 1-49 (May 31, 2006).
Cohen, Zohara A., et al. “Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements.” Journal of the OsteoArthritis Research Society International. Osteoarthritis and Cartilage, (1999) vol. 7; No. 1 pp. 95-109.
Eckhoff, Donald G., et al., “Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality,” The Journal of Bone & Joint Surgery, vol. 81 (Dec. 4, 2005) pp. 71-80.
Fortin, Thomas, D.D.S., Ph.D., et al., “Precise Dental Implant Placement in Bone Using Surgical Guides in Conjunction with Medical Imaging Techniques,” Journal of Oral Implantology, Clinical, vol. 26, No. 4 (2000) pp. 300-303.
Friedman, R.J. et al., “The Use of Computerized Tomography in the Measurement of Glenoid Version”, Journal of Bone & Joint Surgery Am. (JBJS) 1992;74:1032-1037 (Aug. 1992).
Great Britain Search Report mailed Dec. 21, 2011 for GB1116054.6, claiming benefit of U.S. Appl. No. 12/888,005, filed Sep. 22, 2010.
Haaker, R.G., et al., “Minimal-invasive navigiert implantierte unikondyläre Knieendoprothese,” Orthopäde 2006 35:1073-1079 (Sep. 13, 2006) Spinger Medizin Verlag.
Hafez, M.A., et al., “Computer-assisted Total Knee Arthroplasty Using Patient-specific Templating,” Clinical Orthopaedics and Related Research, No. 444 (pp. 184-192) 2006 Lippincott Williams & Wilkins.
Hazan, Eric J., M.D., “Computer-Assisted Orthopaedic Sugery, a New Paradigm,” Techniques in Orthopaedics® vol. 18, No. 2, (2003) pp. 221-229.
Hutmacher, Dietmar, W., “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, 2000 Elsevier Science Ltd. (pp. 2529-2543).
International Preliminary Report and Written Opinion mailed Jan. 5, 2012 for PCT/US2010/038845 claiming benefit of U.S. Appl. No. 12/486,992, filed Jun. 18, 2009.
International Preliminary Report on Patentability and Written Opinion for PCT/US2009/039578 mailed Oct. 28, 2010 claiming benefit of U.S. Appl. No. 12/103,834, filed Apr. 16, 2008.
International Preliminary Report on Patentability and Written Opinion mailed Dec. 22, 2011 for PCT/US2010/038177 claiming benefit of U.S. Appl. No. 12/483,807, filed Jun. 12, 2009.
International Preliminary Report on Patentability and Written Opinion mailed Oct. 28, 2010 for PCT/US2009/039507 claiming benefit of U.S. Appl. No. 12/103,824, filed Apr. 16, 2008.
International Preliminary Report on Patentability and Written Opinion mailed Sep. 7, 2012 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
International Preliminary Report on Patentability for PCT/US2007/013223 mailed Dec. 24, 2008 claiming benefit of U.S. Appl. No. 11/756,057, filed May 31, 2007.
International Preliminary Report on Patentability for PCT/US2010/050701 mailed Apr. 12, 2012 claiming benefit of U.S. Appl. No. 12/571,969, filed Oct. 1, 2009.
International Preliminary Report on Patentability mailed Aug. 25, 2011 for PCT/US2010/024073 filed Feb. 12, 2010, claiming benefit of U.S. Appl. No. 12/371,096, filed Feb. 13, 2009.
International Preliminary Report on Patentability mailed Mar. 31, 2011 for PCT/US2009/056670 claiming benefit of U.S. Appl. No. 12/211,407, filed Sep. 16, 2008.
International Preliminary Report on Patentability mailed Sep. 1, 2011 for PCT/US2010/024579 claiming benefit of U.S. Appl. No. 12/389,930, filed Feb. 20, 2009.
International Preliminary Report on Patentability mailed Sep. 1, 2011 for PCT/US2010/024584 claiming benefit of U.S. Appl. No. 12/389,901, filed Feb. 20, 2009.
International Search Report and Written Opinion for PCT/US2007/013223 mailed Nov. 26, 2007, claiming benefit of U.S. Appl. No. 11/756,057, filed May 31, 2007.
International Search Report and Written Opinion for PCT/US2009/039507 mailed Jul. 14, 2009, claiming benefit of U.S. Appl. No. 12/103,824, filed Apr. 16, 2008.
International Search Report and Written Opinion for PCT/US2009/056670 mailed Mar. 2, 2010 claiming benefit of U.S. Appl. No. 12/211,407, filed Sep. 16, 2008.
International Search Report and Written Opinion mailed Apr. 22, 2010 for PCT/US2010/024579 claiming benefit of U.S. Appl. No. 12/389,930, filed Feb. 20, 2009.
International Search Report and Written Opinion mailed Aug. 19, 2010 for PCT/US2010/024584 claiming benefit of U.S. Appl. No. 12/389,901, filed Feb. 20, 2009.
International Search Report and Written Opinion mailed Aug. 24, 2010 for PCT/US2010/038177 claiming benefit of U.S. Appl. No. 12/483,807, filed Jun. 12, 2009.
International Search Report and Written Opinion mailed Aug. 9, 2011 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
International Search Report and Written Opinion mailed Dec. 18, 2012 for PCT/US2012/059189, which claims benefit of U.S. Appl. No. 13/597,478, filed Aug. 29, 2011.
International Search Report and Written Opinion mailed Dec. 7, 2010 for PCT/US2010/050701 claiming benefit of U.S. Appl. No. 12/571,969, filed Oct. 1, 2009.
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/060842, which claims benefit of U.S. Appl. No. 13/653,868, filed Oct. 17, 2012.
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/060854, which claims benefit of U.S. Appl. No. 13/653,893, filed Oct. 17, 2012.
International Search Report and Written Opinion mailed Jul. 31, 2009 for PCT/US2009/039578 claiming benefit of U.S. Appl. No. 12/103,834, filed Apr. 16, 2008.
International Search Report and Written Opinion mailed Jun. 4, 2010 for PCT/US2010/024073 filed Feb. 12, 2010, claiming benefit of U.S. Appl. No. 12/371,096, filed Feb. 13, 2009.
International Search Report and Written Opinion mailed Mar. 5, 2012 for PCT/US2011/057300 claiming benefit of U.S. Appl. No. 12/938,905, filed Nov. 3, 2010.
International Search Report and Written Opinion mailed May 8, 2012 for PCT/US2012/026356 claiming benefit of U.S. Appl. No. 13/041,883, filed Mar. 7, 2011.
International Search Report and Written Opinion mailed May 9, 2011 for PCT/US2011/026412 claiming benefit of U.S. Appl. No. 12/872,663, filed Aug. 31, 2010.
International Search Report and Written Opinion mailed Nov. 15, 2012, for PCT/US2012/052853, which claims benefit of U.S. Appl. No. 13/221,968, filed Aug. 31, 2011.
International Search Report and Written Opinion mailed Oct. 5, 2010 for PCT/US2010/038845 claiming benefit of U.S. Appl. No. 12/486,992, filed Jun. 18, 2009.
International Search Report mailed Nov. 30, 2010 for PCT/EP2010/061630 filed Aug. 10, 2010 claiming benefit of DE102009028503.2 filed Aug. 13, 2009.
International Search Report mailed Oct. 23, 2012, for PCT/US2012/041893, which claims benefit of U.S. Appl. No. 61/496,177, filed Jun. 13, 2011.
Invitation to Pay Additional Fees mailed Feb. 6, 2013 for PCT/US2012/060848, which claims benefit of U.S. Appl. No. 13/653,878, filed Oct. 17, 2012.
Invitation to Pay Additional Fees mailed Feb. 7, 2013 for PCT/US2012/060853, which claims benefit of U.S. Appl. No. 13/653,893, filed Oct. 17, 2012.
Invitation to Pay Additional Fees mailed May 3, 2011 for PCT/US2011/026333 claiming benefit of U.S. Appl. No. 12/714,023, filed Feb. 26, 2010.
Invitation to Pay Additional Fees with Partial International Search mailed Nov. 26, 2009 for PCT/US2009/056670.
Kaus, Michael R., Ph.D., “Automated Segmentation of MR Images of Brain Tumors,” Radiology, vol. 218, No. 2, (2001) pp. 586-591.
Kelly, Todd C., M.D., “Role of Navigation in Total Hip Arthroplasty.” The Journal of Bone & Joint Surgery(2009) pp. 153-158. vol. 91-A, Supplement 1.
Klein, M., “Robot assisted insertion of craniofacial implants—clinical experience,” CARS 2001, pp. 133-138 (2001) Elsevier Science B.V.
Lombardi, Adolph, et al., “Patient-Specific Approach in Total Knee Arthroplasty,” Knee Orthopedics, ORTHOSuperSite (Sep. 1, 2008), 5 pages, http://www.orthosupersite.com/view.aspx?rid=31419, printed May 20, 2010.
Lynch, John A., et al., “Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours,” Medical Imaging 2000: Image Processing SPIE vol. 3979 (2000) pp. 925-935.
Murphy, S.B., et al. “The Hip Sextant: Navigation of Acetabular Component Orientation Using a Mechanical Instrument,” brochure. (2009) 1 page.
Nicholls, Paul, M.D., “Trauma Grand Rounds PMI (Patient-Matched Implants)” brochure, Biomet Orthopedics, Inc., (Feb. 29, 2000) 1 page.
Overhoff, H.M., et al., “Total Knee Arthroplasty: Coordinate System Definition and Planning based on 3-D Ultrasound Image Volumes,” CARS 2001, pp. 283-288, (2001) Elsevier Science B.V.
Portheine, F., “CT-basierte Planung und DISOS-Schablonennavigation in der Kniegelenkendoprothetik,” in Navigation und Robotic in der Gelenk—und Wirbelsäulenchirugie, Kapitel 32, Springer Verlag (2003) pp. 262-269.
Portheine, F., et al., Entwicklung eines klinischen Demonstrators für die computerunterstützte Orthopädische Chirurgie mit CT-Bildbasierten Individualschablonen, Bildverarbeitung fur die Medizin (1998) 5 pages.
Portheine, K., “Development of a clinical demonstrator for computer assisted orthopedic surgery with CT-image based individual templates,” Computer Assisted Radiology and Surgery, pp. 944-949, (1997) Elsevier Science B.V.
Radermacher, “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research No. 354, pp. 28-38 (Sep. 1998) Lippincott Williams & Wilkins.
Radermacher, K., et al., “Computer Integrated Orthopaedic Surgery: Connection of Planning and Execution in Surgical Intervention,” Computer-integrated surgery: technology and clinical applications, (1996) pp. 451-463.
Radermacher, K., et al., “CT Image-Based Planning and Execution of Interventions in Orthopedic Surgery Using Individual Templates, Experimental Results and Aspects of Clinical Applications,” Computer Assisted Orthopedic Surgery (CAOS), pp. 42-52, (1995) Hogrefe & Huber Publishers.
Radermacher, K., et al., “Image Guided Orthopedic Surgery Using Individual Templates,” Springer Berlin/Heidelberg, CVRMed-MRCAS'97, vol. 1205/1997 pp. 606-615).
Radermacher, K., et al., “Technique for Better Execution of CT Scan Planned Orthopedic Surgery on Bone Structures,” Supplied by the British Library—“The world's knowledge” 2nd Congress of ISCAS Conference in Berlin Germany (Jun. 1995) pp. 933-938.
Radermacher, Klaus, et al. “Computer Assisted Orthopaedic Individual Templates.” Clinical Orthopaedics and Related Research. (Sep. 1998) No. 354; pp. 28-38.
Schuller-Götzburg, P., et al., 3D-Implantatplanung and Stereolithographie-Implantatbohrschablonen, Stomatologie 101.3, pp. 55-59 (May 2004).
Sharp, S. Michael, Ph.D., Patient-Specific, Resurfacing Bi-Compartmental Arthuroplasty, Futuretech, Orthopaedic Product News (Mar./Apr. 2008) pp. 12-15.
Sisto, Domenick, J., et al., “Custom Patellofemoral Arthroplasty of the Knee Surgical Technique,” Journal of Bone and Joint Surgery, vol. 89-A, pp. 214-225 (Jul. 2006).
Slammin, John et al, “Do You Have This Implant in My Size?”, MDT Medical Design Technology, 3 pages, http://www.mdtmag.com/scripts/ShowPR.asp?PUBCODE=046&ACCT=0007796&ISSUE . . . accessed Jul. 31, 2008.
Steinwachs, Matthias Reinhard, “Cartilage Repair—Autologous Chondrocyte Transplantation and Autologous Matrix-induced Chondrogenesis,” European Musculoskeletal Review (2006) pp. 65-68.
Supplementary European Search Report mailed Nov. 15, 2011 for EP07809326, which claims benefit of PCT/US2007/013223, filed Jun. 5, 2007; which claims benefit of U.S. Appl. No. 11/756,057, filed May 31, 2007.
Thoma, W., et al., “Endoprothetischen Versorgung des Kniegelenks auf der Basis eines 3D-computertomographischen Subtraktionversfahrens,” Zuma Thema: Computergestützte orthopädische Chirugie, Der Orthopäde 29:641-644 Springer-Verlag (Jul. 2000) Translation provided: Thoma, W., “Endoprosthetic care of the knee joint based on a 3D computer chromatography subtraction process,” Topic: Computer-aided orthopedic surgery. Orthopedist 2000 29:641-644 Springer Verlag (Jul. 2000).
International Preliminary Report on Patentability and Written Opinion mailed Jan. 3, 2014 for PCT/US2012/042081 claiming benefit of U.S. Appl. No. 13/493,509, filed Jun. 11, 2012.
International Preliminary Report on Patentability and Written Opinion mailed Nov. 28, 2013 for PCT/US2012/038351 claiming benefit of U.S. Appl. No. 13/111,007, filed May 19, 2011.
International Preliminary Report on Patentability Report and Written Opinion mailed Sep. 4, 2014 for PCT/US2013/026875 claiming benefit of U.S. Appl. No. 13/400,652, filed Feb. 21, 2012.
International Search Report and Written Opinion mailed Jul. 10, 2014 for PCT/US2014/023655 claiming benefit of U.S. Appl. No. 13/800,369, filed Mar. 13, 2013.
International Preliminary Report on Patentability and Written Opinion mailed Apr. 24, 2014 for PCT/US2012/059189 claiming benefit of U.S. Appl. No. 13/597,478, filed Aug. 29, 2012.
International Preliminary Report on Patentability and Written Opinion mailed Mar. 13, 2014 for PCT/US2012/052853 claiming benefit of U.S. Appl. No. 13/221,968, filed Aug. 31, 2011.
International Search Report and Written Opinion mailed Apr. 14, 2014 for PCT/US2013/067505 claiming benefit of U.S. Appl. No. 13/718,129, filed Dec. 18, 2012.
Invitation to Pay Additional Fees mailed Feb. 6, 2014 for PCT/US2013/067505, which claims benefit of U.S. Appl. No. 13/718,129, filed Dec. 18, 2012.
Signature™ Personalized Patient Care, Surgical Technique Addendum Vanguard® Complete Knee System, Biomet® Orthopedics Brochure, (2011), p. 1-32.
European Communication Pursuant to Article 94(3) EPC mailed Nov. 24, 2014 for PCT/US2012/038351 which claims benefit of U.S. Appl. No. 13/111,007 filed May 19, 2011.
Related Publications (1)
Number Date Country
20130131681 A1 May 2013 US
Provisional Applications (8)
Number Date Country
60953620 Aug 2007 US
60947813 Jul 2007 US
60911297 Apr 2007 US
60892349 Mar 2007 US
60812694 Jun 2006 US
60953637 Aug 2007 US
60912178 Apr 2007 US
61310752 Mar 2010 US
Divisions (1)
Number Date Country
Parent 12888005 Sep 2010 US
Child 13744022 US
Continuation in Parts (15)
Number Date Country
Parent 12714023 Feb 2010 US
Child 12888005 US
Parent 12571969 Oct 2009 US
Child 12714023 US
Parent 12389901 Feb 2009 US
Child 12571969 US
Parent 12211407 Sep 2008 US
Child 12389901 US
Parent 12039849 Feb 2008 US
Child 12211407 US
Parent 11756057 May 2007 US
Child 12039849 US
Parent 11971390 Jan 2008 US
Child 12039849 US
Parent 11363548 Feb 2006 US
Child 11971390 US
Parent 12025414 Feb 2008 US
Child 11363548 US
Parent 13744022 US
Child 11363548 US
Parent 12483807 Jun 2009 US
Child 13744022 US
Parent 12371096 Feb 2009 US
Child 12483807 US
Parent 12103824 Apr 2008 US
Child 12371096 US
Parent 13744022 US
Child 12371096 US
Parent 12872663 Aug 2010 US
Child 13744022 US