Patient support apparatuses, such as hospital beds, stretchers, cots, tables, and wheelchairs, facilitate care of patients in a health care setting. Conventional patient support apparatuses comprise a base, a support frame, and a patient support deck upon which the patient is supported. Bariatric patient support apparatuses are generally designed to support heavier weight loads than conventional patient support beds. Certain conventional bariatric patient support apparatuses may comprise load cells for measuring the weight being supported by the base. Loading and unloading of bariatric patients from these types of known bariatric patient support apparatuses can cause high contact forces between the load cell and bed frame interface resulting in metal deformation of the load cell interface leading to inaccurate load scale readings.
A patient support apparatus with an additional support assembly between the load cell contact point and bed frame designed to overcome one or more of the aforementioned disadvantages is desired.
Referring to
A support structure 32 provides support for the patient. The support structure 32 illustrated in
A mattress 49 (shown in hidden lines in
A lift device 70 may be coupled to the base 34 and the deck support frame 36 to raise and lower the deck support frame 36 to minimum and maximum heights of the patient support apparatus 30, and intermediate positions therebetween. The lift device 70 comprises one or more lift arms 72 coupling the deck support frame 36 to the base 34. The lift device 70 comprises one or more lift actuators that are coupled to at least one of the base 34 and the deck support frame 36 to raise and lower the deck support frame 36 and patient support deck 38 relative to the floor surface and the base 34. The lift device 70 may be configured to operate in the same manner or a similar manner as the lift mechanisms shown in U.S. Pat. Nos. 7,398,571, 9,486,373, 9,510,981, and/or U.S. Patent Application Publication No. 2018/0028383, hereby incorporated herein by reference.
The deck support frame 36 comprises a second longitudinal axis L2 along its length from the head end to the foot end. The construction of the support structure 32 may take on any known or conventional design, and is not limited to that specifically set forth above. In addition, the mattress 49 may be omitted in certain embodiments, such that the patient rests directly on the patient support surface 42.
Side rails 44, 46, 48, 50 are coupled to the deck support frame 36 and thereby supported by the base 34. A first side rail 44 is positioned at a right head end of the deck support frame 36. A second side rail 46 is positioned at a right foot end of the deck support frame 36. A third side rail 48 is positioned at a left head end of the deck support frame 36. A fourth side rail 50 is positioned at a left foot end of the deck support frame 36. If the patient support apparatus 30 is a stretcher or a cot, there may be fewer side rails. The side rails 44, 46, 48, 50 are movable between a raised position in which they block ingress and egress into and out of the patient support apparatus 30, one or more intermediate positions, and a lowered position in which they are not an obstacle to such ingress and egress. In still other configurations, the patient support apparatus 30 may not comprise any side rails.
A headboard 52 and a footboard 54 are coupled to the deck support frame 36. In other embodiments, when the headboard 52 and footboard 54 are utilized, the headboard 52 and footboard 54 may be coupled to other locations on the patient support apparatus 30, such as the base 34. In still other embodiments, the patient support apparatus 30 does not comprise the headboard 52 and/or the footboard 54.
Caregiver interfaces 56, such as handles, are shown integrated into the footboard 54 and side rails 44, 46, 48, 50 to facilitate movement of the patient support apparatus 30 over floor surfaces. Additional caregiver interfaces 56 may be integrated into the headboard 52 and/or other components of the patient support apparatus 30. The caregiver interfaces 56 are graspable by the caregiver to manipulate the patient support apparatus 30 for movement.
Other forms of the caregiver interface 56 are also contemplated. The caregiver interface 56 may comprise one or more handles coupled to the deck support frame 36. The caregiver interface 56 may simply be a surface on the patient support apparatus 30 upon which the caregiver applies force to cause movement of the patient support apparatus 30 in one or more directions, also referred to as a push location. This may comprise one or more surfaces on the deck support frame 36 or base 34. This could also comprise one or more surfaces on or adjacent to the headboard 52, footboard 54, and/or side rails 44, 46, 48, 50. In other embodiments, the caregiver interface may comprise separate handles for each hand of the caregiver. For example, the caregiver interface may comprise two handles.
Wheels 58 are coupled to the base 34 to facilitate transport over the floor surfaces. The wheels 58 are arranged in each of four quadrants of the base 34 adjacent to corners of the base 34. In the embodiment shown, the wheels 58 are caster wheels able to rotate and swivel relative to the support structure 32 during transport. Each of the wheels 58 forms part of a caster assembly 60. Each caster assembly 60 is mounted to the base 34. It should be understood that various configurations of the caster assemblies 60 are contemplated. In addition, in some embodiments, the wheels 58 are not caster wheels and may be non-steerable, steerable, non-powered, powered, or combinations thereof. Additional wheels are also contemplated. For example, the patient support apparatus 30 may comprise four non-powered, non-steerable wheels, along with one or more powered wheels. In some cases, the patient support apparatus 30 may not comprise any wheels.
In other embodiments, one or more auxiliary wheels (powered or non-powered), which are movable between stowed positions and deployed positions, may be coupled to the support structure 32. In some cases, when these auxiliary wheels are located between caster assemblies 60 and contact the floor surface in the deployed position, they cause two of the caster assemblies 60 to be lifted off the floor surface thereby shortening a wheel base of the patient support apparatus 30. A fifth wheel may also be arranged substantially in a center of the base 34.
Referring to
The second frame assembly 76 comprises a pair of inner frame support members 82 that each extend along (e.g., parallel to) the longitudinal axis L. One or more lift arms 72 are coupled to the second frame assembly 76 between the deck support frame 36 and the inner frame support members 82 for coupling the patient support deck 38 to the inner frame support members 82.
The patient support apparatus 30 comprises a load cell assembly, generally indicated at 84, configured to sense weight applied to the first frame assembly 74 by the second frame assembly 76, as described in greater detail below. In the representative embodiments illustrated herein, the patient support apparatus 30 employs a total of four load cell assemblies 84 which each support the second frame assembly 76 relative to the first frame assembly 74. More specifically, one load cell assembly 84 is coupled to each end of both of the inner frame support members 82 such that load cell assemblies 84 are arranged in each of the four quadrants of the base 34. However, and as will be appreciated from the subsequent description below, other arrangements and/or quantities of load cell assemblies 84 are contemplated by the present disclosure.
In some embodiments, the patient support apparatus 30 may employ a weigh scale system that comprises a computer control system coupled in communication with one or more of the load cell assemblies 84 for measuring a weight of a patient based on signals received from the load cell assemblies 84. Additionally or alternatively, the computer control system may comprise one or more microcontrollers, field programmable gate arrays, systems on a chip, discrete circuitry, and/or other suitable hardware, software, or firmware that is capable of carrying out the functions described herein. The computer control system may be carried on-board the patient support apparatus 30, or may be remotely located.
Referring to
As noted above, in the representative embodiments illustrated herein, the load cell support assembly 86 is coupled to the first frame assembly 74, and the load cell element 88 is coupled to the second frame assembly 76. More specifically, the load cell element 88 is coupled to one of the inner frame support members 82. The load cell element 88 is mounted onto the load cell support assembly 86 such that the second frame assembly 76 is movable with respect to the first frame assembly 74 along two axes of translation (e.g., first and second axe of translation 85, 87; see
Referring to
The mounting bar 98 is coupled to an upper surface 110 of the load cell beam element 96 (e.g., via one or more fasteners; not shown in detail) and extends outwardly from the second end 106 of the cell body 102. The mounting bar 98 is also coupled to the second frame assembly 76 (e.g., to the inner frame support member 82) to support the load cell beam element 96. In some embodiments, such as shown in
The foot pad 100 is coupled to the first end 104 of the load cell beam element 96 and is mounted onto the load cell support assembly 86 for movement relative thereto, as described in greater detail below. The foot pad 100 extends outwardly from a lower surface 120 of the load cell beam element 96 along a foot pad centerline axis 122. In some embodiments, the load cell element 88 is coupled to the inner frame support member 82 such that the foot pad 100 extends outwardly from the load cell beam element 96 along (e.g., parallel to) the vertical axis V. As shown in
The threaded fastening member 126 is sized and shaped to be received within a corresponding threaded opening 134 defined along the lower surface 120 of the load cell beam element 96 to facilitate coupling the foot pad 100 to the load cell beam element 96. A plurality of planar surfaces 136 may also be defined along a perimeter of the body 124 to enable a caregiver to rotate the foot pad 100 using a wrench, or other suitable tool, to couple the foot pad 100 to the load cell beam element 96. In some embodiments, such as is shown in
The load cell support assembly 86 comprises a wear plate 140 and a mounting shoe 142. The wear plate 140 is coupled to the first frame assembly 74 and comprises a substantially planar body 144 and one or more mounting clips 146 that extend outwardly from the planar body 144. The mounting clips are sized and shaped to facilitate coupling the wear plate 140 to the first frame assembly 74. The mounting shoe 142 is slideably mounted on top of the outer surface 145 of the wear plate 140 such that the mounting shoe 142 is slideable along the outer surface 145 of the wear plate 140 along the two axes of translation (e.g., the first and second axes of translation 85, 87; see
As shown in
During operation, as a patient is loaded onto the patient support apparatus, the load cell assembly 84 enables movement of the second frame assembly 76 with respect to the first frame assembly 74. Here, for example, the mounting shoe 142 slides along the outer surface 145 of the wear plate 140 to enable the load cell element 88 and the inner frame support member 82 to move with respect to the first frame assembly 74 in a longitudinal direction (represented by arrow 158 in
In some embodiments, the load cell support assembly 86 may also comprise a support bracket 162 that is coupled to one of the cross support members 80 of the first frame assembly 74. The support bracket 162 comprises a substantially rectangular cross-sectional shape having an inner surface 164 that defines a bracket cavity 166 extending therethrough. The wear plate 140, the mounting shoe 142, and the foot pad 100 are positioned substantially within the bracket cavity 166 via the mounting clips 146 coupling the wear plate 140 to the support bracket 162. The support bracket 162 may also comprise pin openings 168 for receiving a capture pin 170. The capture pin 170 is sized, shaped, and orientated to limit a movement of the inner frame support member 82 along the longitudinal axis L. To this end, as shown in
In some embodiments, the foot pad 100 may be formed of material comprising 304 SST round bar ASTM A276/A479/A580, the mounting shoe 142 may be formed of material comprising 1144 CD stressproof ASTM A311 electroless nickel plating, and the wear plate 140 may be formed of material comprising annealed 1070-1075 strip, austempered to RC 40-45 after forming, nickel plated. The foot pad 100, mounting shoe 142, and wear plate 140 may also be formed of other suitable materials that enable the load cell assembly 84 to function as described herein.
In this way, the embodiments of the present disclosure afford significant opportunities in connection with patient support apparatuses 30 by, among other things, ensuring that load cell beam elements 96 can be utilized reliably, consistently, and durably. More specifically, it will be appreciated that the load cell assemblies 84 disclosed herein can be employed without utilizing complex load cell beams, in that the components of the load cell element 88 and the load cell support assembly 86 cooperate to facilitate the relative movement between the first and second frame assemblies 74, 76 which, among other things, prevents damage to the load cell beam elements 96 and ensures consistent and reliable operation of the load cell assemblies 84.
It will be further appreciated that the terms “include,” “includes,” and “including” have the same meaning as the terms “comprise,” “comprises,” and “comprising.” Moreover, it will be appreciated that terms such as “first,” “second,” “third,” and the like are used herein to differentiate certain structural features and components for the non-limiting, illustrative purposes of clarity and consistency.
Several embodiments have been discussed in the foregoing description. However, the embodiments discussed herein are not intended to be exhaustive or limit the invention to any particular form. The terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations are possible in light of the above teachings and the invention may be practiced otherwise than as specifically described.
The subject patent application claims priority to and all the benefits of U.S. Provisional Patent Application No. 62/880,937 filed on Jul. 31, 2019, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4453607 | Zink | Jun 1984 | A |
4483404 | Weihs | Nov 1984 | A |
4926951 | Carruth | May 1990 | A |
4953244 | Koerber, Sr. | Sep 1990 | A |
6150619 | Borngasser | Nov 2000 | A |
6924441 | Mobley | Aug 2005 | B1 |
7253366 | Bhai | Aug 2007 | B2 |
7361852 | Leahy | Apr 2008 | B2 |
7398571 | Souke et al. | Jul 2008 | B2 |
8123685 | Brauers et al. | Feb 2012 | B2 |
9486373 | Lambarth et al. | Nov 2016 | B2 |
9510981 | Lambarth et al. | Dec 2016 | B2 |
10117798 | Lemire et al. | Nov 2018 | B2 |
20090178199 | Brauers et al. | Jul 2009 | A1 |
20180028383 | Stryker et al. | Feb 2018 | A1 |
Entry |
---|
BEE2BUY, “Spherical Bridge Bearing”, Hengshui Jington Engineering Rubber Co., Ltd., 2019, 10 pages. |
Rice Lake Weighing Systems, “Weigh Modules & Vessel Weighing Systems Installation and System Guidelines”, Dec. 1997, 83 pages. |
Number | Date | Country | |
---|---|---|---|
20210030611 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62880937 | Jul 2019 | US |