This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/375,874, filed Apr. 26, 2002, and U.S. Provisional Patent Application Ser. No. 60/326,500, filed Oct. 2, 2001, the disclosures of which are expressly incorporated by reference herein.
The present invention relates to a patient support apparatus and a related method for converting a patient support apparatus. More particularly, the present invention relates to a patient support apparatus which includes a fluid filled patient support surface, such as an air mattress, and a fluid supply located in a barrier, such as a footboard, coupled to the patient support surface. Further, the present invention relates to a method of converting a patient support apparatus to include a fluid filled patient support surface.
In an illustrated embodiment of the present invention, a patient support apparatus comprises a base, a frame coupled to the base, and a fluid filled mattress supported by the frame. The mattress has a top surface configured to support a person thereon. The patient support apparatus also includes a barrier, or other means for retaining a person on the mattress. The barrier or retaining means may be coupled to the frame and may have a portion which extends above the top surface of the mattress. The patient support apparatus also includes a fluid supply or other means for supplying fluid to the mattress. The fluid supply or means for supplying is located in an interior region of the barrier. The fluid supply is configured to supply fluid to the mattress.
Illustratively according to the embodiment, the fluid supply includes at least one valve located within the interior region of the barrier.
Further illustratively according to the embodiment, a controller is coupled to the fluid supply and is located within the interior region of the barrier. A second controller is illustratively coupled to one of the base and the frame, wherein the second controller is electrically coupled to the controller in the interior region of the barrier.
Illustratively according to the embodiment, the barrier is removable from the frame. A first connector is located on the barrier and a second connector is located on the frame, the first connector being configured to mate with the second connector to provide an electrical connection to the barrier when the barrier is installed on the frame.
Further illustratively according to the embodiment, the fluid supply is one of a blower and a compressor.
Illustratively according to the embodiment, the fluid supply is a water pump.
Further illustratively according to the embodiment, the barrier includes a receptacle formed in the interior region and configured to receive an accessory item therein.
Illustratively according to the embodiment, the barrier includes a fluid intake to supply fluid to the fluid supply through the barrier.
Further illustratively according to the embodiment, the barrier is one of a footboard, a headboard, and a siderail.
In another illustrated embodiment of the present invention, a method is provided for modifying a patient support apparatus to include a fluid filled mattress. The method includes the steps of providing a frame for supporting a mattress and providing a first footboard coupled to the frame. The method further comprises the steps of supporting a fluid filled mattress by the frame, replacing the first footboard with a second footboard having a fluid supply located within an interior region of the second footboard, and connecting the fluid supply located in the interior region of the second footboard to the fluid filled mattress.
Illustratively according to the embodiment, an articulating deck is included and the first footboard includes controls for moving the articulating deck. The second footboard includes controls for moving the articulating deck and controls for the mattress.
Further illustratively according to the embodiment, the fluid supply includes at least one valve located within the interior region of the second footboard, the valve being configured to direct fluid to the mattress.
Illustratively according to the embodiment, a controller is coupled to the fluid supply and is located within the interior region of the second footboard.
Further illustratively according to the embodiment, the fluid supply is one of a blower and a compressor.
Illustratively according to the embodiment, the housing is formed by one of a footboard, a headboard, and a siderail.
Further illustratively according to the embodiment, at least one valve is located within the interior region of the housing. The at least one valve is configured to direct fluid to the fluid filled device.
Illustratively according to the embodiment, a controller is coupled to the fluid supply and is located within the interior region of the housing. A second controller is illustratively coupled to the patient support and is electrically coupled to the controller in the interior region of the housing.
Further illustratively according to the embodiment, the housing is removable from the patient support. A first connector is located on the housing and a second connector is located on the patient support, the first connector being configured to mate with the second connector to provide an electrical connection to the housing when the housing is installed on the patient support.
Illustratively according to the embodiment, the fluid supply is one of a blower, a compressor, and a water pump.
Illustratively according to the embodiment, the housing includes a receptacle formed in the interior region and configured to receive an accessory item therein.
Further illustratively according to the embodiment, the housing includes a fluid intake to supply fluid to the fluid supply through the housing.
Illustratively according to the embodiment, a therapy control module is coupled to the housing to provide therapy on the person. The therapy control module is illustratively located in the interior region of the housing.
Illustratively according to the embodiment, the fluid filled device is an air mattress or a therapy device.
Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description when taken in conjunction with the accompanying drawings.
The detailed description of the drawings particularly refers to the accompanying figures in which:
Referring now to the drawings,
The bed 10 further includes an elevating frame 20 coupled to the base frame 12, and an articulating deck 22 coupled to the elevating frame 20. The elevating frame 20 may include a retracting frame as illustrated in U.S. Pat. No. 6,208,250, which is assigned to the assignee of the present invention and the disclosure of which is expressly incorporated by reference herein. Furthermore, a weigh frame (not shown) of the type disclosed in U.S. Pat. No. 6,208,250 may be coupled to the base frame 12. The articulating deck 22 illustratively includes a head deck section 23, a seat deck section 24, a thigh deck section 25, and a leg deck section 26. The deck sections 23, 24, 25, and 26 are movable to various positions in a conventional manner.
A headboard 28 is mounted to the elevating frame 20 adjacent a head end 29 of bed 10, and a footboard 30 is mounted to the elevating frame 20 adjacent a foot end 31 of bed 10. In the illustrated embodiment and as described in greater detail below, the footboard 30 is removable from the frame 20. Additional details of the supporting structure facilitating removal of the footboard 30 from the frame 20 are illustrated in U.S. Pat. No. 6,208,250.
The bed 10 further includes a pair of head end siderails 32 and a pair of foot end siderails 34 coupled to the articulating deck 22 on opposite sides of the bed 10. The siderails 32 and 34 are coupled to the articulating deck 22 in a conventional manner using connector mechanisms 35, such as those described in detail in U.S. Pat. No. 6,208,250. The siderails 32 and 34 are each movable between a lowered position and an elevated position located above a top surface or patent support surface 36, as shown in
Referring now to
With further reference to
When the upper and lower cushioning layers 40 and 42 are positioned in an overlaying relationship, the bolsters 60 nest within a space below the end portions of the bladders 56. Releasable securing devices, such as snaps 62, are used to join the ends and sides of the cushioning layers 40 and 42 to side panels 64 placed around the sides of the mattress 38. Thus, the side panels 64 tend to hold the bolsters 60 in place. The bolsters 60 tend to keep the upper cushioning layer 40 from shifting with respect to the lower cushioning layer 42. In addition to the side panels 64, a coverlet 66 also may be placed about the upper and lower cushioning layers 40 and 42 to help secure them together as a single unit.
The lower cushioning layer 42 may also include a plurality of side release members, such as tie downs 68, about its perimeter. The tie downs 68 are used to secure the mattress 38 to the articulating deck 22.
The mattress 38 is illustratively a low air loss mattress, although any type of air or fluid filled mattress may be used in accordance with the present invention. The low air loss mattress 38 provides controlled air leakage to allow a limited amount of air to escape from the upper and lower cushioning layers 40 and 42 of the mattress 38. Illustratively, the mattress 38 may be of the type disclosed in U.S. Pat. No. 5,647,079, which is assigned to the assignee of the present invention and which is expressly incorporated by reference herein.
With reference to
With reference to
The lock out controls 84 may include conventional push buttons 85 configured to permit a caregiver to lock out selected functions normally controlled by a patient using patient controls (not shown) that are typically located on the head end side rails 32. For example, the lock out buttons 85 may deactivate controls for head or knee articulation of the articulating deck 22, and for a conventional high-low mechanism (not shown). Additionally, the lock out buttons 85 may deactivate controls for entertainment devices or lights of the type discussed above. A master lock out button 85 may be provided to lock out all of the motors for controlling head and knee articulation and the high-low mechanism.
The bed position controls 86 may include conventional push buttons 87 configured to permit a caregiver to select preset configurations for the articulating deck 22, and to raise or lower the elevating frame 20. The bed position controls 86 may further include buttons 87 to place the elevating frame 20 in either Trendelenburg or Reverse Trendelenburg positions. The surface controls 88 may comprise conventional push buttons 89 configured to activate and deactivate the air mattress 38, or to provide an automatic firm pressure setting of the air mattress 38.
The central inclined panel 74 includes a plurality of indicators 90, and in-bed scale controls 92. The indicators 90 illustratively include a Trendelenburg angle indicator 94 including an indicator member (not shown) supported for relative movement as the angular orientation of the bed frame 20 changes. Also included are a plurality of indicator lights 96, illustratively light emitting diodes (LEDs), which may provide an indication of a plurality of different conditions, such as motor power off, ground loss, brake not set, bed not down, service required, and surface power off. The in-bed scale controls 92 may include a plurality of conventional push buttons 98 configured to, for example, activate and deactivate a scale coupled to the weigh frame, reset the scale, and convert the units of measure. An indicator 100, illustratively a liquid crystal display, is positioned adjacent the buttons 98 and is configured to display information associated with the in-bed scale.
The lower inclined panel 76 supports a plurality of air mattress controls 102 which are configured to allow a caregiver to control operation of the air mattress 38. For example, the air mattress controls 102 may adjust pressure in the various zones 44, 46, 48, 50, and 52 of the mattress 38 or provide therapy to the patient supported on the air mattress 38. The air mattress controls 102 include a plurality of programming control buttons 104 associated with a display 106 for entering or adjusting a patient's height and weight. A controller 107 (
The air mattress controls 102 further includes a zone pressure indicator 108 for providing an indication of the pressure supplied to each respective air zone 44, 46, 48, 50, and 52 of the air mattress 38. Illustratively, the indicator 108 may comprise a plurality of light emitting diodes (not shown) which are illuminated to provide a representation of pressure relative to base line pressures. A zone select button 110 is provided below the indicator 108 and permits the caregiver to select a particular air zone 44, 46, 48, 50, or 52 for pressure adjustment. Pressure adjust buttons 112 and 114 are positioned adjacent to the indicator 108 and are configured to permit the caregiver to manually increase or decrease, respectively, the pressure in the zone selected by the zone selection button 110. A max inflate button 116 is likewise provided adjacent to the indicator 108 and may be depressed to cause maximum inflation of all air zones 44, 46, 48, 50, and 52 of the air mattress 38, thereby providing a firmer support surface for the patient. A seat deflate button 118 is provided immediately below the max inflate button 116 and may be depressed by a caregiver to deflate the seat zone 48 and the thigh zone 50 of the air mattress 38. Deflation of the seat zone 48 and the thigh zone 50 may be utilized, for example, when moving a patient to or from the bed 10.
The air mattress controls 102 further include an alarm silence button 120. Should the controller 107 detect an operational problem, an audible alarm 121 (
As best shown in
Referring further to
The mounting member 138 is secured to the left and right support posts 140 and 142 through left and right collars 150 and 152, respectively. The left and right collars 150 and 152, in turn, are fixed to an arcuate support 154 extending outwardly away from the body portion 124 of the footboard 30. A downwardly extending shroud 156 is connected to the arcuate support 154 through a mounting platform 158. A pair of L-shaped securing brackets 160 are fixed adjacent a lower end of the shroud 156 and threadably receive a pair of bolts 162 for securing the removable cover 126 to the body portion 124 of the footboard 30.
In the illustrated embodiment, the blower 144 is used to supply air to the low air loss mattress 38. If the mattress 38 does not require a blower 144 to supply air, a compressor or other air supply may be located within interior region 128 of footboard 30 instead of the blower 144. In addition, another type of fluid supply, such as a water recirculation unit or a water pump, may be located within the footboard 30, if desired, when a water-filled mattress is used. As such, it should be appreciated that the footboard 30 of the present invention may be utilized with any fluid filled device associated with a patent support apparatus.
Referring further to
The controller 107 is illustratively formed as a circuit board and is located within the interior region 128 of the footboard 30. A power supply module 188 is supported within the interior region 128 and is in electrical communication with the controller 107. The power supply module 188 illustratively comprises a conventional alternating current to direct current (AC to DC) converter provided in electrical communication with an external alternating current power source 190 (
The external power source 190 illustratively may be from 95V AC to 240V AC at 50 to 60 Hz. The AC to DC converter 188 produces a 24V DC output that is supplied to the controller 107, which internally generates 5V DC and 12V DC. The 5V DC source is used internally by the controller 107 for logic signals, and externally for a speed control signal for the blower 144 and for set signals for the control valves 146 and 148. The 12V DC may be used as a driver voltage for driving the control valves 146 and 148 and a CPR dump valve 316 (
A front bumper 194 extends outwardly from the front wall 195 of the removable cover 126. The front bumper 194 includes a resilient contact or engagement member 196 fixed to the front wall 195 and a support 198 positioned within the interior region 128 of the footboard 30. The support 198 includes a body portion 200 coupled to a pair of spaced apart posts 202 and 204. The posts 202 and 204 are secured to the shroud 156 of the mounting member 138 by conventional bolts 206. The resilient engagement member 196 is aligned with the body portion 200 of the support 198 in order to protect the front wall 195 of the removable cover 126 from impact.
The footboard 30 also includes side bumpers 208 and 210 and apertures 212 and 214. The apertures 212 and 214 provide handles to facilitate movement of the bed 10. Illustratively, both the headboard 28 and the footboard 30 are made from a plastic material using a blow molding process. It should be understood, however, that the headboard 28 and footboard 30 may be made from other materials and from other processes, if desired.
Referring now to
A first connector alignment apparatus 216 is coupled to the footboard 30 and a second connector alignment apparatus 218 is coupled to the frame 20 of the bed 10. The support posts 140 and 142 of the footboard 30 are formed to include apertures 220 and 222 which slide over upwardly extending mounting posts 224 and 226 on the frame 20 during installation of the footboard 30 onto the frame 20 in the direction of arrow 228 in
The first connector alignment apparatus 216 is configured to support a pair of male electrical connectors 230, while the second connector alignment apparatus 218 is configured to support a pair of female electrical connectors 232. The first connector alignment apparatus 216 further includes a base plate 234 having outwardly extending alignment posts 236 and 238 located at opposite ends. The posts 236 and 238 each include tapered head portions 240 and 242, respectively (
During installation of the footboard 30 on to the frame 20, initial alignment is provided by posts 224 and 226 on the frame 20 extending into the apertures 220 and 222 formed in the footboard 30. As the footboard 30 moves downwardly over the posts 224 and 226, the posts 236 and 238 on the first connector alignment apparatus 216 enter the apertures 246 and 248 in the second connector alignment apparatus 218. The tapered surfaces 240 and 242 on the posts 236 and 238 and the ramp portions 250 and 252 of the apertures 246 and 248 facilitate insertion of the posts 236 and 238 into the apertures 246 and 248. As such, the alignment apparatuses provide an electrical connection to the footboard 30 automatically when the footboard 30 is installed on the frame 20. Additional details of the first and second connector alignment apparatuses are disclosed in U.S. Pat. No. 6,208,250.
With reference to
Referring further to
An alignment mechanism 269 ensures proper orientation of the connection assemblies 256 and 258 relative to their respective interface couplings 264. The alignment mechanism 269 includes a slot 270 formed within a coupling ring 271 of each interface connection assembly 256 and 258, and a pin 272 coupled to each of the interface couplings 264. As may be appreciated, the slot 270 slidingly receives the pin 272 only when the connection assembly 256 and 258 is in a single, proper orientation relative to the respective interface coupling 264.
Additional details of the air hose assembly 254, including the interface connection assemblies 256, 258 and the interface couplings 264, are provided in U.S. Pat. No. 5,647,079.
Referring further to
Referring now to
A plurality of cards 300 are illustratively received within the interior region 290 of the instruction receptacle 284. The cards 300 may comprise instruction sheets for use by a caregiver positioned adjacent to the footboard 30. A guide member 302 is associated with the cards 300 and is configured to guide the cards 300 in movement from within the interior region 290 through the open upper end 291. The guide member 302 illustratively includes a pair of pins 304 and 306 slidably received within a pair of slots 308 and 310 formed within each of the plurality of cards 300 (
Operation of the air supply components of the footboard 30 is represented schematically in
A conventional blower control 312 provides an interface between the blower 144 and the controller 107. More particularly, the AC to DC converter 188 provides 24V DC to the blower control 312, which is used to generates the necessary stepper signals to run the blower 144. A 0V DC to 5V DC blower speed signal is supplied to the blower control 312 by the controller 107. When operating in a standard condition, the blower speed signal is approximately 4 V DC.
The blower 144 draws air from the atmosphere through the intake 135 formed in the removable cover 126. The air passes through the inlet filter 166 and into the blower 144 through the intake 168. Air is forced out of the blower 144 through the outlet 181 and then into the manifold 174.
The manifold 174 supplies the pressurized air stream to control valves 146 and 148. More particularly, the air stream enters the manifold 174 through the intake 176 and is then separated to pass through the first outlet 178 and the second outlet 180. Tubing 182 and 184 directs the separated air streams to the first and second control valves 146 and 148. Each control valve 146 and 148 illustratively comprises three zone proportional valves 314. As the separated air streams pass through the control valves 146 and 148, they are further divided into a total of six independent air streams. The number of proportional valves 314 equals the number of independent air streams to be directed to the mattress 38. As may be appreciated, the number of proportional valves 314 may be varied depending upon the number of separately inflatable air bladders or bags included within the mattress 38.
The pressure of each independent air stream, and therefore air mattress zone 44, 46, 48, 50, 52 and 58, is regulated by the opening and closing of its respective proportional valve 314. Illustratively, the proportional valves 314 automatically adjust in response to a signal received from the controller 107, so that their actual output pressures substantially match desired output pressures. The comparison between actual output pressures and desired output pressures is carried out for each valve by a conventional microprocessor (not shown) within the controller 107. Actual output pressures are measured using pressure transducers (not shown) located at the proportional valves 314. The desired output pressures are calculated by the microprocessor based upon the inputs received from the controls 70 on the footboard 30. The desired output pressure may be generated by the controller 107 based upon a patient's height and weight.
In addition to monitoring the controls 70 on the footboard 30 and controlling the operation of the proportional valves 314, the controller 107 controls the speed of the blower 144. When the microprocessor of the controller 107 detects that the actual output pressure at a valve 314 is less than the desired output pressure, the controller 107 signals one of the valves 314 to open so that the actual pressure increases. If the pressure in the manifold 174 is insufficient to increase the actual output pressure after the opening of the valve 314, the controller 107 signals the blower control 312 to increase the speed of the blower 144. Then, as the actual output pressure increases, and the desired output pressure is exceeded, the controller 107 decreases the flow of valve 314 and reduces the speed of the blower 144.
When a zone proportional valve 314 is unable to match the desired pressure with the correct amount of air pressure, the controller 186 will send an alarm signal to the alarm 121. The alarm 121 will provide an audible signal which may be temporarily silenced by depressing the alarm silence button 120.
The temperature of air supplied by the blower 144 is monitored by a thermometer, illustratively a thermistor 318. The thermistor 318 is continually monitored by the controller 107 for continuity to ensure that it has not been opened. As the temperature of the air supplied by the blower 144 rises, the resistance of the thermistor 318 decreases, allowing a voltage signal back to the controller 107 to increase. An alarm condition is activated if the thermistor opens, or if the measured air temperature rises above a predetermined temperature. Illustratively, the predetermined temperature is approximately 150° F. (66° C.), which is based on providing an air temperature to the mattress 38 below approximately 105° F. (41° C.). During the alarm condition, the controller 107 disables the blower 144, illuminates a “service required” indicator light 96 on the central inclined panel 74, and activate the audible alarm 121.
The independent air streams pass from the proportional valves 314 through a CPR dump valve 316, and then into the air supply tubes 260a-g of the air hose assembly 254. The CPR dump valve 316 is an electronically controlled valve actuable to vent all of the independent air streams to the atmosphere simultaneously while air flow from the manifold 174 is stopped. To engage the CPR feature, a caregiver enters a command on the control panel or activates the CPR button 122 located on the housing 124. This sends a signal to the controller 107 to open the CPR valve 316 and to stop the flow of air from the manifold 174. The present invention also provides that a manual CPR condition may be accomplished by disconnecting the hose assembly 254 from either the footboard 30, thereby allowing air to escape from the mattress 38. The net result of either manner of operation is the rapid deflation under the weight of the patient of all of the zones 44, 46, 48, 50, 52 and 58 of the mattress 38.
In the illustrated embodiment, the footboard 30 and the blower 144, or other fluid supply, are formed integrally as a single unit. Therefore, it is not required to couple a separate blower housing to the footboard 30 or other part of the bed 10 in order to supply air to the mattress 38. In the present invention, the bed 10 illustrated in U.S. Pat. No. 6,208,250 is used with a conventional foam, inner spring or static air mattress. When it is desired to switch the conventional mattress to a dynamic air mattress, the footboard shown in U.S. Pat. No. 6,208,250 is removed and replaced with the footboard 30 shown in the present application. This provides an integral blower 144, or other fluid supply, for the mattress 38 supported within the footboard 30 on the bed 10.
Although the blower 144 is illustratively located within the footboard 30, it is understood that the blower 144, or other fluid supply, may be located in an interior region of the headboard 28 or in an interior region of one of the siderails 32 and 34. The headboard 28, the footboard 30, and the siderails 32 and 34 illustratively provide barriers which extend above the top surface 36 of mattress 38 and which are coupled to the frame 20 or articulating deck 22 of the bed 10. Therefore, the present invention provides a fluid supply, such as blower 144, located within an interior region of a barrier coupled to a hospital bed 10.
In an illustrative embodiment of the present invention, the footboard 30 includes access panels or doors 320 configured to cover internal chambers 322. More particularly, the access doors 320 are pivotally coupled to the front wall 195 of the removable cover 126 utilizing conventional mechanisms, such as hinges (not shown). Alternatively, the access doors 320 may be supported for sliding movement relative to the front wall 195 for providing access to the internal chambers 322. The interior region 128 of the footboard 30 is configured to provide space for the internal chambers 322 to extend therein.
The chambers 322 are illustratively configured to receive control modules 324. The control modules 324 include electrical connectors and valves (not shown) for providing various types of therapy to a patient supported on the bed 10. For example, different control modules 324 can be provided for rotation therapy, percussion/vibration therapy, sequential compression therapy, or other type of therapy. Details of the control modules 324 are included in U.S. Pat. Nos. 5,715,548 and 6,047,424, and in U.S. patent application Ser. No. 09/532,592, all of which are assigned to the assignee of the present invention and are expressly incorporated by reference herein. In addition, the doors 320 can provide access to storage chambers 322 for storing other items, such as medical supplies, within the interior region 128 of the footboard 30.
In another illustrative embodiment of the present invention, a compression boot or other compression device (not shown) is stored within interior region 128 of the footboard 30 and is accessible through the door 320 on the footboard 30. If necessary, a separate compressor (not shown) for the compression device may also be stored in interior region 128 of footboard 30. The compression device is removable from the interior region 128 to provide therapy to the patient supported on the mattress 38.
Although the invention has been described in detail with reference to certain illustrated embodiments, variations and modifications exist within the scope and spirit of the invention as described and as defined in the following claims.
This application is a divisional of U.S. application Ser. No. 10/261,771 filed Oct. 1, 2002, now U.S. Pat. No. 6,829,796.
Number | Name | Date | Kind |
---|---|---|---|
2097751 | Baltich | Nov 1937 | A |
2186142 | Lieberman | Jan 1940 | A |
3867731 | Isaac | Feb 1975 | A |
4051522 | Healy et al. | Sep 1977 | A |
4539560 | Fleck et al. | Sep 1985 | A |
4633237 | Tucknott et al. | Dec 1986 | A |
4638519 | Hess | Jan 1987 | A |
4793428 | Swersey | Dec 1988 | A |
4862921 | Hess | Sep 1989 | A |
4907845 | Wood | Mar 1990 | A |
4926951 | Carruth et al. | May 1990 | A |
4934468 | Koerber, Sr. et al. | Jun 1990 | A |
4953244 | Koerber, Sr. et al. | Sep 1990 | A |
4974692 | Carruth et al. | Dec 1990 | A |
5051673 | Goodwin | Sep 1991 | A |
5182826 | Thomas et al. | Feb 1993 | A |
5235319 | Hill et al. | Aug 1993 | A |
5267364 | Volk | Dec 1993 | A |
5269388 | Reichow et al. | Dec 1993 | A |
5276432 | Travis | Jan 1994 | A |
5279010 | Ferrand et al. | Jan 1994 | A |
5335313 | Douglas | Aug 1994 | A |
5393935 | Hasty et al. | Feb 1995 | A |
5410297 | Joseph et al. | Apr 1995 | A |
5425148 | Ashcraft et al. | Jun 1995 | A |
5586346 | Stacy et al. | Dec 1996 | A |
5603133 | Vrzalik | Feb 1997 | A |
5611096 | Bartlett et al. | Mar 1997 | A |
5623736 | Soltani et al. | Apr 1997 | A |
5647079 | Hakamiun et al. | Jul 1997 | A |
5699038 | Ulrich et al. | Dec 1997 | A |
5715548 | Weismiller et al. | Feb 1998 | A |
5771511 | Kummer et al. | Jun 1998 | A |
5802640 | Ferrand et al. | Sep 1998 | A |
5808552 | Wiley et al. | Sep 1998 | A |
5906016 | Ferrand et al. | May 1999 | A |
5906017 | Ferrand et al. | May 1999 | A |
5944494 | Soltani et al. | Aug 1999 | A |
5971913 | Newkirk et al. | Oct 1999 | A |
6021533 | Ellis et al. | Feb 2000 | A |
6047424 | Osborne et al. | Apr 2000 | A |
6067019 | Scott | May 2000 | A |
6073289 | Bolden et al. | Jun 2000 | A |
6158070 | Bolden et al. | Dec 2000 | A |
6178576 | Newell | Jan 2001 | B1 |
6208250 | Dixon et al. | Mar 2001 | B1 |
6212718 | Stolpmann et al. | Apr 2001 | B1 |
6290194 | Chaconas et al. | Sep 2001 | B1 |
6295675 | Ellis et al. | Oct 2001 | B1 |
6320510 | Menkedick et al. | Nov 2001 | B2 |
6321878 | Mobley et al. | Nov 2001 | B1 |
6353948 | Bolden et al. | Mar 2002 | B1 |
6438776 | Ferrand et al. | Aug 2002 | B2 |
6467111 | Vrzalik et al. | Oct 2002 | B1 |
6467113 | Ellis et al. | Oct 2002 | B2 |
6892405 | Dimitriu et al. | May 2005 | B1 |
20010001163 | Allen et al. | May 2001 | A1 |
Number | Date | Country |
---|---|---|
0 860 803 | Aug 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20050091753 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60375874 | Apr 2002 | US | |
60326500 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10261771 | Oct 2002 | US |
Child | 11011658 | US |