The present invention relates to a mattress assembly for use on a hospital bed. More particularly, the present invention relates to a replacement mattress assembly that can be used on various types of bed frames to provide improved patient support and therapies.
Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiment exemplifying the best mode of carrying out the invention as presently perceived.
In one form of the present invention, a support apparatus includes a support surface, which includes at least one fluid bladder and a recess, and a fluid delivery system configured to deliver fluid to the bladder. The fluid delivery system includes a chamber wall, which defines a chamber in fluid communication with the fluid input of the pump and in fluid communication with the bladder. The chamber wall is configured to absorb vibration from the pump when the pump is operated. At least a portion of the fluid delivery system is located in the recess.
In one aspect, the apparatus includes a second chamber wall, which defines a second chamber that is in fluid communication with the fluid output of the pump. The second chamber may also absorb vibration from the pump when the pump is operated.
In another aspect, the apparatus includes an enclosure, with the pump and the chamber walls housed in the enclosure. For example, the enclosure may be located in the recess.
In yet another aspect, the support surface includes a cradle formed from a compressible material, with the bladder supported in the cradle.
According to another aspect, the base wall includes the recess wherein the at least a portion of the fluid delivery system is located in the base wall. For example, the recess may be located at the foot end of the base wall.
In other aspects, the apparatus includes a frame, which supports the support surface, with the base wall including a slippery surface over at least a portion of the base wall facing the frame adjacent the head end and a non-skid surface over at least a portion of the base wall facing the frame adjacent the foot end. For example, the slippery surface may comprise nylon.
Further, the cradle may include at least one gatch point to allow the cradle to fold at the gatch point, and optionally a plurality of gatch points to allow the cradle to fold at multiple points.
In another aspect, the support surface has a head end and a foot end, and the cradle includes regions of increased thickness at the head end of the support surface.
In another form of the invention, a patient support apparatus includes a base surface, a compressible surface having a head end and a foot end, a base wall supporting the compressible surface, and the base wall having a slippery surface over at least a portion of the base wall between the base wall and the base surface adjacent the head end of the compressible surface and a non-skid surface over at least a portion of the base wall facing the base surface adjacent the foot end of the compressible surface wherein the base wall can slide relative to the base surface at the head end of the compressible surface.
In one aspect, the compressible surface includes a compressible cradle and a bladder with the cradle supporting the bladder.
In a further aspect, the apparatus includes a fluid delivery system configured to deliver fluid to the bladder. For example, at least a portion of the fluid delivery system may be located in a recess of the base wall.
In other aspects, the cradle includes regions of increased thickness at the head end of the compressible surface to thereby support a patient's neck.
Other features include the bladder and the cradle has a folding section to permit access to beneath the bladder and the cradle.
In yet another form of the invention, a patient support apparatus includes a flexible support surface with at least one fluid bladder and a compressible cradle supporting the bladder, a base wall supporting the cradle, and a fluid delivery system configured to deliver fluid to the bladder. The cradle has a bottom wall and two opposed side walls, the bottom wall having regions of increased thickness at the head end of the support surface wherein the regions of increased thickness facilitate positioning of a patient's head in a supine position.
For example, the cradle may comprise a foam cradle. Further, the regions of increased thickness may comprise foam pads supported on the foam cradle.
According to yet another form of the invention, a patient support apparatus is provided that includes a support surface with at least one fluid bladder and a fluid delivery system configured to deliver fluid to the bladder. The patient support apparatus further includes a base wall and a cradle, with the cradle formed from a compressible material and supported by the base wall. The bladder is anchored to the base wall to thereby stabilize the bladder.
In one aspect, the bladder is anchored to the base wall by at least one strap. For example, the strap may extend through the cradle.
In a further aspect, the support surface includes a plurality of bladders, with a first group of the bladders arranged longitudinally along the cradle and a second group of the bladders arranged transversely along the cradle. In addition, each of the groups of bladders may be anchored to the base wall. For example, the first group of bladders and the second group of bladders may be anchored to the base wall by the same strap or by different straps.
In yet further aspects, a third group of the bladders is arranged longitudinally along the cradle beneath the second group of bladders, which may comprise turning bladders. Further, the turning bladders may also be anchored to the base wall and optionally also anchored to the base wall through the cradle. For example, the turning bladders may be anchored to the base wall by at least one strap, including for example the same strap that anchors the first and second groups of bladders.
In another form of the invention, a patient support apparatus includes a support surface with a plurality of fluid bladders and a base wall. The bladders are in a stacked arrangement on the base wall, with the bladders being anchored to the base all. The apparatus further includes a fluid delivery system with a pump configured to deliver fluid to the bladders, with at least a portion of the fluid delivery system being located in the support surface.
In one aspect, the support surface further includes a cradle formed from a compressible material, with the bladders supported on the base wall in the cradle. For example, the cradle may comprise a foam cradle.
In a further aspect, the bladders are anchored to the base by at least one strap, for example by a strap that extends through the cradle to the base wall and is coupled to the base wall.
In other aspects, a first group of the bladders is arranged longitudinally along the base wall, with a second group of the bladders being arranged generally orthogonal to the first group of bladders transversely along the base wall. Further, each group of bladders is anchored to the base wall.
In another aspect, the base wall includes a recess, with at least a portion of the fluid delivery system being located in the recess.
According to yet a further aspect, at least a portion of the fluid delivery system is secured in the recess by a strap.
In yet another form of the invention, a patient support apparatus includes an enclosure, at least one inflatable bladder supported in the enclosure, an inflation device for inflating the bladder, and a chamber in fluid communication with the bladder. The chamber is also enclosed in the enclosure and has a valve. A pull tab is located in an opening in the side of the enclosure, which includes a portion that extends into the valve for selectively opening the valve to release fluid from the chamber wherein the fluid in the inflatable bladder is released through the chamber and through the cradle to thereby quickly deflate the bladder.
In one aspect, the apparatus includes a plurality of bladders, with the chamber comprising a manifold having a plurality of conduits coupled to the bladders.
According to yet another form of the invention, a patient support apparatus includes at least one inflatable bladder, an inflation device for inflating the inflatable bladder, a controller for controlling the inflation device, and a chamber in fluid communication with the bladder. The chamber has a valve, with the controller selectively opening the valve to release fluid from the chamber wherein the fluid in the inflatable bladder is released through the chamber to thereby quickly deflate the bladder.
Accordingly, the present invention provides a patient support apparatus that can be used on a wide variety of bed frames and, further, which can provide improved support and comfort.
These and other objects, advantages, purposes, and features of the invention will become more apparent from the study of the following description taken in conjunction with the drawings.
Accordingly, the present invention provides a patient support apparatus that can be used on various types of bed frames to provide improved patient support and therapies.
These and other objects, advantages, purposes, and features of the invention will become more apparent from the study of the following description taken in conjunction with the drawings.
The detailed description particularly refers to the accompanying figure in which:
The term “longitudinal” as used herein and unless defined otherwise is used to define a length-wise orientation, for example from one end to the other end of the patient lying surface along the length thereof.
The term “transverse” as used herein and unless defined otherwise is used to define an orientation generally perpendicular to a length-wise orientation, for example from side to side of the patient lying surface along the width thereof.
The term “head end” as used herein and unless defined otherwise is used in relative positioning to mean the end in proximity of the head of a patient lying on the lying surface.
The term “foot end” as used herein and unless defined otherwise is used in relative positioning to mean the end in proximity of the feet of a patient lying on the lying surface.
Referring to
Referring to
In one embodiment of the present invention, the attachment devices comprise a zipper. In alternative embodiments, and without limiting the scope of the invention, attachment devices may be configured as Velcro™ attachment, snaps, straps, and other know attachment means.
According to another embodiment of the present invention, an overlay is made of the same material as top cover 15 and is permanently affixed thereto. In another embodiment of the present invention, the overlay is permanently affixed to bottom cover 80.
The top cover 15, according to one embodiment of the present invention, may be made of premium polyurethanes material such as Dartex™ material, commercially available from Dartex Coatings Inc., Slatersville, R.I., under the name Dartex™ or any other suitable material that exhibits good hydrolysis properties, thus reducing, if not eliminating, potential risks from cross contamination. Further, the top cover 15 may meet International Flame Retardant Standard BS EN 531 and equivalents. In another embodiment of the present invention, the top cover 15 may be made of material that is air and moisture vapor impermeable as well as being fluid impermeable. In yet another embodiment, top cover 15 may be made of material which is biostatic (anti-mycotic) providing a barrier to virus and bacteria.
A worker skilled in the art would readily understand that, without limitations, urethane based materials, such as nylon-based fabric with a polyurethane transfer coating, or vinyl based or vinyl coated materials, or polyvinyl chloride (PVC) or polyolefin laminated or coated fabrics or other heat sealable covering materials with antibacterial, antifungal and fluid penetration resistant characteristics may be used to make the top cover 15 without departing from the scope of the present invention.
In one embodiment of the present invention, there is a fire barrier layer adjoining the top cover 15, which may consist of a cloth. The fire barrier layer can be made of fire retardant or fire resistant materials. Examples of suitable materials for a fire barrier layer, without limitations, are Nomex™ (a meta-aramid material) and Keylar™ commercially available from DuPont & Company, Wilmington, Del., M5 fiber commercially available from Magellan Systems International, LLC, Bethesda, Md., coated nylon, carbon foam, Proban™ and Indura™ FR cotton fabrics commercially available from Westex Inc., Chicago, Ill., Pyrovatex™ FR cotton commercially available from CIBA Specialty Chemicals Corporation, Tarrytown, N.Y., Dale Antiflame™ cotton fabric commercially available from Daletec AS, Dalekvam, Norway, Technora™ fabric commercially available from Teijin Kabushiki Kaisha Corporation, Japan, Lenzing FR™ commercially available from Lenzing Fibers Inc., North Axis, Ala., modacrylic fiber, poluamide-imide fibers and polybenzimidazole (PBI) fibers.
In one embodiment of the present invention, the fire barrier layer is contiguous with top cover 15 to form a coverlet. The coverlet performs the same functions as the top cover 15 described above but further comprises a fire barrier layer for added fire retardant or fire resistant characteristics.
According to one embodiment of the present invention, the fire barrier layer and top cover 15 are fused together. Alternately, the fire barrier layer and top cover 15 may be operatively connected together, for example by stitches, snaps, eyelets, hooks, laces, Velcro™ attachments.
With reference to
Upper group of cushion bladders 30 may be slightly wider than the lower group of cushion bladders 40 and the turning bladder 50. The upper group of cushion bladders 30 covers the control box assembly enclosure 150 and CPR manifold enclosure 109 located at the foot end 12 and head end 11 of the patient support surface respectively.
According to another embodiment of the present invention, parallel bladders 32 are substantially parallel and longitudinally running across the length of upper group of cushion bladders 30, providing longitudinal cushioning and support for the patient's body. Further, upper group of cushion bladders 30 is held in place by a bladder anchoring system 130, fully described further in this specification.
Optionally, all bladders 32 may be independent of each other and can be replaced separately if damaged.
Alternately, the upper group of cushion bladders 30 may be held in place by a bladder anchoring system 130 and a bladder securing means 140.
In another embodiment, in addition to a bladder anchoring system 140, a bladder securing means 140 may include a plurality of bladder securing straps 142 attached, and optionally permanently attached, to the sides of the upper group of cushion bladders 30, which are configured to be fastened to a plurality of bladder securing straps 143 and 144 (see
In one embodiment, bladders 32 may be grouped into different sections of the upper group of cushion bladders 30, with each particular section being individually inflatable and deflatable and with all the bladders 32 from a particular group being inflatable or deflatable simultaneously. In this latter embodiment, the different sections may be designed to support a different part of the patient's body. Examples of such sections are, without limitations, a head section, a seat section, a thigh section, and a foot section, etc.
In one embodiment of the present invention, upper group of cushion bladders 30 is coupled to top cover 15 (or a coverlet where applicable) and to bottom cover 80 via a bladder anchoring system 130 as will be more fully described below. Alternately, upper group of cushion bladders 30 may be not affixed to top cover 15 (or to a coverlet).
Without departing from the intended scope of the present invention, a worker skilled in the art would understand that the number and shape of bladders 32, and of upper group of cushion bladders 30, can be varied in order to adapt patient support surface 10 to a variety of patient support apparatuses or to provide different care and treatments to patients having particular needs.
With reference to
According to another embodiment of the present invention, parallel bladders 42 are substantially parallel and transverse, running across the width of lower group of cushion bladders 40 and providing transverse cushioning and support for the patient's body.
In one embodiment, each bladder 42 is individually inflatable and deflatable. In another embodiment, bladders 42 are grouped into different sections of the lower group of cushion bladders 40, and each particular section is individually inflatable and deflatable, all the bladders from that particular group being inflated or deflated simultaneously.
In one embodiment of the present invention, the lower group of cushion bladders 40 is held in place by a bladder anchoring system 130. Alternately, the lower group of cushion bladders 40 is held in place by both a bladder anchoring system 130 and bladder securing means 140. Lower group of cushion bladders 40 may be affixed to top cover 15 (or a coverlet) and to bottom cover 80 through bladder anchoring system 130 (see below).
In another embodiment of the present invention encompassing a bladder securing means 140 and depicted in
In one embodiment of the present invention, lower group of cushion bladders 40 may be affixed to top cover 15 (or a coverlet where applicable) and to bottom cover 80 through a bladder anchoring system 130 (see below).
In another embodiment of the present invention, lower group of cushion bladders 40 is not affixed to top cover 15 (or to a coverlet where applicable).
Without departing from the intended scope of the present invention, a worker skilled in the art would understand that the number and shape of bladders 42 and of lower group of cushion bladders 40 can be varied in order to accommodate the adaptation of patient support surface 10 to a variety of patient support apparatuses or to provide different care and treatments to a class of patients.
Referring to
Alternately, the turning bladders 52, 54 may be in fluid communication with the opposite section of the lower cushion formed by lower group of cushion bladders 40. For example, bladder 52 may be in fluid communication with bladders 40a, while bladder 54 may be in fluid communication with bladders 40b. In this manner, air flow between the respective bladders will allow one set of bladders in the lower group of bladders to deflate while the opposite turning bladder is inflating. For example, if you want to turn a patient to the right, the left turning bladder will be inflated and the right section of the lower group of bladders will deflate. This will allow repositioning of the patient over a full range of motion while still retaining the patient on the foam crib. As would be understood, some level of air cushioned support may still be provided under the patient when in a turned position.
The above described shape of the group of turning bladders 50 may be designed to provide alignment of the back, hip and legs of the patient when operating the turn-assist function of the patient support surface 10. For proper care and treatment, it is usually important to be able to rotate the patient along the longitudinal axis of his body.
In one embodiment of the present invention, group of turning bladders 50 is affixed to top cover 15 (or a coverlet) and to bottom cover 80 through bladder anchoring system 130 (see below).
In another embodiment of the present invention, upper group of cushion bladders 30 is not affixed to top cover 15 (or to a coverlet where applicable).
A worker skilled in the art would readily understand that variations of the shape of the group of turning bladders 50 could be made without departing from the scope of the instant invention.
According to an embodiment of the present invention, a plurality of flexible bladder securing means 140 are provided that connect to the various bladders to hold them into place, thus forming a bladder anchoring system. In addition, bladder anchoring system 130 may include a plurality of bands 132, such as flexible bands, that run throughout the various bladders of the patient support surface 10 and through anchoring slits 134 found in upper group of cushion bladders 30, lower group of cushion bladders 40 and group of turning bladders 50 (see
A worker skilled in the art would appreciate that various means of anchoring the upper group of cushion bladders 30, lower group of cushion bladders 40, and group of turning bladders 50 to the patient support surface 10 could be used without departing from the scope of the present invention.
Referring to
Pressurized air is provided to the various bladders by means of an air pump 325 located within control box assembly 300. Control box assembly 300 is embedded into the patient support surface 10, in proximity to the foot end 12.
As best seen in
In one embodiment of the present invention, control box assembly 300 further comprises a fan 330 set in a fan enclosure 332 one of side foam pieces 61 and 62 of foam crib 60 to exit air out of the control box assembly 300. In one embodiment of the present invention, control box assembly 300 further comprises various sensors or sensor reading electronics.
In another embodiment of the present invention (not shown), the control box assembly 300 is powered by means of a battery pack. In a further embodiment (not shown), control box assembly 300 is powered through the power source of the patient support apparatus or bed.
To inflate and maintain pressure in the patient support surface 10, electrically powered air pump 325 supplies air under pressure through tubing system 102, with upper group of cushion bladders 30 connected to the inflating/deflating system 100 via the tubing system 102 through connectors 35 (
Primary hoses 103 run from air pump 325 (within the control box assembly 300) to each of upper group of cushion bladders 30, lower group of cushion bladders 40 and turning bladder 50 (or respective bladders of upper group of cushion bladders 30, lower group of cushion bladders 40 and turning bladder 50) via valve manifold assembly 304. Valve manifold assembly 304 distributes the airflow from air pump 325 to the various bladders of the patient support surface 10 according to the required need. Secondary hoses 31, 41 and 51 run from CPR manifold 108 to primary hoses 103 connected to upper group of cushion bladders 30, lower group of cushion bladders 40 and turning bladder 50 respectively, or respective bladders of upper group of cushion bladders 30, lower group of cushion bladders 40 and turning bladder 50.
The patient support surface 10 according to an embodiment of the present invention comprises a feature which assists the care provider in efficiently providing cardiopulmonary resuscitation (CPR) to a patient lying thereon. The CPR manifold 108 is embedded within the patient support surface 10 proximal to the head end 11 thereof. The relative positioning of the CPR manifold 108 is above the foam crib 60 and bottom cover 80 (see
In one embodiment of the present invention, the tubing of the tubing system 102 which runs longitudinally are positioned in proximity of side foam pieces 61 and 62. This configuration helps avoiding the tubing from interfering with other components of the patient support surface and from inadvertently being disconnected from their respective bladder.
At the head section 11 of patient support surface 10, there is a CPR manifold assembly, which allows the bladders to be quickly deflated so that the patient is supported by the relatively rigid support surface under the inflatable bladders. In this manner, CPR can be administered quickly to the patient. In the illustrated embodiment, CPR manifold assembly includes a CPR manifold 108 and a CPR manifold pull valve 106, which when pulled releases air from the manifold. Manifold 108 is coupled to every bladder of the patient support surface 10 through secondary hoses 31, 41, and 51, which are connected to manifold 108 through check valves 108a. Secondary hoses 41 run from CPR manifold 108 to primary hoses 103 connected to upper group of cushion bladders 30, lower group of cushion bladders 40 and group of turning bladders 50 respectively, or respective bladders of upper group of cushion bladders 30, lower group of cushion bladders 40 and group of turning bladders 50, where applicable. Check valves 108a prevent air from flowing into the manifold when the pressure in the manifold exceeds the pressure in the support surface but open to allow air to flow into the manifold when the pressure in the manifold drops, for example, when the manifold pull valve is opened.
In the illustrated embodiment, manifold 108 is supported in base 80 by a CPR support 111, which is mounted to side walls 84 and 85 by fasteners (e.g. see
In one embodiment of the present invention, the patient support surface 10 has two CPR manual pull valves 106, positioned on each side of the patient support surface 10 and operatively connected to the CPR manifold 108. As best understood from
As noted, the primary function of the CPR manifold assembly is to rapidly deflate and level the upper group of cushion bladders 30, lower group of cushion bladders 40 and group of turning bladders 50 of patient support surface 10 for enabling the administration of CPR procedures. As such procedures are often life preserving in nature, the time in which they can be administered to a patient is crucially important. To the CPR manifold assembly, the health care provider simply has to pull the CPR manual pull valve handle 107, which then disconnects from and unplugs CPR manual pull valve 106, causing all running functions of the patient support surface 10 to stop and all bladders thereof to instantly deflate.
As depicted in
A transverse section view of side foam pieces 61, 62 according to one embodiment of the present invention is depicted in
The bottom foam piece 64 is made from a material that is strong, but of lower Indentation Load Deflection (ILD) than side foam pieces 61, 62. For example, side foam pieces 61, 62 may have an ILD in a range of 60 to 85, or in a range of 41-60, or in a range of 33 to 40. Suitable ILD's for side foam pieces include an ILD of 85, an ILD of 80, an ILD of 75, or an ILD of 70. Bottom foam piece 64 is cushy and comfortable and of minimal height. According to an embodiment of the present invention (see for example
In one embodiment of the present invention, side foam pieces 61, 62 have an Indentation Load Deflection (ILD) of 85.
According to an embodiment of the present invention, there are compression gashes 63 may be provided in side foam piece 61, 62 in areas that are tailored to allow the patient support surface 10 to bend easily with the patient support apparatus or bed as various sections thereof are articulated. For example, in the embodiment depicted at
A worker skilled in the art would understand that the foam crib 60 according to embodiments of the present invention does not necessarily need to be made of foam and that any relatively soft material with an appropriate Indentation Load Deflection, as described above.
In reference to
The bottom cover 80 is designed to cover the bottom but also covers the outside walls of the patient support surface 10. In one embodiment of the present invention, the underside surface of base portion 88 of bottom cover 80 is made of or has a layer of non-skid material on the section proximal to the foot portion 87. The underside surface section of base portion 88 of bottom cover 80 proximal to the head portion 86 is made of or has a layer of a slippery material such as, without limitations, nylon. The side portions 85 of bottom cover 80 are fabricated from (or covered with) a thick non-skid material, which is of high-resistance. In this manner, when surface 10 is resting on a frame, such as a deck assembly of a bed, the head end of surface 10 can slide relative to the frame, for example, when surface 10 is being lifted or folded.
Bottom cover 80 also comprises anchoring points 135 of the bladder anchoring system 130.
Referring now to
According to an embodiment of the present invention, attachment straps 160 are also provided on the head end 11 and foot end 12 of patient support surface 10.
Referring to
Alternately, control pendant 350 may communicates with the control box assembly 300 via wireless communication means.
In one embodiment of the present invention, the control box assembly 300 is operatively connected to the patient support apparatus' or bed's communication network, such as a CAN network, which is coupled to one or more bed control panels, including a touch screen, to allow a user to control various functions on the bed or review the status of various functions on the bed. In this manner, the control of the control box assembly 300 and the functions of the patient support surface may therefore be effected through the support apparatus' or bed's control panel.
Control pendant 350, as depicted in the exemplarily embodiment of
Control buttons 350a may include, for example, Turn-Assist Right 351, Turn-Assist Left 352, Max Inflate 353, Stop 354, Firmness Decrease 355, Firmness Increase 356, Default Firmness 357 (not shown), Lock 358, Maintenance Call 359 (not shown), etc. As would be understood, when any one of these control buttons is actuated, typically by pressure, the control board will actuate the pump or deactivate the pump as appropriate for the selected function or generate the appropriate signal for the alarm or lock functions.
The patient support surface 10 according to one embodiment of the present invention comprises various sensors to perform specific functions. These sensors can be of all or some of the following categories: pressure sensor(s), angle or tilt sensor(s), temperature sensor(s) and humidity sensor(s).
The pressure sensor(s) are used to measure the pressure on a patient's body lying on the patient support surface 10 by measuring the applied pressure in various points of the patient support surface 10. The pressure sensor(s) can be placed in several locations, for example, without limitations, on either face of the top cover 15, on the coverlet, on upper group of cushion bladders 30, on lower group of cushion bladders 40, on group of turning bladders 50, etc.
The angle or tilt sensor(s) may be used to measure the inclination angle(s) of various sections of a patient support surface 10 used with a patient support apparatus or bed which has moveable sections. The angle or tilt sensor(s) can be located in several locations, for example, without limitations, on either face of the top cover 15, on the coverlet, on upper group of cushion bladders 30, on lower group of cushion bladders 40, on group of turning bladders 50, on either face of the bottom cover, etc.
The temperature sensor(s) are used to measure the temperature of a patient's body lying on the patient support surface 10, and are situated, without limitations, on either face of the top cover 15, on the coverlet, etc.
The humidity sensor(s) are used to measure the relative humidity of a patient's body lying on the patient support surface 10, and are situated, without limitations, on the top surface of top cover 15 or a coverlet, etc. The humidity sensor(s) may be useful to monitor or detect possible medical conditions, such as bed ulcers, which are affected by the humidity.
It should be understood that other possible types of sensors could be used within the present invention such as, without limitations, integrated circuit sensors, Piezo sensitive devices, angular sensors, potentiometers, contact switches, capacitors, Temposonic™ (linear position sensors and transducers . . . ), magneto resistive elements, optical sensors, camera sensors, radar sensors, ultrasonic sensors, magnetic sensors, or any combination thereof.
As noted, the various functions of the patient support surface 10 may be controlled via the control pendant 350, and examples thereof are described below.
The turn-assist function of the patient support surface 10 assists a health care provider in turning bed-ridden patients. The patient should be positioned along the longitudinal centerline of the patient support surface 10 to facilitate turning. Failure to position the patient along the patient support surface centerline before starting the turn-assist function could result in patient injury. In an embodiment of the present invention, it is preferable to raise the patient support apparatus siderails. Then, the health care provider can initiate the turn-assist by selecting the corresponding function (turning the patient on the left or on the right) on the control pendant 350 (or on the patient support apparatus' or bed's communication network control panel).
A function selection signal is then transmitted from the control pendant 350 to the air main control board 305 of control box assembly 300. Air main control board 305 then operatively coordinates the for the air pump 325, valve manifold assembly 304 to inflate one of the two bladders 52, 54 that run longitudinally in group of turning bladders 50 (as depicted in
Patient support surface firmness settings may be adjusted for patient comfort requirements. In one embodiment of the present invention, default firmness is pre-determined and pre-programmed. For example, the default firmness may be pre-programmed to be in a range of 20 to 25 mmHg, 25 to 30 mmHg, or 15 to 20 mmHg and may, for example, be pre-programmed to be about 22 mmHg.
The determination of the default firmness value will depend on the weight of the patients, with higher settings being typically preferable for heavier patients.
Using the control pendant 350 (or on the patient support apparatus' or bed's communication network control panel), the “Max inflate” function of the patient support surface may be selected, which allows nurses to inflate the patient support surface 10 to a maximum predetermined pressure to facilitate patient manipulation and transfer to or from patient support surface 10. For example, a maximum predetermined pressure may be in a range from 70 to 80 mmHg, in a range from 60 to 70 mmHg, or in the range from 50 to 60 mmHg. In various embodiments, maximum predetermined pressure may be 80 mmHg, 70 mmHg, 60 mmHg, or 50 mmHg.
Another feature of the patient support surface 10 according to an embodiment of the present invention is the CPR state of the patient support surface 10 via the CPR manifold assembly. As described previously, a function of the CPR manifold assembly is to rapidly deflate and level the upper group of cushion bladders 30, lower group of cushion bladders 40 and group of turning bladders 50 of patient support surface 10 for enabling the administration of CPR procedures and to stop every running features of the patient support surface 10. Since CPR procedures can often be life preserving in nature, the time in which they can be administered to a patient is sensitive.
In one embodiment of the present invention, the CPR state feature of the patient support surface 10 is not controlled from the control pendant 350 but rather from the CPR manifold assembly. To initiate the CPR state feature, the health care provider simply has to pull on CPR manual pull valve handle 107 of a CPR manual pull valve 106, which will cause all other running functions or features of the patient support surface 10 to stop and all inflated bladders thereof to rapidly deflate. The patient is then in a proper position for receiving CPR procedures, lying flatly on a firm surface.
In another embodiment of the present invention, the CPR manual pull valve 106 is replaced by a CPR electrically powered valve 106a (not shown) operatively connected to and controlled via the control pendant 350. In such an embodiment, control pendant 350 comprises a CPR valve activation button to initiate the CPR state feature.
In one embodiment of the present invention, an indicator or alarm signal is activated on the control pendant 350 whenever the CPR positioning feature is initiated.
While several embodiments have been shown and described, modifications and variations may be made without departing from the scope of the invention. For example, the present invention has been described in reference to a pneumatic bladder system; however, while air may be preferable, any suitable fluid, such as other gases or liquids may be pumped into the various bladders without exceeding the scope of the invention. Thus, while the term “air: has been used throughout the specification, the term “air” should be understood to mean any suitable fluid, gaseous or liquid.
Further, the present invention has been described for use in association with a patient bed, which typically include a frame system comprising a base frame supported on the floor, for example by a plurality of caster wheels, an intermediate frame supported by an elevation system, a deck support connected to the intermediate frame and one or more side rails. A worker skilled in the art would readily understand that a bed can be configured in other ways. The patient support surface according to the present invention would be readily usable with alternate patient support apparatus, including for example, a stretcher, a cot, or the like.
In addition, the present invention makes reference to various components as being made of foam (for example foam crib and components thereof, IV tube management fastener and components thereof, etc.). It should be understood that the term “foam” is intended to mean any relatively soft material with an appropriate Indentation Load Deflection.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
This application claims the benefit of provisional application, entitled A PATIENT LYING SURFACE WITH TURN-ASSIST, Ser. No. 60/866,206, filed Nov. 16, 2006.
Number | Date | Country | |
---|---|---|---|
60866206 | Nov 2006 | US |