Patient support systems facilitate care of patients in a health care setting. Patient support systems comprise patient support apparatuses such as, for example, hospital beds, stretchers, cots, and wheelchairs. Conventional patient support apparatuses comprise a base and a litter upon which the patient is supported. Often, patient support apparatuses have a lift system that may be used to raise and lower the litter and thus the patient relative to the base. These litters typically have several sections, including a fowler section, a seat section, and a foot section with the fowler section and the foot section being capable of articulation relative to the seat section via articulation actuators. On some occasions, the lift system in conjunction with the articulation actuators may move the litter relative to the base while articulating one or more of the sections such that the litter is reconfigured from a bed configuration to a chair configuration.
A patient support apparatus being able to move from a bed configuration to a chair configuration helps patients with limited mobility get into a position that will enable them to regain mobility more easily. Typically, when the litter is moved to the chair configuration from the bed configuration, the foot section is lowered to a generally vertical orientation, which limits lowering of the litter. In some instances, the foot section includes a footboard. Typically, to move the litter into the chair configuration, the footboard must be removed from the foot section for the patient to be able to reach a floor surface. The patient support apparatus often includes a mattress disposed on the litter for patient comfort. Typically, when the litter moves from the bed configuration to the chair configuration, the mattress encounters difficulty in folding with the foot section relative to the seat section into the chair configuration. A patient support apparatus designed to overcome one or more of the aforementioned challenges is desired.
Referring to
A support structure provides support for the patient. The support structure illustrated in
A mattress 29 may be disposed on or integral with the litter 26. The mattress 29 comprises a secondary patient support surface 28 upon which the patient is supported. The base 24, litter 26, and patient support surfaces 27, 28 each have a head end and a foot end corresponding to designated placement of the patient's head and feet on the patient support apparatus 20. The construction of the support structure may take on any known or conventional design, and is not limited to that specifically set forth above. In addition, the mattress 29 may be omitted in certain embodiments, such that the patient rests directly on the patient support surface 27. In many embodiments, the mattress 29 is integrated with at least a portion of the litter 26. Details regarding embodiments where the mattress 29 is integrated with the litter 26 are discussed further below.
Side rails 30, 32, 34, 36 are coupled to the litter 26 and thereby supported by the base 24. A first side rail 30 is positioned at a right head end of the litter 26. A second side rail 32 is positioned at a right foot end of the litter 26. A third side rail 34 is positioned at a left head end of the litter 26. A fourth side rail 36 is positioned at a left foot end of the litter 26. If the patient support apparatus 20 is a stretcher or a cot, there may be fewer side rails. The side rails 30, 32, 34, 36 are movable between a raised position in which they block ingress and egress into and out of the patient support apparatus 20 and a lowered position in which they are not an obstacle to such ingress and egress and/or one or more intermediate positions therebetween. In still other configurations, the patient support apparatus 20 may not include any side rails.
A headboard may be coupled to the litter 26. In other embodiments, the headboard may be coupled to other locations on the patient support apparatus 20, such as the base 24. In still other embodiments, the patient support apparatus 20 does not include the headboard.
Caregiver interfaces 38, such as handles, are shown integrated into side rails 30, 32, 34, 36 to facilitate movement of the patient support apparatus 20 over floor surfaces. Additional caregiver interfaces 38 may be integrated into the headboard and/or other components of the patient support apparatus 20. The caregiver interfaces 38 are graspable by the caregiver to manipulate the patient support apparatus 20 for movement. In other embodiments, the patient support apparatus 20 does not include caregiver interfaces 38.
It should be noted that in many of the figures described herein, certain components of the patient support apparatus 20 have been removed for convenience of description and ease of illustration.
Referring to
The foot section 42 is configured and arranged to articulate relative to the seat section 40 between a first configuration 50 (shown in
In one embodiment, shown in
The litter 26 has at least one intermediate configuration between the first and second configurations 50, 52. In one embodiment, the intermediate configuration is a bed exit configuration with the seat and foot sections 40, 42 tilted forward such that a patient may exit the bed toward the foot section 42. This position is helpful for patients having limited mobility to regain their lost mobility. Another embodiment of the intermediate configuration is shown in
In one embodiment as shown in
Referring specifically to
In one embodiment shown in
In one embodiment, the seat section 40 comprises a third width 66 that is greater than the first width 62. In one embodiment, the first width 62 is less than thirty-five inches. In other embodiments, the first width 62 is greater than or equal to thirty-five inches.
The base 24 comprises a foot end 68 and a head end 70. The base 24 further comprises at least two foot end support features 72 disposed at the foot end 68 to support the base 24 on the floor surface. In one embodiment, the foot end support features 72 comprise a pair of arms extending from the base with a caster wheel coupled to each arm for engagement with the floor surface.
In one embodiment, when the litter 26 is in the second configuration 52, the foot section 42 is beneath the seat section 40 and the foot end support features 72 are arranged with respect to the seat section 40 such that a patient's legs and feet hanging off the edge of the seat section 40 would not contact the foot end support features 72, but instead could reach the floor surface directly between the foot end support features 72. The base 24 defines an open space 74 between the foot end support features 72. The open space 74 is configured to be open to the floor surface between the foot end support features 72 and to receive feet of the patient between the foot end support features 72 when the litter 26 is in the second configuration 52. In other embodiments, not shown, the foot end support features 72 may be located directly beneath the seat section 40 such that the foot end support features 72 are not an obstacle to the patient when attempting to exit.
As shown in
In one embodiment, referring to
In one embodiment, the biasing device 83 may comprise one or more tension springs, or other types of biasing devices (such as compression springs, gas springs, torsion springs, and the like). The footboard 78 is orthogonal to the foot section 42 in the deployed position 80. In alternative embodiments, the footboard 78 is in the deployed position 80 when the footboard 78 is at an angle greater than ninety degrees relative to the foot section 42. In further embodiments, the footboard 78 is in the deployed position 80 when the footboard 78 is at an angle less than ninety degrees relative to the foot section 42. The angle of the footboard 78 relative to the foot section 42 in the collapsed position 82 is less than the angle of the footboard 78 relative to the foot section 42 in the deployed position 80. The footboard 78 comprises a proximal end 84 coupled to the foot section 42 and a distal end 86 opposite the proximal end 84. The footboard 78 is configured to rotate or otherwise articulate relative to the foot section 42 such that the distal end 86 of the footboard 78 rotates toward the foot section 42. The distal end 86 of the footboard 78 is configured to make contact with the foot section 42, or at least a portion of the mattress 29 disposed on the foot section 42, when the footboard 78 is in the collapsed position 82.
The footboard 78 may be configured to rotate or otherwise articulate relative to the foot section 42 in a range of about ninety degrees, greater than ninety degrees, greater than one hundred eighty degrees, and/or greater than two hundred seventy degrees. For instance, the footboard 78 may articulate from its deployed position toward the mattress 29 to achieve between zero and ninety degrees of rotation, but additionally, or alternatively, may be configured to articulate from its deployed position away from the mattress 29. In the latter case, the footboard 78 may articulate until the footboard 78 is parallel with the foot section 42, e.g., it has been rotated about ninety degrees in a direction opposite the mattress 29 to be disposed one hundred eighty degrees from the foot section 42. Moreover, the footboard 78 may be configured to further rotate beyond one hundred eighty degrees and back toward the foot section 42, albeit now toward the bottom surface of the foot section 42.
In some embodiments, the footboard 78 is at an angle less than ninety degrees relative to the foot section 42 when the footboard 78 is in the collapsed position 82 and the distal end 86 of the footboard 78 does not make contact with the foot section 42 or the mattress 29 disposed on the foot section 42. In other words, the collapsed position 82, as shown for instance in
In one embodiment, the mattress 29 is configured to move with the foot section 42 between the first and second configurations 50, 52. The footboard 78 is configured to trap bedding disposed on the mattress 29 against the mattress 29 when the footboard 78 is in the collapsed position 82. In some embodiments, the footboard 78 is able to trap bedding disposed on the mattress 29 in a position between the deployed and collapsed position 80, 82. Bedding may include sheets, blankets, comforters, covers, or any other bedding material conventionally used with mattresses.
In one embodiment shown in
In other embodiments as shown in
The footboard 78 is configured to abut one of the actuation surface 90 and the floor surface when the foot section 42 is moved to the second configuration 52 such that an actuation force is applied by one of the actuation surface 90 and the floor surface on the footboard 78 against a biasing force from the biasing device 83 to move the footboard 78 from the deployed position 80 to the collapsed position 82. In one embodiment, the footboard 78 is configured to abut one of the actuation surface 90 and the floor surface when the foot section 42 is vertically oriented relative to the floor surface to begin moving the footboard 78 from the deployed position 80 to the collapsed position 82. In other embodiments, the footboard 78 is configured to abut one of the actuation surface 90 and the floor surface when the foot section 42 is non-vertically oriented relative to the floor surface to begin moving the footboard 78 from the deployed position 80 to the collapsed position 82.
As shown in
In one embodiment, the lift actuator 100 is a rotary actuator as described in one of U.S. Non-Provisional application Ser. No. 15/635,787, entitled PATIENT SUPPORT SYSTEMS WITH ROTARY ACTUATORS, filed on Jun. 28, 2017; U.S. Non-Provisional Application No. 15/635,836, entitled PATIENT SUPPORT SYSTEMS WITH ROTARY ACTUATORS COMPRISING ROTATION LIMITING DEVICES, filed on Jun. 28, 2017; U.S. Non-Provisional application Ser. No. 15/635,802, entitled PATIENT SUPPORT SYSTEMS WITH HOLLOW ROTARY ACTUATORS, filed on Jun. 28, 2017; U.S. Non-Provisional application Ser. No. 15/635,826, entitled PATIENT SUPPORT SYSTEMS WITH ROTARY ACTUATORS HAVING CYCLOIDAL DRIVES, filed on Jun. 28, 2017; and U.S. Non-Provisional application Ser. No. 15/635,817, entitled ROTARY ACTUATOR HAVING CLUTCH ASSEMBLY FOR USE WITH PATIENT SUPPORT APPARATUS, filed on Jun. 28, 2017, each of which is hereby incorporated by reference in its entirety. In this embodiment, the lift members 48 are movable members and the lift actuator 100 drives relative movement between the lift members 48 and the base 24 to articulate (e.g., pivot) the lift members 48 relative to the base 24. In this manner, the litter 26 is raised relative to the base 24. The lift actuator 100 comprises a motor (not shown) to provide power for the lift actuator 100 to drive the lift actuator 100 in a forward driving condition. In other embodiments, the lift actuator 100 is a linear actuator or other actuators are also contemplated.
The lift system 46 further comprises a second actuator 102 coupled to one of the lift members 48 and a seat section support frame 96 of the seat section 40. In particular, the second actuator 102 is coupled to the lift member 48 at an end of the lift member 48 coupled to the seat support frame 96. The second actuator 102 moves the seat section 40 relative to the pair of lift members 48 and tilts the seat section 40 and the litter 26 relative to the base 24. The second actuator 102 is hereinafter referred to as the tilt actuator 102.
Referring to
In one embodiment, the seat support frame plates 96b extend from the seat support frame base 96a toward the floor space to define a seat support frame interior 96c. In one embodiment, the seat support frame interior 96c receives the foot section 42 when the litter 26 is in the second configuration 52. In another embodiment, the foot section 42 is underneath the seat support frame base 96a when the litter 26 is in the second configuration 52.
In one embodiment, the tilt actuator 102 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the seat support frame 96 is a movable member and the tilt actuator 102 drives relative movement between the seat support frame 96 and the lift members 48 to articulate the seat support frame 96 relative to the lift members 48. In this manner, the litter 26 is tilted relative to the base 24. The tilt actuator 102 comprises a motor (not shown) to provide power for the tilt actuator 102 to drive the tilt actuator 102 in a forward driving condition. In other embodiments, the tilt actuator 102 is a linear actuator or other actuators are also contemplated.
In one embodiment, the lift system 46 comprises exactly two lift members 48. The arrangement of two actuators 100, 102 on either end of the lift members 48 eliminates the need for additional support arms or members. Further, with the lift and tilt actuators 100, 102 driving and constraining movement of the lift members 48 relative to the base 24 and the seat support frame 96, respectively, there is no need for timing mechanisms such as four bar mechanisms or other timing mechanisms to stabilize the lift system 46.
In one embodiment, the lift and tilt actuators 100, 102 are not back drivable. Back drive occurs when a load is applied externally to the respective movable members of the lift and tilt actuators 100, 102, which creates torque in opposition to drive torque provided by the motor, that, if not checked, would otherwise rotate (in an opposite direction to the respective forward driving conditions of the lift and tilt actuators 100, 102)
A third actuator 104 is coupled to a foot section support frame 94 of the foot section 42 and the seat section support frame 96. The third actuator 104 is arranged to move (e.g., articulate) the foot section 42 relative to the seat section 40. The third actuator 104 is hereinafter referred to as the foot section actuator 104.
In one embodiment, the foot section actuator 104 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the foot section support frame 94 is a movable member and the foot section actuator 104 drives relative movement between the seat section support frame 96 and the foot section support frame 94 to articulate the foot section support frame 94 relative to the seat section support frame 96. In this manner, the foot section 42 may be moved (e.g. articulated) beneath the seat section 40. In other embodiments, the foot section actuator 104 is a linear actuator or other actuators are also contemplated.
A fourth actuator 106 is coupled to a fowler section support frame 98 of the fowler section 44 and the seat section support frame 96. The fourth actuator 106 is arranged to move (e.g., articulate) the fowler section 44 relative to the seat section 40. The fourth actuator 106 is hereinafter referred to as the fowler section actuator 106.
In one embodiment, the fowler section actuator 106 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the fowler section support frame 98 is a movable member and the fowler section actuator 106 drives relative movement between the fowler section support frame 98 and the seat section support frame 96 to articulate the fowler section support frame 98 relative to the seat section support frame 96. In other embodiments, the fowler section actuator 106 is a linear actuator or other actuators are also contemplated.
In one embodiment, as shown in
In another embodiment, shown in
In the embodiments described in the figures, one actuator is shown for each of the lift, tilt, foot section, and fowler section actuators 100, 102, 104, 106. In alternative embodiments, two or more actuators may be employed for each of the lift, tilt, foot section, and fowler section actuators 100, 102, 104, 106.
A fifth actuator 114 is coupled to the foot section 42 that extends and retracts the foot section support frame 94. The fifth actuator 114 is hereinafter referred to as the extension actuator 114. In the embodiments described in the figures, one actuator is shown for the extension actuator 114. In alternative embodiments, two or more actuators may be employed for the extension actuator 114.
As shown in
The foot section actuator 104 and the extension actuator 114 collectively form a foot section actuator system 116, while the foot section actuator system 116 and the fowler section actuator 106 collectively form an articulation system 49.
In another embodiment, instead of a biasing device 83 being used to bias the footboard 78 into the deployed position 80, the articulation system 49 further comprises a footboard actuator 117 (shown schematically in
In one embodiment, the footboard actuator 117 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the footboard 78 is a movable member and the footboard actuator 117 drives relative movement between the footboard 78 and the foot section support frame 94 to articulate the footboard 78 relative to the foot section support frame 94. In other embodiments, the footboard actuator 117 is a linear actuator or other actuators are also contemplated.
Several embodiments illustrating arrangements of the sections of the litter 26 are shown in
In embodiments shown in
In one embodiment, the leg section actuator 164 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the leg section support frame 162 is a movable member and the leg section actuator 164 drives relative movement between the seat section support frame 96 and the leg section support frame 162 to articulate the leg section support frame 162 relative to the seat section support frame 96. In this manner, the leg section 160 may be moved (e.g. articulated) beneath the seat section 40. In other embodiments, the leg section actuator 164 is a linear actuator or other actuators are also contemplated.
In the embodiment illustrated in
In one embodiment, the intermediate foot section actuator 174 is a rotary actuator as described in one of the above identified U.S. Non-Provisional Applications incorporated by reference. In this embodiment, the second foot section support frame 172 is a movable member and the intermediate foot section actuator 174 drives relative movement between the first foot section support frame 170 and the second foot section support frame 172 to articulate the second foot section support frame 172 relative to the first foot section support frame 170. In other embodiments, the intermediate foot section actuator 174 is a linear actuator or other actuators are also contemplated.
As shown in
The controller 120 is coupled to the actuators 100, 102, 104, 106, 114, 117, 164, 174 in a manner that allows the controller 120 to control the actuators 100, 102, 104, 106, 114, 117, 164, 174. The controller 120 may communicate with the actuators 100, 102, 104, 106, 114, 117, 164, 174 via wired or wireless connections. The controller 120 generates and transmits control signals to the actuators 100, 102, 104, 106, 114, 117, 164, 174, or otherwise cause the actuators to perform one or more of the desired functions.
The controller 120 controls operation of the actuators 100, 102, 104, 106, 114, 117, 164, 174. More specifically, the controller 120 may monitor a current state of the actuators 100, 102, 104, 106, 114, 117, 164, 174 and determine desired states in which the actuators 100, 102, 104, 106, 114, 117, 164, 174 should be placed, based on one or more input signals that the controller 120 receives from one or more user input devices 124. Alternatively, the controller 120 may monitor a position of the fowler section 44, seat section 40, leg section 160, foot section 42, and/or footboard 78 and determine desired positions of the fowler section 44, seat section 40, leg section 160, foot section 42, and/or footboard 78.
The caregiver, or other user, may actuate one of the user input devices 124, which transmits a corresponding input signal to the controller 120, and the controller 120 controls operation of the corresponding actuator based on the input signal. Operation of the corresponding actuator may continue until the caregiver discontinues actuation of the user input device 124, e.g., until the input signal is terminated. In other words, depending on which user input device 124 is engaged, i.e., what input signal is received by the controller 120, the controller 120 controls operation of one or more of the actuators 100, 102, 104, 106, 114, 117, 164, 174. In certain embodiments, the controller 120 selects or initiates operation of one or more of the actuators 100, 102, 104, 106, 114, 117, 164, 174 based on the input signals received by the controller 120.
The user input devices 124 may comprise devices capable of being actuated by a user, such as the caregiver or the patient. The user input devices 124 may be configured to be actuated in a variety of different ways, including but not limited to, mechanical actuation (hand, foot, finger, etc.), hands-free actuation (voice, foot, etc.), and the like. Each user input device 124 may comprise a button, a gesture sensing device for monitoring motion of hands, feet, or other body parts of the caregiver (such as through a camera), a microphone for receiving voice activation commands, a foot pedal, and a sensor (e.g., infrared sensor such as a light bar or light beam to sense a user's body part, ultrasonic sensor, etc.). Additionally, the buttons/pedals can be physical buttons/pedals or virtually implemented buttons/pedals such as through optical projection or on a touchscreen. It should be appreciated that any combination of user input devices 124 may also be utilized for any of the actuators. The user input devices 124 may be located on one of the side rails 30, 32, 34, 36, the headboard, the footboard 78, or other suitable locations. The user input devices 124 may also be located on a portable electronic device (e.g., iWatch®, iPhone®, iPad®, or similar electronic devices or any other remote device/station in addition to a portable electronic device).
In one embodiment, the patient support apparatus 20 comprises a user control panel that comprises numerous user input devices 124 in the form of buttons. The buttons may be mechanical press buttons, virtual buttons on a touch screen, and the like. Furthermore, as should be appreciated, the patient support apparatus may comprise any number of actuators and the corresponding user input devices 124. Each of the buttons control different predetermined functions of one or more of the actuators.
In order for the caregiver to continue operating one of the actuators 100, 102, 104, 106, 114, 117, 164, 174 to perform the desired function using one of the buttons (or other user input devices 124), the caregiver may be required to continue actuating (e.g., continue depressing or continue touching) the button until the caregiver is satisfied with the adjustment that was made to the actuator. Other user input devices 124 can be continually actuated in other ways, depending on their mode of actuation. For instance, an infrared sensor that generates a light beam can be continually actuated by continually breaking the light beam. Similarly, a gesture sensing device can be continually actuated by continually sensing an actuating gesture.
In some cases, this requirement that the caregiver continually actuate (e.g., continually depress or continually touch) the button (or other user input device 124) to cause energization of the actuator prevents the caregiver from performing other tasks that could be performed instead, such as assisting the patient with other needs. Accordingly, in certain embodiments described herein, the user input devices 124 are configured to also enable continued operation (i.e., energization) of the actuator, even after the caregiver ceases to actuate the user input device 124, e.g., after the caregiver ceases to depress or touch one of the buttons, for a predetermined period of time, or until the desired adjustment is complete.
As previously discussed, the user input devices 124, are capable of generating numerous input signals associated with one or more of the actuators 100, 102, 104, 106, 114, 117, 164, 174. For instance, each of the buttons generate a different first input signal associated with each of the different functions assigned to the buttons. The controller 120 is configured to recognize which input signal is being received so that the controller 120 can operate the actuators 100, 102, 104, 106, 114, 117, 164, 174 appropriately to perform the assigned functions.
In some embodiments, the controller 120 is configured to initiate operation of the lift system 46 in response to receiving the first input signal when the caregiver presses the button to operate the actuator to either lift or lower the litter 26.
In further embodiments, operation of the lift system 46 is dependent on a triggering event that causes the controller 120 to operate the lift system 46 to move the patient from a current patient condition (e.g., a current patient elevation) to a desired patient condition (e.g., a desired patient elevation).
Embodiments for controlling actuators 100, 102, 104, 106, 114, 117, 164, 174 to effect various configurations of the sections of the litter 26 when placing the litter 26 in the second configuration 52 are described below and illustrated in
In one embodiment, as shown in
In another embodiment, as shown in
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the controller 120 is configured to control articulation and extension of the foot section 42 relative to the seat section 40 to maintain at least one predetermined positional criterion 126. The predetermined positional criterion 126 comprises maintaining a minimum distance between a location on the foot section 42 and the floor surface, maintaining a constant distance between the footboard 78 and the feet of the patient, mitigating shear on legs of the patient, and any combination thereof.
In one embodiment, the patient's legs are disposed on top of the mattress 29 with the mattress 29 being disposed above a joint between the foot section 42 and the seat section 40. A pivot point at the patient's knee and the joint between the foot section 42 and the seat section 40 may not be aligned. In this case, the controller 120 coordinates operation of the extension actuator 114 and the foot section actuator 104 to mitigate shear on the patient's legs resulting from misalignment of the pivot point of the patient's knee with the joint between the foot section 42 and the seat section 40 throughout articulation of the foot section 42 between the first configuration 50 and the second configuration 52. For instance, as the foot section 42 is articulated downwardly, the foot section 42 is simultaneously retracted and as the foot section 42 is articulated upwardly, the foot section 42 is simultaneously extended. The simultaneous extension/retraction can be at a constant rate relative to the articulation rate or at a variable rate relative to the articulation rate.
In one embodiment, the controller 120 is configured to control the foot section actuator system 116 to simultaneously extend or retract the foot section 42 while articulating the foot section 42 relative to the seat section 40 to maintain the minimum distance between the location on the foot section 42 and the floor surface. In another embodiment, the controller 120 is configured to control the foot section actuator system 116 to simultaneously extend or retract the foot section 42 while articulating the foot section 42 relative to the seat section 40 to maintain the constant distance between the footboard 78 and the feet of the patient. In other embodiments, the controller 120 is configured to coordinate operation of the foot section actuator system 116 and other actuators of the lift system 46 and/or articulation system 49 to maintain the at least one predetermined positional criterion 126 that requires sustaining a position of one section of the litter 26 relative to another component of patient support apparatus 20. In still other embodiments, the controller 120 is configured to control operation of the individual actuators independently.
In one embodiment, the controller 120 coordinates operation of the lift actuator 100 and the tilt actuator 102 to move the litter 26 to an elevated position relative to the base 24 while maintaining the orientation of the litter 26 relative to the floor surface.
In one embodiment, when the litter 26 moves from the first configuration 50 to the second configuration 52, the controller 120 coordinates operation of the lift actuator 100, tilt actuator 102, and foot section actuator 104 to move the seat section 40, foot section 42, and footboard 78 through engagement with one of the actuation surface 90 and the floor surface. The controller 120 continues to coordinate operation of the lift, tilt, and foot section actuators 100, 102, 104 so that the footboard 78 is in constant engagement with one of the actuation surface 90 and the floor surface and the foot section 42 moves beneath the seat section 40 and towards the seat section 40 until the litter 26 is in the second configuration 52, or the controller 120 coordinates operation of the lift actuator 100, tilt actuator 102, foot section actuator 104 and footboard actuator 117 to move to the second configuration 52.
In another embodiment, the controller 120 coordinates operation of the fowler section actuator 106 to move the fowler section 44 with movement of the seat and foot sections 40, 42 from the first configuration 50 to the second configuration 52.
In another embodiment, the controller 120 coordinates operation of the extension actuator 114 to extend or retract the foot section 42 with movement of the seat section 40, foot section 42, and/or fowler section 44 from the first configuration 50 to the second configuration 52. Coordinated operation of any of the actuators described herein may be employed to coordinate motion transitioning between configurations.
In one embodiment, the controller 120 coordinates operation of the extension actuator 114 to maintain a predetermined positional criterion 126 as the litter 26 moves from the first configuration 50 to the second configuration 52.
Conventional mattresses encounter difficulty in moving with the foot section 42 as the foot section 42 moves beneath the seat section 40 and into the second configuration 52. In many embodiments, the mattress 29 comprises a mattress assembly 128 to accommodate the change in geometry.
As shown in
The suspension layer 132 is directly connected to the foot section support frame 94 and forms a mattress base of the foot mattress segment 130 to support weight of the patient on the foot section 42. The patient's weight is supported on the foot mattress segment 130 in a manner that causes the mattress base and the conformable layer 134 to at least partially conform in shape to a portion of the patient as shown in
In one embodiment, the foot section support frame 94 comprises a pair of frame members 94a, 94b spaced apart from each other and the suspension layer 132 spans between the frame members 94a, 94b. In one embodiment, the suspension layer 132 comprises a compliant material. In another embodiment, the suspension layer 132 comprises a textile. The textile may comprise fabric. Further, the fabric may be woven. More specifically, the woven fabric may be an elastomeric material. In other embodiments, the woven fabric comprises a polymer such as polyester. In certain embodiments, the suspension layer 132 comprises Dymetrol®. Additional suspension layers 132 may also be provided in some cases. Furthermore, the suspension layer 132 may be a continuous layer formed in one sheet or material, or the suspension layer 132 may comprise several strips of material spanning the frame members 94a, 94b. In this case, the strips may be spaced from each other to define gaps therebetween. In alternative embodiments, the suspension layer 132 comprises multiple layers of compliant material.
In one embodiment, the conformable layer 134 is bonded to the suspension layer 132. The conformable layer 134 may be heat bonded to the suspension layer 132, may be bonded to the suspension layer 132 with an adhesive, and the like. The conformable layer 134 may be connected to the suspension layer 132 using any suitable method for connecting these layers. In alternative embodiments, the conformable layer 134 is coupled to the suspension layer 132 by mechanical fasteners such as hooks, clips, buttons, and the like. In further embodiments, the suspension layer 132 is stitched or interwoven with the conformable layer 134.
In one embodiment, the conformable layer 134 comprises at least one of a foam, a gel, and a pod material. In other embodiments, the conformable layer 134 comprises each of a foam material, a gel material, and a pod material, one or more foam materials, one or more gel materials, one or more pod materials or any combinations thereof.
In one embodiment, the foot mattress segment 130 has a thickness of less than three inches. Conventional mattresses typically have thicknesses around nine inches. Reducing the overall thickness of the foot mattress segment 130 also reduces the overall height of the litter 26 relative to the floor surface when the litter 26 is in the second configuration 52 because the foot section 42 is stowed beneath the seat section 40, which would otherwise require the seat section 40, and thus the litter 26 as a whole, to be raised to accommodate a thicker mattress stowed beneath the seat section 40. In other embodiments, the foot mattress segment 130 has a thickness of three inches or more.
As shown in
In one embodiment, the controller 120 is in communication with the motor M of the tension adjuster 156 to control the motor M. A sensor 158 (e.g., one or more strain gauges) may be employed to determine a current tension of the suspension layer 132. The controller 120 may be configured to control the motor M and adjust the tension of the suspension layer 132 in response to feedback from the sensor 158 so that the tension is set at a desired tension. In some cases, various tensions may be desired in the suspension layer 132 depending on the configuration in which the litter 26 is placed, or depending on other conditions associated with the patient support apparatus 20 or the patient. For instance, in the chair configuration a higher tension may be desirable so that the suspension layer 132 does not hang, but is instead sufficiently taut. This may also apply when the foot section 42 is raised relative to the seat section 40. In alternative embodiments, tension may be adjusted without the use of a sensor 158. In other embodiments, at least one of the seat section 40 and the fowler section 44 comprise suspension layers 132 and conformable layers 134. Each section 40, 42, 44 of the litter 26 may have one or more tension adjusters and one or more sensors. Tension may be adjusted within each section 40, 42, 44 and separately or independently in each section 40, 42, 44 as desired.
In another embodiment, the controller 120 is configured to determine a weight of at least a portion of the patient based on feedback from the sensor 158.
Various embodiments of the mattress assembly 128 are shown below in
In another embodiment shown in
In one embodiment shown in
In many embodiments, the mattress assembly 128 comprises an elastic covering 148 disposed over the mattress segments 130, 136, 138 and the connecting segments 140,142.
In one embodiment, the fowler mattress segment 136 comprises a fowler conformable layer 150 and the seat mattress segment 138 comprises a seat conformable layer 152. Each of the fowler conformable layer 150 and the seat conformable layer 152 may comprise at least one of foam and gel material. In other embodiments, each of the fowler conformable layer 150 and the seat conformable layer 152 comprises both a foam material and a gel material, one or more foam materials, one or more gel materials, or any combinations thereof.
In another embodiment shown in
In one embodiment, at least one of the fowler mattress segment 136 and the seat mattress segment 138 comprise fluid bladders configured to provide therapy to the patient. A pump and fluid delivery system (not shown) may be provided to selectively provide fluid to the bladders. The pump and fluid delivery system may be located beneath the seat section 40 or beneath the fowler section 44, or otherwise accommodated on the patient support apparatus 20.
In another embodiment, the fluid bladders are used to provide active pressure distribution across at least one of the fowler mattress segment 136 and the seat mattress segment 138 to better distribute the weight of the patient and reduce pressure points.
In further embodiments, the fluid bladders are used to provide turn assistance to reduce the risk of a patient receiving bed sores from prolonged immobilization.
In one embodiment, the seat mattress segment 138 has a first thickness and the foot mattress segment 130 has a second thickness smaller than the first thickness. The fowler mattress segment 136 may have a similar first thickness as the seat mattress segment 138 such that the foot mattress segment 130 is thinner than both the fowler mattress segment 136 and the seat mattress segment 138.
It is to be appreciated that the terms “include,” “includes,” and “including” have the same meaning as the terms “comprise,” “comprises,” and “comprising.”
Several embodiments have been discussed in the foregoing description. However, the embodiments discussed herein are not intended to be exhaustive or limit the invention to any particular form. The terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations are possible in light of the above teachings and the invention may be practiced otherwise than as specifically described.
This application is a Continuation of U.S. patent application Ser. No. 15/693,714, filed on Sep. 1, 2017, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/382,871, filed on Sep. 2, 2016, the disclosures of each of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62382871 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15693714 | Sep 2017 | US |
Child | 17691457 | US |