The present application relates generally to patient temperature control systems.
It has been discovered that the medical outcome for a patient suffering from severe brain trauma or from ischemia caused by stroke or heart attack or cardiac arrest is improved if the patient is cooled below normal body temperature (37° C.). Furthermore, it is also accepted that for such patients, it is important to prevent hyperthermia (fever) even if it is decided not to induce hypothermia. Moreover, in certain applications such as post-CABG surgery, it might be desirable to re-warm a hypothermic patient.
As recognized by the present application, the above-mentioned advantages in regulating temperature can be realized by cooling or heating the patient's entire body using a closed loop heat exchange catheter placed in the patient's venous system and circulating a working fluid such as saline through the catheter, heating or cooling the working fluid as appropriate in an external heat exchanger that is connected to the catheter. The following U.S. patents, all of which are incorporated herein by reference, disclose various intravascular catheters/systems/methods for such purposes: U.S. Pat. Nos. 6,881,551 and 6,585,692 (tri-lobe catheter), U.S. Pat. Nos. 6,551,349 and 6,554,797 (metal catheter with bellows), U.S. Pat. Nos. 6,749,625 and 6,796,995 (catheters with non-straight, non-helical heat exchange elements), U.S. Pat. Nos. 6,125,684, 6,299,599, 6,368,304, and 6,338,727 (catheters with multiple heat exchange balloons), U.S. Pat. Nos. 6,146,411, 6,019,783, 6,581,403, 7,287,398, and 5,837,003 (heat exchange systems for catheter), U.S. Pat. No. 7,857,781 (various heat exchange catheters).
Accordingly, a catheter includes a working fluid supply path communicating with a source of working fluid and a working fluid return path communicating with the working fluid supply path to return working fluid from the supply path to the source of working fluid. At least one of the supply path and/or return path is contained in a distal heat exchange region of the catheter, where the distal heat exchange region is to be disposed in a patient. The distal heat exchange region includes at least first and second helical paths and may be made of a shape memory material. In non-limiting embodiments, the shape memory material may be nitinol.
Furthermore, the helical paths described herein may overlap each other to establish a double helical structure in non-limiting embodiments, or they may not overlap each other in other non-limiting embodiments. If desired, the first helical path may be in the working fluid supply path, or both the first and second helical paths may be in the working fluid supply path. Alternatively, the first helical path may be in the working fluid return path in non-limiting embodiments, or the first and second helical paths may be in the working fluid return path in still other non-limiting embodiments.
In another aspect, a method includes providing a working fluid supply path that at least in part defines a catheter and that is in fluid communication with a source of working fluid. The method also includes providing a working fluid return path that at least in part defines the catheter and is in fluid communication with the working fluid supply path to return working fluid from the supply path to the source of working fluid. At least one of the paths provided by the method disclosed herein is contained in a distal heat exchange region of the catheter, where the distal heat exchange region includes first and second helical paths.
In still another aspect, a catheter includes a working fluid supply path communicating with a source of working fluid and a working fluid return path communicating with the working fluid supply path to return working fluid from the supply path to the source of working fluid. At least one of the supply and/or return paths is contained in a heat exchange region of the catheter, where the heat exchange region is to be positioned into a patient. The heat exchange region includes plural helical paths, where the plural helical paths are understood not to be limited to only two helical paths.
The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Referring initially to
As shown, working fluid may be circulated between the heat exchange system 12 and catheter 10 through supply and return lines 16, 18 that connect to the proximal end of the catheter 10 as shown. Note that as used herein, “proximal” and “distal” in reference to the catheter are relative to the system 12. A patient temperature signal from a catheter-borne temperature sensor may be provided to the system 12 through an electrical line 20 or wirelessly if desired. Alternatively, a patient temperature signal may be provided to the system 12 from a separate esophageal probe or rectal probe or tympanic sensor or bladder probe or other temperature probe that measures the temperature of the patient 14.
The catheter 10, in addition to interior supply and return lumens through which the working fluid is circulated, may also have one or more infusion lumens connectable to an IV component 22 such as a syringe or IV bag for infusing medicaments into the patient, or an instrument such as an oxygen or pressure monitor for monitoring patient parameters, etc.
The catheter 10 can be positioned typically in the vasculature of the patient 14 and more preferably in the venous system of the patient 14 such as in the inferior vena cava through a groin insertion point or the superior vena cava through a neck (jugular or subclavian) insertion point.
Next, regarding
Now in reference to
The catheter 24 also has a distal heat exchange region 32 which may be positioned into a patient, such as the patient 38, wherein at least one of the paths 26 and/or 28 are contained in the distal heat exchange region 32 of the catheter 24. Further, the distal heat exchange region 32 may include a first helical path 34 and a second helical path 36 in fluid communication with each other. In the non-limiting embodiment shown in
In non-limiting embodiments, the distal heat exchange region 32 shown in
Still in reference to
Additionally, it is to be understood that, in other non-limiting embodiments, the first and second helical paths of
In embodiments in which the helical paths are made of shape memory material, they may be deformed into a radially smaller or constricted configuration such as, for example, a straight, non-helical, side-by-side configuration for insertion and withdrawal from the patient. Then, once inside the patient, the paths may be released to assume their enlarged helical shapes for maximizing heat exchange with the blood. Heating may be used to effect this configuration change, or the catheter may simply be advanced into the patient through an introducer sheath that confines the paths and deforms them into sufficiently small configurations to fit inside the sheath, upon the exit of which at the distal end the paths assume the helical shape to which they are biased.
Now in reference to
The catheter 40 also has a distal heat exchange region 48 which may be positioned into a patient, such as the patient 54, wherein at least one of the paths 42 and/or 44 are contained in the distal heat exchange region 48 of the catheter 40. Furthermore, it is to be understood that the distal heat exchange region 48 may include plural helical paths, though only two helical paths are shown in
In the nonlimiting embodiment shown in
Moving on to
The catheter 56 also has a distal heat exchange region 64 in accordance with present principles, which may be positioned into a patient such as the patient 70. The region 64 includes a first helical path 66 and a second helical path 68 in fluid communication with each other. As shown in
Also in accordance with present principles, the first helical path 66 is in and/or defines at least a portion of the supply path 58 in non-limiting embodiments. Also in non-limiting embodiments, the second helical path 68 is in and/or defines at least a portion of the return path 60. As may be appreciated from
The catheter 72 also has a distal heat exchange region 80 in accordance with present principles, which may be positioned into a patient such as the patient 86. As may be seen in
Also in accordance with present principles, the first helical path 82 is in and/or defines at least a portion of the supply path 74 in non-limiting embodiments. Also in non-limiting embodiments, the second helical path 84 is in and/or defines at least a portion of the return path 76. As may be appreciated from
Now in reference to
The catheter 88 also has a distal heat exchange region 96 in accordance with present principles, which may be positioned into a patient such as the patient 102. As may be seen in
It may be appreciated from
Still in reference to
Moving on to
The catheter 106 also has a distal heat exchange region 114 in accordance with present principles, which may be positioned into a patient such as the patient 120. The region 114 includes a generally linear path 116 and a helical return path 118 in fluid communication with each other. As shown in
Also in accordance with present principles, the linear path 116 is understood to define at least a portion of the distal region 114 and is in and/or defines at least a portion of the supply path 108 in the exemplary embodiment shown. Also in exemplary embodiments such as the one shown in
Now in reference to
The catheter 122 also has a distal heat exchange region 130 in accordance with present principles, which may be positioned into a patient such as the patient 136. The region 130 includes a generally linear path 132 extending generally centrally through a helical return path 134, the paths 132 and 134 being in fluid communication with each other. As shown in
Also in accordance with present principles, the generally linear path 132 is in and/or defines at least a portion of the supply path 124 in the exemplary embodiment shown. Also in exemplary embodiments such as the one shown in
It may now be appreciated from
While the particular PATIENT TEMPERATURE CONTROL CATHETER WITH HELICAL HEAT EXCHANGE PATHS is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.
Number | Name | Date | Kind |
---|---|---|---|
1459112 | Mehl | Jun 1923 | A |
1857031 | Schaffer | May 1932 | A |
2663030 | Dahlberg | Dec 1953 | A |
2673987 | Upshaw et al. | Apr 1954 | A |
3225191 | Calhoun | Dec 1965 | A |
3369549 | Armao | Feb 1968 | A |
3425419 | Dato | Feb 1969 | A |
3504674 | Swenson et al. | Apr 1970 | A |
3726269 | Webster | Apr 1973 | A |
3744555 | Fletcher et al. | Jul 1973 | A |
3751077 | Hiszpanski | Aug 1973 | A |
3937224 | Uecker | Feb 1976 | A |
3945063 | Matsuura | Mar 1976 | A |
4038519 | Foucras | Jul 1977 | A |
4065264 | Lewin | Dec 1977 | A |
4103511 | Kress et al. | Aug 1978 | A |
4126132 | Portner et al. | Nov 1978 | A |
4153048 | Magrini | May 1979 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
4181132 | Parks | Jan 1980 | A |
4298006 | Parks | Nov 1981 | A |
4459468 | Bailey | Jul 1984 | A |
4532414 | Shah et al. | Jul 1985 | A |
4554793 | Harding, Jr. | Nov 1985 | A |
4581017 | Sahota | Apr 1986 | A |
4638436 | Badger et al. | Jan 1987 | A |
4653987 | Tsuji et al. | Mar 1987 | A |
4661094 | Simpson | Apr 1987 | A |
4665391 | Spani | May 1987 | A |
4672962 | Hershenson | Jun 1987 | A |
4754752 | Ginsburg et al. | Jul 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4813855 | Leveen et al. | Mar 1989 | A |
4849196 | Yamada et al. | Jul 1989 | A |
4852567 | Sinofsky | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4906237 | Johansson et al. | Mar 1990 | A |
4941475 | Williams et al. | Jul 1990 | A |
5092841 | Spears | Mar 1992 | A |
5103360 | Maeda | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5195965 | Shantha | Mar 1993 | A |
5211631 | Sheaff | May 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281215 | Milder | Jan 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5334346 | Kim et al. | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5344436 | Fontenot et al. | Sep 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5403281 | O'Neill et al. | Apr 1995 | A |
5433740 | Yamaguchi | Jul 1995 | A |
5437673 | Baust et al. | Aug 1995 | A |
5458639 | Tsukashima et al. | Oct 1995 | A |
5486207 | Mahawili | Jan 1996 | A |
5486208 | Ginsburg | Jan 1996 | A |
5507792 | Mason et al. | Apr 1996 | A |
5531714 | Dahn et al. | Jul 1996 | A |
5531776 | Ward et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5624392 | Saab | Apr 1997 | A |
5634907 | Rani et al. | Jun 1997 | A |
5676670 | Kim | Oct 1997 | A |
5701905 | Esch | Dec 1997 | A |
5709564 | Yamada et al. | Jan 1998 | A |
5709654 | Klatz et al. | Jan 1998 | A |
5716386 | Ward et al. | Feb 1998 | A |
5730720 | Sites et al. | Mar 1998 | A |
5733319 | Neilson et al. | Mar 1998 | A |
5737782 | Matsuura et al. | Apr 1998 | A |
5776079 | Cope et al. | Jul 1998 | A |
5788647 | Eggers | Aug 1998 | A |
5837003 | Ginsburg | Nov 1998 | A |
5862675 | Scaringe et al. | Jan 1999 | A |
5895418 | Saringer | Apr 1999 | A |
5908407 | Frazee et al. | Jun 1999 | A |
5957963 | Dobak | Sep 1999 | A |
5980561 | Kolen et al. | Nov 1999 | A |
6019783 | Philips et al. | Feb 2000 | A |
6042559 | Dobak | Mar 2000 | A |
6051019 | Dobak | Apr 2000 | A |
6059825 | Hobbs et al. | May 2000 | A |
6096068 | Dobak et al. | Aug 2000 | A |
6106518 | Wittenberger et al. | Aug 2000 | A |
6110139 | Loubser | Aug 2000 | A |
6117065 | Hastings et al. | Sep 2000 | A |
6117105 | Bresnaham et al. | Sep 2000 | A |
6124452 | DiMagno | Sep 2000 | A |
6126684 | Gobin et al. | Oct 2000 | A |
6146141 | Schumann | Nov 2000 | A |
6146411 | Noda et al. | Nov 2000 | A |
6148634 | Sherwood | Nov 2000 | A |
6149670 | Worthen et al. | Nov 2000 | A |
6149677 | Dobak | Nov 2000 | A |
6231594 | Dae | May 2001 | B1 |
6283940 | Mulholland | Sep 2001 | B1 |
6299599 | Pham et al. | Oct 2001 | B1 |
6338727 | Noda et al. | Jan 2002 | B1 |
6368304 | Aliberto | Apr 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6409747 | Gobin et al. | Jun 2002 | B1 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6428563 | Keller | Aug 2002 | B1 |
6450990 | Walker et al. | Sep 2002 | B1 |
6451045 | Walker | Sep 2002 | B1 |
6464716 | Dobak et al. | Oct 2002 | B1 |
6527798 | Ginsburg et al. | Mar 2003 | B2 |
6530946 | Noda et al. | Mar 2003 | B1 |
6540771 | Dobak et al. | Apr 2003 | B2 |
6544282 | Dae et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6551349 | Werneth | Apr 2003 | B2 |
6554791 | Cartledge et al. | Apr 2003 | B1 |
6554797 | Worthen et al. | Apr 2003 | B1 |
6581403 | Whitebook | Jun 2003 | B2 |
6585692 | Worthen et al. | Jul 2003 | B1 |
6605106 | Schwartz | Aug 2003 | B2 |
6610083 | Keller et al. | Aug 2003 | B2 |
6620187 | Carson et al. | Sep 2003 | B2 |
6620188 | Ginsburg et al. | Sep 2003 | B1 |
6624679 | Tomaiuolo et al. | Sep 2003 | B2 |
6635076 | Ginsburg | Oct 2003 | B1 |
6679906 | Hammack et al. | Jan 2004 | B2 |
6685733 | Dae et al. | Feb 2004 | B1 |
6706060 | Tzeng et al. | Mar 2004 | B2 |
6716188 | Noda et al. | Apr 2004 | B2 |
6719723 | Werneth | Apr 2004 | B2 |
6719779 | Daoud | Apr 2004 | B2 |
6726653 | Noda et al. | Apr 2004 | B2 |
6740109 | Dobak | May 2004 | B2 |
6749625 | Pompa | Jun 2004 | B2 |
6796995 | Pham et al. | Sep 2004 | B2 |
6799342 | Jarmon | Oct 2004 | B1 |
6843800 | Dobak | Jan 2005 | B1 |
6881551 | Heller | Apr 2005 | B2 |
6887263 | Bleam et al. | May 2005 | B2 |
6893419 | Noda et al. | May 2005 | B2 |
6969399 | Schock et al. | Nov 2005 | B2 |
7255709 | Walker et al. | Aug 2007 | B2 |
7287398 | Noda et al. | Oct 2007 | B2 |
7371254 | Dobak, III | May 2008 | B2 |
7510569 | Dae et al. | Mar 2009 | B2 |
7666215 | Callister et al. | Feb 2010 | B2 |
7822485 | Collins | Oct 2010 | B2 |
7846193 | Dae et al. | Dec 2010 | B2 |
7857781 | Noda et al. | Dec 2010 | B2 |
8105262 | Noda et al. | Jan 2012 | B2 |
8105263 | Noda et al. | Jan 2012 | B2 |
8105264 | Noda et al. | Jan 2012 | B2 |
8109894 | Noda et al. | Feb 2012 | B2 |
20010001832 | Dobak et al. | May 2001 | A1 |
20010007951 | Dobak | Jul 2001 | A1 |
20010031946 | Walker et al. | Oct 2001 | A1 |
20010032003 | Pecor | Oct 2001 | A1 |
20010047196 | Ginsburg et al. | Nov 2001 | A1 |
20020013569 | Sterman et al. | Jan 2002 | A1 |
20020022823 | Luo et al. | Feb 2002 | A1 |
20020116039 | Walker et al. | Aug 2002 | A1 |
20020145525 | Friedman et al. | Oct 2002 | A1 |
20020151942 | Walker et al. | Oct 2002 | A1 |
20020151944 | Walker | Oct 2002 | A1 |
20020183692 | Callister | Dec 2002 | A1 |
20020198578 | Dobak, III | Dec 2002 | A1 |
20020198579 | Khanna | Dec 2002 | A1 |
20030088240 | Saadat | May 2003 | A1 |
20030236496 | Samson et al. | Dec 2003 | A1 |
20040089058 | Haan et al. | May 2004 | A1 |
20040102825 | Daoud | May 2004 | A1 |
20040210231 | Boucher et al. | Oct 2004 | A1 |
20050156744 | Pires | Jul 2005 | A1 |
20070007640 | Harnden et al. | Jan 2007 | A1 |
20070076401 | Carrez et al. | Apr 2007 | A1 |
20100057063 | Arless et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
19531935 | Feb 1997 | DE |
1183185 | Mar 1970 | GB |
2040169 | Mar 1983 | GB |
2212262 | Jul 1989 | GB |
2383828 | Jun 2005 | GB |
H09215754 | Aug 1997 | JP |
H10127777 | May 1998 | JP |
H10305103 | Nov 1998 | JP |
2002500915 | Jan 2002 | JP |
2002-525165 | Aug 2002 | JP |
2003-175070 | Jun 2003 | JP |
2006-511292 | Apr 2006 | JP |
1990001682 | Feb 1990 | WO |
1993004727 | Mar 1993 | WO |
1994000177 | Jan 1994 | WO |
1994001177 | Jan 1994 | WO |
1997025011 | Jul 1997 | WO |
1998024491 | Jun 1998 | WO |
1998040017 | Sep 1998 | WO |
2000010494 | Mar 2000 | WO |
WO 2000018327 | Apr 2000 | WO |
2001013809 | Mar 2001 | WO |
2001064146 | Sep 2001 | WO |
2001076517 | Oct 2001 | WO |
2001083001 | Nov 2001 | WO |
WO 2002007625 | Oct 2003 | WO |
Entry |
---|
Saab, “Multi-Lumen Heat Transfer Catheter System”, file history of pending U.S. Appl. No. 12/924,933, filed Oct. 8, 2010. |
Scott et al., “Apparatus and Method for Providing Enhanced Heat Transfer from a Body”, file history of pending U.S. Appl. No. 12/897,637, filed Oct. 4, 2010. |
Machold et al., “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,000, filed May 4, 2011. |
Machold et al., “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,036, filed May 4, 2011. |
Machold et al., “Method and System for Control of a Patient's Body Temperature by Way of a Transluminally Insertable Heat Exchange Catheter”, file history of pending U.S. Appl. No. 13/161,648, filed Jun. 20, 2011. |
Japanese Office Action in Application No. 2016-175568, dated Jun. 18, 2019, 8 pages, English Translation. |
Dorraine Day Watts, Arthur Trask, Karen Soeken, Philip Predue, Sheilah Dols, Christopher Kaufman; “Hypothermic Coagulopathy in trauma: Effect of Varying levels of Hypothermia on Enzyme Speed, Platelet Function, and Fibrinolytic Activity”. The Journal of Trauma: Injury, Infection, and Critical Care, Vo. 44, No. 5 (1998). |
F.W. Behmann, E. Bontke, “Die Regelung der Wärmebildung bei künstlicher Hypothermie”, Pffügers Archiv, Bd. 266, S. 408-421 (1958). |
F.W. Behmann, E. Bontke, “Intravasale Kühlung”, Pffügers Archiv, Bd. 263, S. 145-165 (1956). |
Wilhelm Behringer, Stephan Prueckner, Rainer Kenter, Samuel A. Tisherman, Ann Radovsky, Robert Clark, S. William Stezoski, Heremy Henchir, Edwin Klein, Peter Safar, “Rapid Hypothermic Aortic Flush Can Achieve Survival without Brain Damage after 30 Minutes Cardiac Arrest in Dogs”, anesthesiology, V. 93, No. 6, Dec. 2000. |
Number | Date | Country | |
---|---|---|---|
20180338858 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13247073 | Sep 2011 | US |
Child | 16051690 | US |