1. Field of the Invention
The present invention generally relates to devices for moving objects, and more specifically to a method and device for transferring mobility-impaired persons, such as moving a hospital patient from a bed to a table.
2. Description of the Related Art
A wide variety of products have been designed to move objects from one location to another and, in particular, transfer mobility-impaired individuals such as patients. In a hospital or other medical setting, patients must often be transported from their beds to an examination table or operating table, and back again. Basic devices for transferring patients include stretchers that are carried manually by two attendants, and gurneys that can more easily be handled by a single attendant. A typical gurney (British trolley) has an elongate patient-support surface, a frame or chassis structure for the patient-support surface, and wheels or casters that facilitate movement of the gurney.
One innovation in the field of patient-transfer devices is the use of two counter-rotating belts for the patient-support surface which creep under the patient to provide “frictionless” acquisition and delivery. An example of such a design is shown in U.S. Pat. No. 5,540,321 (Foster). The attendant manually rotates a crank to move the upper and lower belt trays under the patient while the belts counter-rotate. Once the patient is supported by the trays, the tray assembly is raised off the bed and the device can be rolled on casters to transport the patient.
The entire Foster device moves during use, either closer to the patient/bed during acquisition, or away from the patient/bed during delivery. The mechanism that drives this lateral movement is the forcible engagement of the lower belt against the bed. Because movement of the lower belt drives the lateral movement of the device, the relative belt speed (eversion rate for both belts) is the same as the lateral speed of the support structure. The matching belt speed is relative to the table assembly, so technically one side of a given belt (upper or lower) will be moving at twice the table speed from a fixed point of reference, and the other side of the given belt will have zero speed from the fixed point of reference.
This inherent matching of the belt speed and lateral device speed carries through to a variety of patient moving devices. For example, U.S. Pat. No. 6,932,209 (Kasagami et al.) illustrates a patient transfer device which is motorized rather than relying on manual actuation. Kasagami is not technically a gurney since it does not have a frame or chassis on wheels, and it is used to transfer a patient from a bed to a gurney, but it still operates on the principle of two counter-rotating belts to avoid slippage between the patient and the upper belt. As with Foster, the lateral movement of the Kasagami device is driven by the lower belt itself, and so the lateral movement speed again matches the rotational speed of both belts.
Another patient transfer device which utilizes the two counter-rotating belts is illustrated in U.S. Pat. No. 7,540,044 (Patterson et al.). One representation of the Patterson invention is shown in
While the use of two counter-rotating belts to crawl under a patient greatly reduces frictional engagement which ideally eliminates skin shear for the patient, the prior art patient transfer devices can still create significant patient discomfort. The Foster device can be particularly jerky since it is manually driven without any speed control. The motor-driven Kasagami device improves in this regard, but does not always move evenly to/from the patient since it has no tracks or rails to guide the lateral movement, so multiple attendants may be required to help position the device in order to easily acquire the patient. The Patterson device further improves in this regard by using the slide assembly to keep the table assembly properly aligned and smoothly move under the patient, but even with the Patterson device some patients still have described an uncomfortable pushing sensation on the body.
In light of the foregoing, it would be desirable to devise an improved patient transfer device and transfer method which provided a more comfortable patient acquisition experience. It would be further advantageous if the device and method could adapt to patients having different characteristics such as weight.
It is therefore one object of the present invention to provide an improved patient transfer device.
It is another object of the present invention to provide such an improved patient transfer device which can more comfortably and safely acquire a patient for transfer.
It is yet another object of the present invention to provide such an improved patient transfer device having different acquisition modes to optimize patient comfort based on patient weight.
The foregoing objects are achieved in a method of transporting an object such as a patient by positioning a transfer device adjacent a support surface for the object, the transfer device having a base and a table assembly movable between a home position over the base and an extended position to a side of the base and the table assembly further having upper and lower tables with counter-rotating upper and lower belts, adjusting a height of the table assembly to a height of the support surface, and moving the table assembly toward the extended position to place the table assembly underneath the object but resting upon the support surface, while keeping the base stationary and with the upper belt moving at a rotational speed which is greater than a translational speed of the table assembly. The upper and lower tables are preferably in forcible contact while the belts are moving, and separated once the table assembly is in the extended position to lift the object above the support surface on the upper table while the lower table remains resting upon the support surface; the table assembly can then be moved back toward the home position while supporting the object on the upper table and keeping the upper and lower tables separated. The upper belt is preferably driven using the lower belt while the upper and lower tables are maintained in forcible contact. The faster movement of the belts may be in response to a determination that the patient has a characteristic whose value is within a predetermined range. The patient characteristic may for example be patient weight, e.g., with the predetermined range being less than about 250 pounds. In the illustrative implementation a patient transfer device of the present invention includes a control system having a control keyboard for receiving user input indicating that the belts should be moved faster, and control logic responsive to the user input which controls speeds of motors that independently drive the belts and the table assembly.
The above as well as additional objectives, features, and advantages of the present invention will become apparent in the following detailed written description.
The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings indicates similar or identical items.
With reference now to the figures, and in particular with reference to
In a preferred embodiment, upper and lower belts 22, 24 can be in either an engaged position or a disengaged position. In the engaged position, portions of upper and lower belts 22, 24 are in forcible contact, so driving one belt results in movement of the other. In a preferred embodiment the belt drive mechanism is located within and drives lower belt 24, so lower belt 24 in turn drives upper belt 22 when the belts are in the engaged position. In the disengaged position, lower belt 24 can rotate without driving upper belt 22. The disengagement may be achieved in various manners, such as physical separation of upper and lower belt tables or the retraction of internal drive rollers.
When the belts are engaged, driving lower belt 24 at speed V1 will cause upper belt 22 to also rotate generally at speed V1. However, table assembly 20 can translate to the left or right at a different speed V2 (while the base of the transfer device remains fixed). In particular, the present invention provides for a belt rotation/eversion speed V1 which is greater than the lateral table assembly speed V2. For a preferred embodiment, this belt-table speed differential is only implemented during patient acquisition, i.e., V1>V2 for patient acquisition (on either side of the patient transfer device) while V1≈V2 for patient delivery. It has been found that this belt-table speed differential mitigates the uncomfortable pushing sensation that patients sometimes feel against their body during acquisition as explained further below.
Depicted in
According to a preferred embodiment of the present invention, table movement panel 30 further includes two patient weight buttons 36, 38. These two buttons allow the patient transfer device to operate in one of two modes, a first of these modes providing a belt speed which is greater than the lateral table speed (V1>V2), and a second of these modes providing a belt speed which is approximately equal to the lateral table speed (V1≈V2). In this example the weight threshold is 250 pounds, so button 36 is pushed for lower weight patients (less than 250 pounds), and button 38 is pushed for higher weight patients (greater than 250 pounds).
The specific weight threshold of 250 pounds for the two different weight modes is deemed preferable based on testing, but should not be considered in a limiting manner since other arbitrary weight thresholds may be used, in particular with varying speed differentials as explained further below. For example, the weight threshold could alternatively be 200 pounds, or three different weight modes could be provided for (i) less than 150 pounds, (ii) 150 pounds to 250 pounds, and (iii) greater than 250 pounds. In a further alternative embodiment, the response of the transfer device to patient weight may be generally continuous, i.e., a range of speed differentials over a weight range of 75 pounds to 500 pounds. The approximate nature of the weight threshold is also reflected in the weight selection buttons 36, 38 which indicate “greater than” or “less than”, but not “equal to”. If a patient happens to weigh exactly 250 pounds then the operator can use either button 36, 38 in her discretion. The invention can also be implemented without weight considerations, i.e., always providing a slightly higher belt speed for acquisition regardless of patient weight.
It has been discovered that, in the case of a patient weighing less than about 250 pounds (and especially if less than about 130 pounds), when the belt table assembly is extended at the same rate as the belt speed, there can be a somewhat uncomfortable pushing sensation on the body. This sensation is possibly due to the fact that there is less “cushion” between the musculoskeletal structure and the patient's skin surface. In lighter weight patients, if the rotational speed of the belt is significantly greater than the translational speed (e.g., V1≈[110%×V2, 130%×V2]), this pushing effect is mitigated by a lifting sensation as the belt table comes into contact with the patient. Lighter-weight test subjects reported a much more comfortable experience with the speed differential of the present invention which creates a lifting effect and minimizes if not eliminates the pushing sensation on the patient. For a patient weighing more than 250 pounds there is usually a substantial cushion between the skin and the musculoskeletal structure, and these patients do not seem to receive the same benefit that lighter patients receive from the rotational/translational speed differential. The benefit appears to become insignificant at patient weights of around 500 pounds.
The qualitative relationship implemented by the present invention is generally increased belt-table speed differential for lower weight, i.e., the speed differential is generally an inversely proportional function of patient weight. A very heavy person requires little or no speed differential, while a very light person can benefit more from an increased speed differential. In an exemplary embodiment, the lateral table assembly speed is around 8-10 feet/minute, and the belt speed is about 5%-20% greater than the table speed for acquisition of lighter weight patients (less than around 250 pounds), most preferably about 10% greater.
Those skilled in the art will appreciate that, since it is only the upper belt that comes into contact with the patient during acquisition (not the lower belt), the present invention further contemplates embodiments wherein the upper and lower belts move at different speeds, for example, the lower belt moving at the same speed as the table assembly and only the upper belt moving faster than the table assembly, with slippage allowed between any adjacent portions of the upper and lower belts. Such an embodiment may provide independent drive mechanisms for the upper and lower belts.
Electric motors can be used to separately drive the belts and the table assembly as shown schematically in
The present invention may be further enhanced by selecting particular coefficients of friction (μ) for the upper and lower belts. It is preferable to have a relatively higher for the belt surface contacting the patient so that the patient can be acquired without slippage, and to provide the noted lifting effect. It is also preferable to have a relatively lower μ for the belt surface contacting the bed or other patient support surface because the belt-table speed differential will tend to make the lower belt pull the bed surface or sheet, and a lower μ allows for more slippage. In the embodiment wherein movement of the lower belt drives the upper belt, the contacting surfaces should not be too slippery although a higher μ in the upper belt will allow for a lower μ in the lower belt. Consequently, in an illustrative embodiment the upper belt has a μ in the range of 0.5-0.8, while the lower belt has a μ in the range of 0.2-0.3. The belts may generally be made of any durable material, preferably a polymer such as polyvinyl chloride or polyurethane. The desired coefficient of friction may be achieved by the belt material formulation, surface treatment (texture), or a coating to impart a sticky or slippery surface. Suitable belts may be obtained from Habasit AG of Reinach, Switzerland (part numbers CMG-350-0048 and CMG-350-0061). If a disposable sheet or liner is used to cover the upper belt for sanitary reasons, it preferably has the same μ as the upper belt, e.g., 0.5-0.8.
The flowchart shown in
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. For example, while the invention has been disclosed in the context of patient moving, it may also be used in mortuary settings or to transport inanimate objects. It is therefore contemplated that such modifications can be made without departing from the spirit or scope of the present invention as defined in the appended claims.