Pattern for chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and construction method thereof

Information

  • Patent Application
  • 20230002947
  • Publication Number
    20230002947
  • Date Filed
    August 08, 2022
    2 years ago
  • Date Published
    January 05, 2023
    a year ago
Abstract
A pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof are disclosed. The construction method regulates the uneven distribution of the multicolored filaments on the chenille carpet pile by changing the combination modes and ratios of the multicolored filaments, thereby producing patterns with hazy, moderate and clear color mixing effects. Different from the additive mixing of color light and the subtractive mixing of pigments, the mixing of single-colored filaments is spatial juxtaposition mixing and non-uniform mixing. The construction method also regulates the mixing ratio of the single-colored filaments and the hue, luminance and saturation differences between the single-colored filaments, such that the chenille pile can visually present hazy, moderate and clear color mixing effects. The entire design implementation of the construction method can effectively improve the efficiency of constructing the pattern of the chenille carpet pile.
Description
TECHNICAL FIELD

The present disclosure relates to a pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof, and belongs to the technical field of spinning chromatography.


BACKGROUND

A chenille carpet of a specific specification is fabricated by dyeing and after-finishing a tufted fabric formed by tufting a chenille yarn on a backing fabric, then gluing and fixing the tufted fabric to a carpet substrate, cutting, binding and sewing.


In the prior art, the chenille yarn is usually fabricated by spinning conventional low-stretch polyester filaments on a chenille spinning machine, the chenille yarn is tufted by a tufting loom to form a tufted fabric, and then the tufted fabric is subjected to high-temperature and high-pressure dyeing so as to dye the pile. After the dyeing, the tufted fabric is glued to the carpet substrate, and then the carpet substrate with the tufted fabric is cut, bound and sewn to form a chenille carpet of a specific specification.


In the dyeing process, the pile is subjected to high-temperature disperse dyeing to achieve an expected color, and the pile is subjected to shrinkage and untwisting which are controlled through the high-temperature heat treatment to make the pile standing, full and soft. The appearance color, feel and style of the chenille carpet depend on those of the pile. Therefore, the dyeing, after-finishing and treating process of the pile is the key process for the fabrication of the chenille carpet.


The dyeing and after-finishing process of the chenille carpet requires a large amount of dyes, energy and water, and also discharges a large amount of sewage. In order to solve the problems of environmental pollution and energy consumption existing in the traditional dyeing process, it is urgent to realize waterless dyeing, precise toning and digital color blending of piles, so as to promote the rapid development of chenille carpets. In view of this, the following problems need to be solved.


1. In the prior art, by changing the dyeing formula, the fabricate(chenille carpet piles can present serialized colors with different hue, luminance and saturation, but there are problems such as low color reproduction, large color difference in different batches and long production cycle.


2. In the prior art, the chenille carpet piles can be fabricated with patterns of different contrasts through overdyeing of two analogous colors. However, there is no report on patterning with hazy, moderate and clear color mixing effects based on color differences, and there are still problems such as low color reproduction, large color difference in different batches and long production cycle.


SUMMARY

A technical problem to be solved by the present disclosure is to provide a pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof. The present disclosure regulates the uneven distribution of multicolored filaments on a chenille carpet pile by changing the combination modes and ratios of the multicolored filaments, thereby producing patterns with hazy, moderate and clear color mixing effects.


In order to solve the above technical problem, the present disclosure adopts the following technical solution: a pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof, including the following steps:


step A: constructing a quaternary multicolored filament system by mixing four types of single-colored filaments selected from a preset number of single-colored filaments to form multicolored filaments; and proceeding to step B;


step B: spinning and tufting any four types of multicolored filaments α,β,γ,δ in the quaternary multicolored filament system to obtain a chenille carpet pile ξ; calculating, based on red, green and blue (RGB) values (Rα,Gα,Bα), (Rβ,Gβ,Bβ), (Rγ,Gγ,Bγ) and (Rδ,Gδ,Bδ) of the four types of multicolored filaments α,β,γ,δ, RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to specified numbers of tufted multicolored filaments; and proceeding to step C; and


step C: selecting combinations of the four types of single-colored filaments with preset hue differences from the preset number of single-colored filaments to form multiple types of multicolored filaments with the preset hue differences; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to specified numbers of tufted multicolored filaments, spinning and tufting four types of multicolored filaments selected based on the multiple types of multicolored filaments with the preset hue differences to respectively construct preset types of chenille carpet piles.


In a preferred technical solution of the present disclosure, step B may include: based on


Table 1,










TABLE 1








RGB values after combination










Combinations
Rξ
Gξ
Rξ






Rα
Gα
Bα





3α + 1β






3
4

*

R
α


+


1
4

*

R
β












3
4

*

G
α


+


1
4

*

G
β












3
4

*

B
α


+


1
4

*

B
β











2α + 1β + 1γ






2
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ












2
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ












2
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











2β + 1γ + 1δ






2
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












2
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












2
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











3β + 1γ






3
4

*

R
β


+


1
4

*

R
γ












3
4

*

G
β


+


1
4

*

G
γ












3
4

*

B
β


+


1
4

*

B
γ












Rβ
Gβ
Bβ





3β + 1γ






3
4

*

R
β


+


1
4

*

R
γ












3
4

*

G
β


+


1
4

*

G
γ












3
4

*

B
β


+


1
4

*

B
γ











2β + 1γ + 1δ






2
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












2
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












2
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1β + 2γ + 1δ






1
4

*

R
β


+


2
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
β


+


2
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
β


+


2
4

*

B
γ


+


1
4

*

B
δ











3γ + 1δ






3
4

*

R
γ


+


1
4

*

R
δ












3
4

*

G
γ


+


1
4

*

G
δ












3
4

*

B
γ


+


1
4

*

B
δ












Rγ
Gγ
Bγ





3γ + 1δ






3
4

*

R
γ


+


1
4

*

R
δ












3
4

*

G
γ


+


1
4

*

G
δ












3
4

*

B
γ


+


1
4

*

B
δ











1α + 2γ + 1δ






1
4

*

R
α


+


2
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


2
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


2
4

*

B
γ


+


1
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1α + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
γ


+


2
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
γ


+


2
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
γ


+


2
4

*

B
δ











1α + 3δ






1
4

*

R
α


+


3
4

*

R
δ












1
4

*

G
α


+


3
4

*

G
δ












1
4

*

B
α


+


3
4

*

B
δ












Rδ
Gδ
Bδ





1α + 3δ






1
4

*

R
α


+


3
4

*

R
δ












1
4

*

G
α


+


3
4

*

G
δ












1
4

*

B
α


+


3
4

*

B
δ











1α + 1β + 2δ






1
4

*

R
α


+


1
4

*

R
β


+


2
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


2
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


2
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











2α + 1β + 1δ






2
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
δ












2
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
δ












2
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
δ











3α + 1β






3
4

*

R
α


+


1
4

*

R
β












3
4

*

G
α


+


1
4

*

G
β












3
4

*

B
α


+


1
4

*

B
β












Rα
Gα
Bα









calculating RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile corresponding to 4 tufted multicolored filaments.


In a preferred technical solution of the present disclosure, step B may include: based on Table 2.










TABLE 2








RGB values after combination










Combinations
Rξ
Gξ
Rξ






Rα
Gα
Bα





5α + 1β






5
6

*

R
α


+


1
6

*

R
β












5
6

*

G
α


+


1
6

*

G
β












5
6

*

B
α


+


1
6

*

B
β











4α + 1β + 1γ






4
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ












4
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ












4
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ











3α + 1β + 1γ + 1δ






3
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 2β + 1γ + 1δ






2
6

*

R
α


+


2
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











4β + 1γ + 1δ






4
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












4
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












4
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











5β + 1γ






5
6

*

R
β


+


1
6

*

R
γ












5
6

*

G
β


+


1
6

*

G
γ












5
6

*

B
β


+


1
6

*

B
γ












Rβ
Gβ
Bβ





5β + 1γ






5
6

*

R
β


+


1
6

*

R
γ












5
6

*

G
β


+


1
6

*

G
γ












5
6

*

B
β


+


1
6

*

B
γ











4β + 1γ + 1δ






4
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












4
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












4
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 2γ + 1δ






1
6

*

R
α


+


2
6

*

R
β


+


2
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


2
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1β + 4γ + 1δ






1
6

*

R
β


+


4
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
β


+


4
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
β


+


4
6

*

B
γ


+


1
6

*

B
δ











5γ + 1δ






5
6

*

R
γ


+


1
6

*

R
δ












5
6

*

G
γ


+


1
6

*

G
δ












5
6

*

B
γ


+


1
6

*

B
δ












Rγ
Gγ
Bγ





5γ + 1δ






5
6

*

R
γ


+


1
6

*

R
δ












5
6

*

G
γ


+


1
6

*

G
δ












5
6

*

B
γ


+


1
6

*

B
δ











1α + 4γ + 1δ






1
6

*

R
α


+


4
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


4
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


4
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 2γ + 2δ






1
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
γ


+


2
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
γ


+


2
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ











1α + 1β + 4δ






1
6

*

R
α


+


1
6

*

R
β


+


4
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


4
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


4
6

*

B
δ











1α + 5δ






1
6

*

R
α


+


5
6

*

R
δ












1
6

*

G
α


+


5
6

*

G
δ












1
6

*

B
α


+


5
6

*

B
δ












Rδ
Gδ
Bδ





1α + 5δ






1
6

*

R
α


+


5
6

*

R
δ












1
6

*

G
α


+


5
6

*

G
δ












1
6

*

B
α


+


5
6

*

B
δ











1α + 1β + 4δ






1
6

*

R
α


+


1
6

*

R
β


+


4
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


4
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


4
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ











2α + 1β + 1γ + 2δ






2
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











3α + 1β + 1γ + 1δ






3
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











4α + 1β + 1γ






4
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ












4
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ












4
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ











5α + 1β






5
6

*

R
α


+


1
6

*

R
β












5
6

*

G
α


+


1
6

*

G
β












5
6

*

B
α


+


1
6

*

B
β












Rα
Gα
Bα









calculating RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to 6 tufted multicolored filaments.


In a preferred technical solution of the present disclosure, step B may include: based on Table 3,










TABLE 3








RGB values after combination










Combinations
Rξ
Gξ
Bξ






Rα
Gα
Bα





7α + 1β






7
8

*

R
α


+


1
8

*

R
β












7
8

*

G
α


+


1
8

*

G
β












7
8

*

B
α


+


1
8

*

B
β











6α + 1β + 1γ






6
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ












6
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ












6
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ











5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 2β + 1γ + 1δ






4
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











3α + 3β + 1γ + 1δ






3
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











2α + 4β + 1γ + 1δ






2
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











6α + 1γ + 1δ






6
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












6
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












6
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











7β + 1γ






7
8

*

R
β


+


1
8

*

R
γ












7
8

*

R
β


+


1
8

*

R
γ












7
8

*

R
β


+


1
8

*

R
γ












Rβ
Gβ
Bβ





7β + 1γ






7
8

*

R
β


+


1
8

*

R
γ












7
8

*

R
β


+


1
8

*

R
γ












7
8

*

R
β


+


1
8

*

R
γ











6β + 1γ + 1δ






6
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












6
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












6
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 2γ + 1δ






1
8

*

R
α


+


4
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











1α + 3β + 3γ + 1δ






1
8

*

R
α


+


3
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











1α + 2β + 4γ + 1δ






1
8

*

R
α


+


2
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1β + 6γ + 1δ






1
8

*

R
β


+


6
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
β


+


6
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
β


+


6
8

*

B
γ


+


1
8

*

B
δ











7γ + 1δ






7
8

*

R
γ


+


1
8

*

R
δ












7
8

*

G
γ


+


1
8

*

G
δ












7
8

*

B
γ


+


1
8

*

B
δ












Rγ
Gγ
Bγ





7γ + 1δ






7
8

*

R
γ


+


1
8

*

R
δ












7
8

*

G
γ


+


1
8

*

G
δ












7
8

*

B
γ


+


1
8

*

B
δ











1α + 6γ + 1δ






1
8

*

R
α


+


6
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


6
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


6
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 4γ + 2δ






1
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


2
8

*

B
δ











1α + 1β + 3γ + 3δ






1
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


3
8

*

B
δ











1α + 1β + 2γ + 4δ






1
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ











1α + 1β + 6δ






1
8

*

R
α


+


1
8

*

R
β


+


6
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


6
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


6
8

*

B
δ











1α + + 7δ






1
8

*

R
α


+


7
8

*

R
δ












1
8

*

G
α


+


7
8

*

G
δ












1
8

*

B
α


+


7
8

*

B
δ











1α + 1β + 5γ + 1δ
Rδ
Gδ
Bδ





1α + 7δ






1
8

*

R
α


+


7
8

*

R
δ












1
8

*

G
α


+


7
8

*

G
δ












1
8

*

B
α


+


7
8

*

B
δ











1α + 1β + 6δ






1
8

*

R
α


+


1
8

*

R
β


+


6
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


6
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


6
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ











2α + 1β + 1γ + 4δ






2
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











3α + 1β + 1γ + 3δ






3
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











4α + 1β + 1γ + 2δ






4
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











6α + 1β + 1γ






6
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ












6
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ












6
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ











7α + β






7
8

*

R
α


+


1
8

*

R
β












7
8

*

G
α


+


1
8

*

G
β












7
8

*

B
α


+


1
8

*

B
β












Rα
Gα
Bα









calculating RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to 8 tufted multicolored filaments.


In a preferred technical solution of the present disclosure, step C may include: selecting combinations of four types of single-colored filaments with a hue difference of less than 60° from the preset number of single-colored filaments to form multiple types of multicolored filaments with a hue difference of less than 60°; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to a specified number of tufted multicolored filaments, spinning and tufting four types of multicolored filaments based on the multiple types of multicolored filaments with a hue difference of less than 60° to construct a chenille carpet pile with a hazy color mixing effect.


In a preferred technical solution of the present disclosure, step C may include: selecting combinations of four types of single-colored filaments with a hue difference of greater than 60° and less than 120° from the preset number of single-colored filaments to form multiple types of multicolored filaments with a hue difference of greater than 60° and less than 120°; and according to the RGB values (Rξ,Gξ,Bξ) the chenille carpet pile corresponding to a specified number of tufted multicolored filaments, spinning and tufting four types of multicolored filaments based on the multiple types of multicolored filaments with a hue difference of greater than 60° and less than 120° to construct a chenille carpet pile with a moderate color mixing effect.


In a preferred technical solution of the present disclosure, step C may include: selecting combinations of four types of single-colored filaments with a hue difference of greater than 120° and less than 180° from the preset number of single-colored filaments, and selecting combinations of three types of single-colored filaments with a hue difference of greater than 120° and less than 180° from the preset number of single-colored filaments to cooperate with a white or black filament to form combinations of four types of single-colored filaments; forming multiple types of multicolored filaments with a hue difference of greater than 120° and less than 180°; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile corresponding to a specified number of tufted multicolored filaments, spinning and tufting four types of multicolored filaments based on the multiple types of multicolored filaments with a hue difference of greater than 120° and less than 180° to construct a chenille carpet pile with a clear color mixing effect.


Compared with the prior art, the above technical solutions of the present disclosure have the following technical effects:


The present disclosure regulates the uneven distribution of the multicolored filaments on the chenille carpet pile by changing the combination modes and ratios of the multicolored filaments, thereby producing patterns with hazy, moderate and clear color mixing effects. Different from the additive mixing of color light and the subtractive mixing of pigments, the mixing of single-colored filaments is spatial juxtaposition mixing and non-uniform mixing. The present disclosure regulates the mixing ratio of the single-colored filaments and the hue, luminance and saturation differences between the single-colored filaments, such that the chenille pile can visually present hazy, moderate and clear color mixing effects. The entire design implementation of the present disclosure can effectively improve the efficiency of constructing the pattern of the chenille carpet pile.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart of a pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof according to the present disclosure; and



FIG. 2 is a schematic diagram of distribution of 24 base colors.



FIG. 3 shows the practical application of the embodiment with a hazy color mixing effect.



FIG. 4 shows a practical application of the embodiment with a moderate color mixing effect.



FIG. 5 shows a practical application of the embodiment with a clear color mixing effect.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The specific implementation of the present disclosure is further described in detail below with reference to the drawings.


The present disclosure proposes a pattern for a chenille carpet pile based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof. In a practical application, as shown in FIG. 1, the method specifically includes Steps A to C.


Step A. Construct a quaternary multicolored filament system by mixing four types of single-colored filaments selected from a preset number of single-colored filaments to form multicolored filaments; and proceed to Step B.


In a practical application, as shown in FIG. 2, for example, there are a total of 26 base colors obtained by bobbin dyeing or dope dyeing, including A1, A2, A3, . . . A22, A23 , A24 ,W (white) and K (black), and the red, green and blue (RGB) values of each of the base colors are shown in Table 7.












TABLE 7







A1(255,
A2(255,
A3(255,
A4(255,


0, 0)
64, 0)
128, 0)
191, 0)


A5(255,
A6(191,
A7(128,
A8(64,


255, 0)
255, 0)
255, 0)
255, 0)


A9(0,
A10(0,
A11(0,
A12(0, 255,


255, 0)
255, 64)
255, 128)
191)


A13(0, 255,
A14(0, 191,
A15(0,
A16(0,


255)
255)
128, 255)
64, 255)


A17(0,
A18(64,
A19(128,
A20(191, 0,


0, 255)
0, 255)
0, 255)
255)


A21(255, 0,
A22(255, 0,
A23(255,
A24(255,


255)
191)
0, 128)
0, 64)









By mixing three types of single-colored filaments selected from the 26 types of single-colored filaments according to Step A, a total of C264 =14950 combinations of four types of single-colored filaments are obtained to form a quaternary multicolored filament system.


Step B. Spin and tuft any four types of multicolored filaments α,β,γ,δ in the quaternary multicolored filament system to obtain a chenille carpet pile ξ; construct, based on RGB values (Rα,Gα,Bα) , (Rβ,Gβ,Bβ), (Rγ,Gγ,Bγ) and (Rδ,Gδ,Bδ) of the four types of multicolored filaments α,β,γ,δ, RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile corresponding to specified numbers of tufted multicolored filaments; and proceed to Step C.


In a specific practical application of Step B, for example, the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ are constructed corresponding to 4, 6 and 8 tufted multicolored filaments, as shown in Table 1.










TABLE 1








RGB values after combination










Combinations
Rξ
Gξ
Bξ






Rα
Gα
Bα





3α + 1β






3
4

*

R
α


+


1
4

*

R
β












3
4

*

G
α


+


1
4

*

G
β












3
4

*

B
α


+


1
4

*

B
β











2α + 1β + 1γ






2
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ












2
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ












2
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











2β + 1γ + 1δ






2
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












2
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












2
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











3β + 1γ






3
4

*

R
β


+


1
4

*

R
γ












3
4

*

G
β


+


1
4

*

G
γ












3
4

*

G
β


+


1
4

*

G
γ












Rβ
Gβ
Bβ





3β + 1γ






3
4

*

R
β


+


1
4

*

R
γ












3
4

*

G
β


+


1
4

*

G
γ












3
4

*

G
β


+


1
4

*

G
γ











2β + 1γ + 1δ






2
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












2
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












2
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1β + 2γ + 1δ






1
4

*

R
β


+


2
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
β


+


2
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
β


+


2
4

*

B
γ


+


1
4

*

B
δ











3γ + 1δ






3
4

*

R
γ


+


1
4

*

R
δ












3
4

*

G
γ


+


1
4

*

G
δ












3
4

*

B
γ


+


1
4

*

B
δ












Rγ
Gγ
Bγ





3γ + 1δ






3
4

*

R
γ


+


1
4

*

R
δ












3
4

*

G
γ


+


1
4

*

G
δ












3
4

*

B
γ


+


1
4

*

B
δ











1α + 2γ + 1δ






1
4

*

R
α


+


2
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


2
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


2
4

*

B
γ


+


1
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











1α + 1γ + 2δ






1
4

*

R
α


+


1
4

*

R
γ


+


2
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
γ


+


2
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
γ


+


2
4

*

B
δ











1α + 3δ






1
4

*

R
α


+


3
4

*

R
δ












1
4

*

G
α


+


3
4

*

G
δ












1
4

*

B
α


+


3
4

*

B
δ












Rδ
Gδ
Bδ





1α + 3δ






1
4

*

R
α


+


3
4

*

R
δ












1
4

*

G
α


+


3
4

*

G
δ












1
4

*

B
α


+


3
4

*

B
δ











1α + 1β + 2δ






1
4

*

R
α


+


1
4

*

R
β


+


2
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


2
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


2
4

*

B
δ











1α + 1β + 1γ + 1δ






1
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
γ


+


1
4

*

R
δ












1
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
γ


+


1
4

*

G
δ












1
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
γ


+


1
4

*

B
δ











2α + 1β + 1δ






2
4

*

R
α


+


1
4

*

R
β


+


1
4

*

R
δ












2
4

*

G
α


+


1
4

*

G
β


+


1
4

*

G
δ












2
4

*

B
α


+


1
4

*

B
β


+


1
4

*

B
δ











3α + 1β






3
4

*

R
α


+


1
4

*

R
β












3
4

*

G
α


+


1
4

*

G
β












3
4

*

B
α


+


1
4

*

B
β












Rα
Gα
Bα









The RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ are constructed corresponding to 4 tufted multicolored filaments.


A design of the chenille carpet pile ξ corresponding to 6 tufted multicolored filaments is shown in Table 2.










TABLE 2








RGB values after combination










Combinations
Rξ
Gξ
Bξ






Rα
Gα
Bα





5α + 1β






5
6

*

R
α


+


1
6

*

R
β












5
6

*

G
α


+


1
6

*

G
β












5
6

*

B
α


+


1
6

*

B
β











4α + 1β + 1γ






4
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ












4
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ












4
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ











3α + 1β + 1γ + 1δ






3
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











2α + 2β + 1γ + 1δ






2
6

*

R
α


+


2
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












2
6

*

G
α


+


2
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












2
6

*

B
α


+


2
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











4β + 1γ + 1δ






4
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












4
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












4
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











5β + 1γ






5
6

*

R
β


+


1
6

*

R
γ












5
6

*

G
β


+


1
6

*

G
γ












5
6

*

B
β


+


1
6

*

B
γ












Rβ
Gβ
Bβ





5β + 1γ






5
6

*

R
β


+


1
6

*

R
γ












5
6

*

G
β


+


1
6

*

G
γ












5
6

*

B
β


+


1
6

*

B
γ











4β + 1γ + 1δ






4
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












4
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












4
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 3β + 1γ + 1δ






1
6

*

R
α


+


3
6

*

R
β


+


1
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


3
6

*

G
β


+


1
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


3
6

*

B
β


+


1
6

*

B
γ


+


1
6

*

B
δ











1α + 2β + 2γ + 1δ






1
6

*

R
α


+


2
6

*

R
β


+


2
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


2
6

*

G
β


+


2
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


2
6

*

B
β


+


2
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1β + 4γ + 1δ






1
6

*

R
β


+


4
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
β


+


4
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
β


+


4
6

*

B
γ


+


1
6

*

B
δ











5γ + 1δ






5
6

*

R
γ


+


1
6

*

R
δ












5
6

*

G
γ


+


1
6

*

G
δ












5
6

*

B
γ


+


1
6

*

B
δ












Rγ
Gγ
Bγ





5γ + 1δ






5
6

*

R
γ


+


1
6

*

R
δ












5
6

*

G
γ


+


1
6

*

G
δ












5
6

*

B
γ


+


1
6

*

B
δ











1α + 4γ + 1δ






1
6

*

R
α


+


4
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


4
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


4
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 3γ + 1δ






1
6

*

R
α


+


1
6

*

R
β


+


3
6

*

R
γ


+


1
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


3
6

*

G
γ


+


1
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


3
6

*

B
γ


+


1
6

*

B
δ











1α + 1β + 2γ + 2δ






1
6

*

R
α


+


1
6

*

R
β


+


2
6

*

R
γ


+


2
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


2
6

*

G
γ


+


2
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


2
6

*

B
γ


+


2
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ











1α + 1β + 4δ






1
6

*

R
α


+


1
6

*

R
β


+


4
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


4
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


4
6

*

B
δ











1α + 5δ






1
6

*

R
α


+


5
6

*

R
δ












1
6

*

G
α


+


5
6

*

G
δ












1
6

*

B
α


+


5
6

*

B
δ












Rδ
Gδ
Bδ





1α + 5δ






1
6

*

R
α


+


5
6

*

R
δ












1
6

*

G
α


+


5
6

*

G
δ












1
6

*

B
α


+


5
6

*

B
δ











1α + 1β + 4δ






1
6

*

R
α


+


1
6

*

R
β


+


4
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


4
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


4
6

*

B
δ











1α + 1β + 1γ + 3δ






1
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












1
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












1
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ











2α + 1β + 1γ + 2δ






2
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


2
6

*

R
δ












2
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


2
6

*

G
δ












2
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


2
6

*

B
δ











3α + 1β + 1γ + 1δ






3
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ


+


3
6

*

R
δ












3
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ


+


3
6

*

G
δ












3
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ


+


3
6

*

B
δ











4α + 1β + 1γ






4
6

*

R
α


+


1
6

*

R
β


+


1
6

*

R
γ












4
6

*

G
α


+


1
6

*

G
β


+


1
6

*

G
γ












4
6

*

B
α


+


1
6

*

B
β


+


1
6

*

B
γ











5α + 1β






5
6

*

R
α


+


1
6

*

R
β












5
6

*

G
α


+


1
6

*

G
β












5
6

*

B
α


+


1
6

*

B
β












Rα
Gα
Bα









The RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ are constructed corresponding to 6 tufted multicolored filaments.


A design of the chenille carpet pile ξ corresponding to 8 tufted multicolored filaments is shown in Table 3.










TABLE 3








RGB values after combination










Combinations
Rξ
Gξ
Bξ






Rα
Gα
Bα





7α + 1β






7
8

*

R
α


+


1
8

*

R
β












7
8

*

G
α


+


1
8

*

G
β












7
8

*

B
α


+


1
8

*

B
β











6α + 1β + 1γ






6
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ












6
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ












6
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ











5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











4α + 2β + 1γ + 1δ






4
8

*

R
α


+


2
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












4
8

*

G
α


+


2
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












4
8

*

B
α


+


2
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











3α + 3β + 1γ + 1δ






3
8

*

R
α


+


3
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












3
8

*

G
α


+


3
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












3
8

*

B
α


+


3
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











2α + 4β + 1γ + 1δ






2
8

*

R
α


+


4
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












2
8

*

G
α


+


4
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












2
8

*

B
α


+


4
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











6α + 1γ + 1δ






6
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












6
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












6
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











7β + 1γ






7
8

*

R
β


+


1
8

*

R
γ












7
8

*

G
β


+


1
8

*

G
γ












7
8

*

B
β


+


1
8

*

B
γ












Rβ
Gβ
Bβ





7β + 1γ






7
8

*

R
β


+


1
8

*

R
γ












7
8

*

G
β


+


1
8

*

G
γ












7
8

*

B
β


+


1
8

*

B
γ











6β + 1γ + 1δ






6
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












6
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












6
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 5β + 1γ + 1δ






1
8

*

R
α


+


5
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


5
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


5
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











1α + 4β + 2γ + 1δ






1
8

*

R
α


+


4
8

*

R
β


+


2
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


4
8

*

G
β


+


2
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


4
8

*

B
β


+


2
8

*

B
γ


+


1
8

*

B
δ











1α + 3β + 3γ + 1δ






1
8

*

R
α


+


3
8

*

R
β


+


3
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


3
8

*

G
β


+


3
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


3
8

*

B
β


+


3
8

*

B
γ


+


1
8

*

B
δ











1α + 2β + 4γ + 1δ






1
8

*

R
α


+


2
8

*

R
β


+


4
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


2
8

*

G
β


+


4
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


2
8

*

B
β


+


4
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1β + 6γ + 1δ






1
8

*

R
β


+


6
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
β


+


6
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
β


+


6
8

*

B
γ


+


1
8

*

B
δ











7γ + 1δ






7
8

*

R
γ


+


1
8

*

R
δ












7
8

*

G
γ


+


1
8

*

G
δ












7
8

*

B
γ


+


1
8

*

B
δ












Rγ
Gγ
Bγ





7γ + 1δ






7
8

*

R
γ


+


1
8

*

R
δ












7
8

*

G
γ


+


1
8

*

G
δ












7
8

*

B
γ


+


1
8

*

B
δ











1α + 6γ + 1δ






1
8

*

R
α


+


6
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


6
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


6
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 5γ + 1δ






1
8

*

R
α


+


1
8

*

R
β


+


5
8

*

R
γ


+


1
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


5
8

*

G
γ


+


1
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


5
8

*

B
γ


+


1
8

*

B
δ











1α + 1β + 4γ + 2δ






1
8

*

R
α


+


1
8

*

R
β


+


4
8

*

R
γ


+


2
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


4
8

*

G
γ


+


2
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


4
8

*

B
γ


+


2
8

*

B
δ














1α + 1β + 3γ + 3δ






1
8

*

R
α


+


1
8

*

R
β


+


3
8

*

R
γ


+


3
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


3
8

*

G
γ


+


3
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


3
8

*

B
γ


+


3
8

*

B
δ











1α + 1β + 2γ + 4δ






1
8

*

R
α


+


1
8

*

R
β


+


2
8

*

R
γ


+


4
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


2
8

*

G
γ


+


4
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


2
8

*

B
γ


+


4
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ











1α + 1β + 6δ






1
8

*

R
α


+


1
8

*

R
β


+


6
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


6
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


6
8

*

B
δ











1α + 7δ






1
8

*

R
α


+


7
8

*

R
δ












1
8

*

G
α


+


7
8

*

G
δ












1
8

*

B
α


+


7
8

*

B
δ











1α + 1β + 5γ + 1δ
Rδ
Gδ
Bδ





1α + 7δ






1
8

*

R
α


+


7
8

*

R
δ












1
8

*

G
α


+


7
8

*

G
δ












1
8

*

B
α


+


7
8

*

B
δ











1α + 1β + 6δ






1
8

*

R
α


+


1
8

*

R
β


+


6
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


6
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


6
8

*

B
δ











1α + 1β + 1γ + 5δ






1
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


5
8

*

R
δ












1
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


5
8

*

G
δ












1
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


5
8

*

B
δ











2α + 1β + 1γ + 4δ






2
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


4
8

*

R
δ












2
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


4
8

*

G
δ












2
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


4
8

*

B
δ











3α + 1β + 1γ + 3δ






3
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


3
8

*

R
δ












3
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


3
8

*

G
δ












3
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


3
8

*

B
δ











4α + 1β + 1γ + 2δ






4
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


2
8

*

R
δ












4
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


2
8

*

G
δ












4
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


2
8

*

B
δ











5α + 1β + 1γ + 1δ






5
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ


+


1
8

*

R
δ












5
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ


+


1
8

*

G
δ












5
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ


+


1
8

*

B
δ











6α + 1β + 1γ






6
8

*

R
α


+


1
8

*

R
β


+


1
8

*

R
γ












6
8

*

G
α


+


1
8

*

G
β


+


1
8

*

G
γ












6
8

*

B
α


+


1
8

*

B
β


+


1
8

*

B
γ











7α + 1β






7
8

*

R
α


+


1
8

*

R
β












7
8

*

G
α


+


1
8

*

G
β












7
8

*

B
α


+


1
8

*

B
β












Rα
Gα
Bα









The RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ are constructed corresponding to 8 tufted multicolored filaments.


The chenille pile can visually present hazy, moderate and clear color mixing effects. The visually hazy color mixing effect is achieved by mixing fibers of different colors in adjacent color areas. The visually moderate color mixing effect is achieved by mixing fibers of different colors in complementary color areas. The visually clear color mixing effect is achieved by mixing fibers of different colors in opponent color areas.


Step C. Select combinations of the four types of single-colored filaments with preset hue differences from the preset number of single-colored filaments to form multiple types of multicolored filaments with the preset hue differences; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to specified numbers of tufted multicolored filaments, spin and tuft four types of multicolored filaments selected based on the multiple types of multicolored filaments with the preset hue differences to respectively construct preset types of chenille carpet piles.


Specifically, in Step C, the preset hue differences include a hue difference of less than 60°, a hue difference of greater than 60° and less than 120°, and a hue difference of greater than 120° and less than 180°. In a specific design implementation, when the hue difference is less than 60°, combinations of four types of single-colored filaments with a hue difference of less than 60° are selected from the preset number of single-colored filaments to form multiple types of multicolored filaments with a hue difference of less than 60°. Based on the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to a specified number of tufted multicolored filaments, four types of multicolored filaments are selected from the multiple types of multicolored filaments with a hue difference of less than 60° for tufting to construct a chenille carpet pile with a hazy color mixing effect.


In the method of tufting four types of multicolored filaments, when the chenille carpet pile is prepared by mixing 4 multicolored filaments, a color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 multicolored filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 multicolored filaments, the color mixing gradient is ⅛.


When the hue difference is greater than 60° and less than 120°, combinations of four types of single-colored filaments with a hue difference of greater than 60° and less than 120° are selected from the preset number of single-colored filaments to form multiple types of multicolored filaments with a hue difference of greater than 60° and less than 120.° Based on the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to a specified number of tufted multicolored filaments, four types of multicolored filaments are selected from the multiple types of multicolored filaments with a hue difference of greater than 60° and less than 120° for tufting to construct a chenille carpet pile with a moderate color mixing effect.


In the method of tufting three types of multicolored filaments, when the chenille carpet pile is prepared by mixing 4 multicolored filaments, the color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 multicolored filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 multicolored filaments, the color mixing gradient is ⅛.


When the hue difference is greater than 120° and less than 180°, combinations of four types of single-colored filaments with a hue difference of greater than 120° and less than 180° are selected from the preset number of single-colored filaments, and combinations of three types of single-colored filaments with a hue difference of greater than 120° and less than 180° are selected from the preset number of single-colored filaments to cooperate with a white or black filament to form combinations of four types of single-colored filaments. These combinations of four types of single-colored filaments form multiple types of multicolored filaments with the hue difference. Based on the (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to a specified number of tufted multicolored filaments, four types of multicolored filaments are selected from the multiple types of multicolored filaments with a hue difference of greater than 120° and less than 180° for tufting to construct a chenille carpet pile with a clear color mixing effect.


In the method of tithing three types of multicolored filaments, when the chenille carpet pile is prepared by mixing 4 multicolored filaments, a color mixing gradient is ¼. When the chenille carpet pile is prepared by mixing 6 multicolored filaments, the color mixing gradient is ⅙. When the chenille carpet pile is prepared by mixing 8 multicolored filaments, the color mixing gradient is ⅛.



FIG. 3 shows the practical application of the construction of the pattern of the chenille carpet pile, the application of the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to 6 tufted multicolored filaments, the application of the 24 single-colored filaments, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the hazy color mixing effect.


The RGB values of the chenille carpet pile with a hazy color mixing effect are shown in Table 4.












TABLE 4








RGB values



Combinations of

(Rξ, Gξ, Bξ) of gradient


SN
colors
Color mixing ratio
multicolored pile





















1
A1 + A2 + A3 + A4
Column A pile
3/6*CA1 + ⅙*CA2 + ⅙*CA3 + ⅙*CA4
255
64
0




Column B pile
2/6*CA1 + 2/6*CA2 + ⅙*CA3 + ⅙*CA4
255
75
0




Column C pile
⅙*CA1 + 3/6*CA2 + ⅙*CA3 + ⅙*CA4
255
85
0




Column D pile
⅙*CA1 + 2/6*CA2 + 2/6*CA3 + ⅙*CA4
255
96
0




Column E pile
⅙*CA1 + ⅙*CA2 + 3/6*CA3 + ⅙*CA4
255
107
0




Column F pile
⅙*CA1 + ⅙*CA2 + 2/6*CA3 + 2/6*CA4
255
117
0




Column G pile
⅙*CA1 + ⅙*CA2 + ⅙*CA3 + 3/6*CA4
255
128
0




Column H pile
2/6*CA1 + ⅙*CA2 + ⅙*CA3 + 2/6*CA4
255
96
0


2
A2 + A3 + A4 + A5
Column A pile
3/6*CA2 + ⅙*CA3 + ⅙*CA4 + ⅙*CA5
255
128
0




Column B pile
2/6*CA2 + 2/6*CA3 + ⅙*CA4 + ⅙*CA5
255
138
0




Column C pile
⅙*CA2 + 3/6*CA3 + ⅙*CA4 + ⅙*CA5
255
149
0




Column D pile
⅙*CA2 + 2/6*CA3 + 2/6*CA4 + ⅙*CA5
255
160
0




Column E Pile
⅙*CA2 + ⅙*CA3 + 3/6*CA4 + ⅙*CA5
255
170
0




Column F pile
⅙*CA2 + ⅙*CA3 + 2/6*CA4 + 2/6*CA5
255
181
0




Column G pile
⅙*CA2 + ⅙*CA3 + ⅙*CA4 + 3/6*CA5
255
191
0




Column H pile
2/6*CA2 + ⅙*CA3 + ⅙*CA4 + 2/6*CA5
255
160
0


3
A3 + A4 + A5 + A6
Column A pile
3/6*CA3 + ⅙*CA4 + ⅙*CA5 + ⅙*CA6
244
181
0




Column B pile
2/6*CA3 + 2/6*CA4 + ⅙*CA5 + ⅙*CA6
244
191
0




Column C pile
⅙*CA3 + 3/6*CA4 + ⅙*CA5 + ⅙*CA6
244
202
0




Column D pile
⅙*CA3 + 2/6*CA4 + 2/6*CA5 + ⅙*CA6
244
213
0




Column E pile
⅙*CA3 + ⅙*CA4 + 3/6*CA5 + ⅙*CA6
244
223
0




Column F pile
⅙*CA3 + ⅙*CA4 + 2/6*CA5 + 2/6*CA6
234
223
0




Column G pile
⅙*CA3 + ⅙*CA4 + ⅙*CA5 + 3/6*CA6
223
223
0




Column H pile
2/6*CA3 + ⅙*CA4 + ⅙*CA5 + 2/6*CA6
234
202
0










FIG. 4 shows the application of the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to 6 tufted multicolored filaments, the application of the 24 single-colored filaments, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the moderate color mixing effect.


The RGB values of the chenille carpet pile with a moderate color mixing effect are shown in Table 5.












TABLE 5








RGB values



Combinations of

(Rξ, Gξ, Bξ) of gradient


SN
colors
Color mixing ratio
multicolored pile





















1
A1 + A2 + A3 + A9
Column A pile
3/6*CA1 + ⅙*CA2 + ⅙*CA3 + ⅙*CA9
213
75
0




Column B pile
2/6*CA1 + 2/6*CA2 + ⅙*CA3 + ⅙*CA9
213
80
0




Column C pile
⅙*CA1 + 3/6*CA2 + ⅙*CA3 + ⅙*CA9
213
96
0




Column D pile
⅙*CA1 + 2/6*CA2 + 2/6*CA3 + ⅙*CA9
213
107
0




Column E pile
⅙*CA1 + ⅙*CA2 + 3/6*CA3 + ⅙*CA9
213
117
0




Column F pile
⅙*CA1 + ⅙*CA2 + 2/6*CA3 + 2/6*CA9
170
138
0




Column G pile
⅙*CA1 + ⅙*CA2 + ⅙*CA3 + 3/6*CA9
128
160
0




Column H pile
2/6*CA1 + ⅙*CA2 + ⅙*CA3 + 2/6*CA9
170
117
0


2
A2 + A3 + A4 + A10
Column A pile
3/6*CA2 + ⅙*CA3 + ⅙*CA4 + ⅙*CA10
213
128
11




Column B pile
2/6*CA2 + 2/6*CA3 + ⅙*CA4 + ⅙*CA10
213
138
11




Column C pile
⅙*CA2 + 3/6*CA3 + ⅙*CA4 + ⅙*CA10
213
149
11




Column D pile
⅙*CA2 + 2/6*CA3 + 2/6*CA4 + ⅙*CA10
213
160
11




Column E pile
⅙*CA2 + ⅙*CA3 + 3/6*CA4 + ⅙*CA10
213
170
11




Column F pile
⅙*CA2 + ⅙*CA3 + 2/6*CA4 + 2/6*CA10
170
181
22




Column G pile
⅙*CA2 + ⅙*CA3 + ⅙*CA4 + 3/6*CA10
128
191
33




Column H pile
2/6*CA2 + ⅙*CA3 + ⅙*CA4 + 2/6*CA10
170
160
22


3
A3 + A4 + A5 + A11
Column A pile
3/6*CA3 + ⅙*CA4 + ⅙*CA5 + ⅙*CA11
213
181
21




Column B pile
2/6*CA3 + 2/6*CA4 + ⅙*CA5 + ⅙*CA11
213
191
21




Column C pile
⅙*CA3 + 3/6*CA4 + ⅙*CA5 + ⅙*CA11
213
202
21




Column D pile
⅙*CA3 + 2/6*CA4 + 2/6*CA5 + ⅙*CA11
213
213
21




Column E pile
⅙*CA3 + ⅙*CA4 + 3/6*CA5 + ⅙*CA11
213
223
21




Column F pile
⅙*CA3 + ⅙*CA4 + 2/6*CA5 + 2/6*CA11
170
223
42




Column G pile
⅙*CA3 + ⅙*CA4 + ⅙*CA5 + 3/6*CA11
128
223
63




Column H pile
2/6*CA3 + ⅙*CA4 + ⅙*CA5 + 2/6*CA11
170
202
42










FIG. 5 shows the application of the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to 6 tufted multicolored filaments, the application of the 24 single-colored filaments, and the design of gradient patterns of color-mixed chenille carpet piles in an embodiment regarding chenille carpet piles with a gradient change in the clear color mixing effect.


The RGB values of the chenille carpet pile with a clear color mixing effect are shown in Table 6.












TABLE 6








RGB values



Combinations of

(Rξ, Gξ, Bξ) of gradient


SN
colors
Color mixing ratio
multicolored pile





















1
A1 + A2 + A3 + A13
Column A pile
3/6*CA1 + ⅙*CA2 + ⅙*CA3 + ⅙*CA13
213
75
43




Column B pile
2/6*CA1 + 2/6*CA2 + ⅙*CA3 + ⅙*CA13
213
85
43




Column C pile
⅙*CA1 + 3/6*CA2 + ⅙*CA3 + ⅙*CA13
213
96
43




Column D pile
⅙*CA1 + 2/6*CA2 + 2/6*CA3 + ⅙*CA13
213
107
43




Column E pile
⅙*CA1 + ⅙*CA2 + 3/6*CA3 + ⅙*CA13
213
117
43




Column F pile
⅙*CA1 + ⅙*CA2 + 2/6*CA3 + 2/6*CA13
170
138
85




Column G pile
⅙*CA1 + ⅙*CA2 + ⅙*CA3 + 3/6*CA13
128
160
128




Column H pile
2/6*CA1 + ⅙*CA2 + ⅙*CA3 + 2/6*CA13
170
117
85


2
A2 + A3 + A4 + A14
Column A pile
3/6*CA2 + ⅙*CA3 + ⅙*CA4 + ⅙*CA14
213
117
43




Column B pile
2/6*CA2 + 2/6*CA3 + ⅙*CA4 + ⅙*CA14
213
128
43




Column C pile
⅙*CA2 + 3/6*CA3 + ⅙*CA4 + ⅙*CA14
213
138
43




Column D pile
⅙*CA2 + 2/6*CA3 + 2/6*CA4 + ⅙*CA14
213
149
43




Column E pile
⅙*CA2 + ⅙*CA3 + 3/6*CA4 + ⅙*CA14
213
159
43




Column F pile
⅙*CA2 + ⅙*CA3 + 2/6*CA4 + 2/6*CA14
170
159
85




Column G pile
⅙*CA2 + ⅙*CA3 + ⅙*CA4 + 3/6*CA14
128
159
128




Column H pile
2/6*CA2 + ⅙*CA3 + ⅙*CA4 + 2/6*CA14
170
138
85


3
A3 + A4 + A5 + A15
Column A pile
3/6*CA3 + ⅙*CA4 + ⅙*CA5 + ⅙*CA15
213
160
43




Column B pile
2/6*CA3 + 2/6*CA4 + ⅙*CA5 + ⅙*CA15
213
170
43




Column C pile
⅙*CA3 + 3/6*CA4 + ⅙*CA5 + ⅙*CA15
213
181
43




Column D pile
⅙*CA3 + 2/6*CA4 + 2/6*CA5 + ⅙*CA15
213
191
43




Column E pile
⅙*CA3 + ⅙*CA4 + 3/6*CA5 + ⅙*CA15
213
202
43




Column F pile
⅙*CA3 + ⅙*CA4 + 2/6*CA5 + 2/6*CA15
170
181
85




Column G pile
⅙*CA3 + ⅙*CA4 + ⅙*CA5 + 3/6*CA15
128
160
128




Column H pile
2/6*CA3 + ⅙*CA4 + ⅙*CA5 + 2/6*CA15
170
160
85









In the above technical solutions, the present disclosure regulates the uneven distribution of the multicolored filaments on the chenille carpet pile by changing the combination modes and ratios of the multicolored filaments, thereby producing patterns with hazy, moderate and clear color mixing effects. Different from the additive mixing of color light and the subtractive mixing of pigments, the mixing of single-colored filaments is spatial juxtaposition mixing and. non-uniform mixing. The present disclosure regulates the mixing ratio of the single-colored filaments and the hue, luminance and saturation differences between the single-colored filaments, such that the chenille pile can visually present hazy, moderate and clear color mixing effects. The entire design implementation of the present disclosure can effectively improve the efficiency of constructing the pattern of the chenille carpet pile.


Although the embodiments of the present disclosure are described in detail above in conjunction with the drawings, the present disclosure is not limited to the above-described embodiments, and various changes may be made without departing from the spirit of the present disclosure within the knowledge of those skilled in the art.

Claims
  • 1. A pattern for a chenille carpet pile, wherein the pattern for the chenille carpet pile is based on quaternary colors mixing regulation of multicolored filaments and a construction method thereof, wherein the construction method comprises the following steps: step A: constructing a quaternary multicolored filament system by mixing four types of single-colored filaments based on a preset number of single-colored filaments to form multicolored filaments; and proceeding to step B;step B: spinning and tufting any four types of multicolored filaments α,β,γ,δ in the quaternary multicolored filament system to obtain chenille carpet pile ξ; based on red, green and blue (KGB) values (Rα,Gα,Bα), (Rβ,Gβ,Bβ) and (Rδ,Gδ,Bδ) of the four types of multicolored filaments α,β,γ,δ, calculating RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to a specified number of tufted multicolored filaments; and proceeding to step C; andstep C: selecting combinations of the four types of single-colored filaments with a preset hue difference from the preset number of single-colored filaments to form multiple types of the multicolored filaments with the preset hue difference; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to the specified number of tufted multicolored filaments, spinning and tufting four types of the multicolored filaments based on the multiple types of the multicolored filaments with the preset hue difference to respectively construct preset types of chenille carpet piles.
  • 2. The pattern for the chenille carpet pile according to claim 1, wherein when a specified number of tufted multicolored filaments is four, step B comprises: based on Table 1,
  • 3. The pattern for the chenille carpet pile according to claim 1, wherein, when a specified number of tufted multicolored filaments is six. step B comprises: based on Table 2.
  • 4. The pattern for the chenille carpet pile according to claim 1, wherein when a specified number of tufted multicolored filaments is eight, step B comprises: based on Table 3,
  • 5. The pattern for the chenille carpet pile according to claim 1, wherein step C comprises: selecting combinations of four types of single-colored filaments with a hue difference of less than 60° from the preset number of single-colored filaments to form multiple types of the multicolored filaments with the hue difference of less than 60°; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to the specified number of tufted multicolored filaments, spinning and tufting four types of the multicolored filaments based on the multiple types of the multicolored filaments with the hue difference of less than 60° to construct a chenille carpet pile with a hazy color mixing effect.
  • 6. The pattern for the chenille carpet pile according to claim 1, wherein step C comprises: selecting combinations of four types of single-colored filaments with a hue difference of greater than 60° and less than 120° from the preset number of single-colored filaments to form multiple types of the multicolored filaments with the hue difference of greater than 60° and less than 120°; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to the specified number of tufted multicolored filaments, spinning and tufting four types of the multicolored filaments based on the multiple types of the multicolored filaments with the hue difference of greater than 60° and less than 120° to construct a chenille carpet pile with a moderate color mixing effect.
  • 7. The pattern for the chenille carpet pile according to claim 1, wherein step C comprises: selecting combinations of four types of single-colored filaments with a hue difference of greater than 120° and less than 180° from the preset number of single-colored filaments, and selecting combinations of three types of single-colored filaments with the hue difference of greater than 120° and less than 180° from the preset number of single-colored filaments to cooperate with a white or black filament to form combinations of four types of single-colored filaments; forming multiple types of the multicolored filaments with the hue difference of greater than 120° and less than 180°; and according to the RGB values (Rξ,Gξ,Bξ) of the chenille carpet pile ξ corresponding to the specified number of tufted multicolored filaments, spinning and tufting four types of the multicolored filaments based on the multiple types of the multicolored filaments with the hue difference of greater than 120° and less than 180° to construct a chenille carpet pile with a clear color mixing effect.
Priority Claims (1)
Number Date Country Kind
202110726887.2 Jun 2021 CN national
CROSS REFERENCE TO THE RELATED APPLICATIONS

This application is a continuation application of International Application No. PCT/CN2021/108348, filed on Jul. 26, 2021, which is based upon and claims priority to Chinese Patent Application No. 202110726887.2, filed on Jun. 29, 2021, the entire contents of which are incorporated herein by reference.

Continuations (1)
Number Date Country
Parent PCT/CN2021/108348 Jul 2021 US
Child 17882641 US