Pattern recognition method and apparatus

Information

  • Patent Application
  • 20020122593
  • Publication Number
    20020122593
  • Date Filed
    December 11, 2001
    23 years ago
  • Date Published
    September 05, 2002
    22 years ago
Abstract
A pattern recognition method and apparatus decrease the amount of computation for pattern recognition and adapts flexibly to an increase and a change in learning samples. Learning is made beforehand on base vectors in a subspace of each category and a kernel function. Pattern data to be recognized is inputted, and projection of an input pattern to a nonlinear subspace of each category is decided. Based on the decided projection, a Euclidean distance or an evaluation value related to each category is calculated from the property of the kernel function, and is compared with a threshold value. If a category for which the evaluation value is below the threshold value exists, a category for which the evaluation value is the smallest is outputted as recognition results. If there is no category for which the evaluation value is below the threshold value, a teaching signal is inputted for additional learning.
Description


BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention


[0002] The present invention relates to a pattern recognition technique that uses a computer to judge to which of plural categories an input image and other data belong.


[0003] 2. Description of the Related Art


[0004] Conventionally, pattern recognition methods by use of a computer have been proposed. For example, the following research is conducted. The image of a human face captured by an image sensor is analyzed to judge which portions of the image correspond to an eye, a nose, and others, categorize them, and determine to whose face the image corresponds by comparing the image with categorized plural images stored in advance.


[0005] A subspace method is well known as a pattern recognition method. According to the subspace method, a subspace is defined for each of plural categories, and by determining with which subspace an unknown pattern has the highest degree of relation, a category to which the unknown pattern belongs is determined. In the subspace method, where there are many categories, recognition accuracy becomes low, and it also becomes low for nonlinear pattern distributions.


[0006] Another well-known recognition method is the support vector machine (SVM) method. In the SVM method, by introducing a kernel function, low-dimension patterns are turned into high-dimension patterns, and nonlinear pattern distributions can also be recognized. However, the number of categories to which the method is applied is no more than two and an enormous amount of computation is required.


[0007] Recently, the kernel nonlinear subspace method has been proposed which combines the advantages of the subspace method and the advantages of the SVM method (Japanese Published Unexamined Patent Application No. 2000-90274). In the kernel nonlinear subspace method, patterns to be recognized are mapped to a high-dimension nonlinear space by using nonlinear conversion definable by a kernel function to create high-dimension patterns, as in the SVM method, and pattern recognition is performed by applying the subspace method on the high-dimension nonlinear space.


[0008] The kernel nonlinear subspace method, to define a subspace of a category i, creates base vectors by linear combination of mappings of all learning samples to a nonlinear space. Herein, as a method of calculating an evaluation value for judging whether an unknown input pattern belongs to a category, a method is disclosed which utilizes projection components produced when a pattern to be recognized is projected to subspaces on a high-dimension liner space that correspond to categories. Since the subspaces are defined by linearly combining base vectors produced using learning samples, which are low-dimension vectors, the projection components to be obtained to recognize input patterns can be calculated simply by calculating the low-dimension vectors by use of a kernel function.


[0009] However, since the computation includes kernel operations between the pattern to be recognized and all learning samples, and inner product operations with the number of all learning sample as a dimension count, when the number of learning samples increases, the amount of computation would increase in proportion to the number of learning samples. Moreover, since all learning samples must be saved for kernel computation, there has been a problem in that a large storage area is required.


[0010] Since a learning process is performed by singular value decomposition of a kernel matrix with the results of kernel operations between learning samples as components, there is a problem in that, when a learning sample is newly added, learning must be performed again using existing learning samples to recalculate the weight of linear combination of base vectors constituting a subspace.


[0011] A kernel function must have been selected beforehand for recognition targets and cannot be adaptively changed depending on learning, posing the problem that recognition accuracy does not increase.



SUMMARY OF THE INVENTION

[0012] The present invention intends to provide a pattern technique that decreases the amount of computation for pattern recognition or can flexibly adapt to an increase and a change in learning samples.


[0013] According to one aspect of the present invention, a pattern recognition method includes: an evaluation value calculating step for using a set of vectors obtained by mapping a set of vectors conformed to at least one learning sample in an input space respectively to a nonlinear space defined by a kernel function as a set of base vectors constituting a subspace in the nonlinear space, defined for each of categories into which a pattern is classified, to calculate an evaluation value representative of a relation between the plural subspaces represented by linear combination of corresponding sets of the base vectors, and mapping of an unknown input pattern to the nonlinear space; and a category recognition step for recognizing a category to which the unknown input pattern belongs, based on the evaluation value.


[0014] In this configuration, vectors obtained by mapping vectors (hereinafter referred to as preimages or preimage vectors) conformed to learning samples in an input space to nonlinear spaces defined in kernel spaces are used as base vectors constituting the nonlinear spaces. Therefore, when calculating an evaluation value showing a relation between the unknown pattern and subspaces can be calculated using the preimage vectors, preventing the amount of computation from increasing because of an increase in the number of learning samples.


[0015] The term “conforming” also implies the meaning of “approximating” or “representing”.


[0016] According to another aspect of the present invention, a method of learning base vectors constituting subspaces used for pattern recognition includes: a projection decision step that, for each mapping of a learning pattern to a nonlinear space defined by a kernel function, decides projection to a subspace that corresponds to a category into which the learning pattern is classified, and is represented by linear combination of a set of base vectors respectively created by a mapping of a set of vectors in an input space to the nonlinear space; and a vector updating step that updates the vectors in the input space in which the base vectors are created, to increase a relation between the mapping of the learning pattern obtained by the decided projection to the nonlinear space and the subspace corresponding to the category into which the learning pattern is classified.


[0017] In this configuration, the base vectors constituting the subspace can be updated according to a new learning pattern without having to hold previous learning patterns.


[0018] According to another aspect of the present invention, a method of deforming a kernel function includes the steps of: setting a kernel function for defining the mapping of a pattern in an input space to a nonlinear space which includes subspaces each defined for each of categories to which the pattern is classified; calculating a relation between the mapping of a learning pattern in the input space to the nonlinear space and the subspaces; and deforming the kernel function according to the result of the calculation of the relation.


[0019] In this configuration, variations in projection components to base vectors are calculated using a learning pattern, and a kernel function can be adaptively changed based on the calculation result.


[0020] The present invention can be implemented as a method, apparatus, or system, or can be implemented as a storage medium storing a program in at least a part thereof.


[0021] The above-described aspects and other aspects of the present invention will be described in claims and described below in detail using the accompanying drawings.







BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Preferred embodiments of the present invention will be described in detail based on the followings, wherein:


[0023]
FIG. 1 is a flowchart of recognition processing in an embodiment of the present invention;


[0024]
FIG. 2 is a flowchart of learning in an embodiment of the present invention;


[0025]
FIG. 3 is an example of a learning sample in an embodiment of the present invention;


[0026]
FIG. 4 is an example of recognition results in an embodiment of the present invention;


[0027]
FIG. 5 illustrates comparison of computation time between an embodiment of the present invention and a conventional example; and


[0028]
FIG. 6 is a block diagram showing a variation of an embodiment of the present invention.







DESCRIPTION OF THE PREFERRED EMBODIMENTS


Pattern Recognition

[0029] The principle of pattern recognition by the present invention will be described using a specific example. An arbitrary d-dimensional input pattern x and nonlinear conversion Φ that projects the input pattern x to a dΦ-dimensional high-dimension characteristic space are defined, and pattern recognition is performed in the dΦ-dimensional high-dimension characteristic space.


[0030] The mapping of the d-dimensional input pattern x by the nonlinear conversion Φ that is in relation with a kernel function
1K(x,y)=i=1dΦλ1φi(x)φi(y)(1)


[0031] with


[0032]1(X), . . . , ødΦ (X)


[0033] as eigenfunctions is represented as




x
=(x1, . . . , xd)→Φ(x)=({square root}{square root over (λ1)}ø1(x), . . . , {square root}{square root over (λdΦ)}ø(x))  (2)



[0034] using the kernel eigenfunctions, where λi is an eigenvalue for an eigenfunction φi(x).


[0035] Next, for a subspace Ω of a high-dimension characteristic space represented by linear combination of nonlinear conversion images Φ(x1), . . . , Φ(xn) of n vectors x1, . . . , xn of d-dimension input space, a subspace of the high-dimension characteristic space is provided for a category to which the pattern belongs. The nonlinear conversion images Φ(x1), . . . , Φ(xn) are referred to as base vectors of the subspace Ω, and n vectors x1, . . . , xn in an input space are referred to as preimages of the base vectors.


[0036] The preimages x1, . . . ,Xn are vectors that have been learned by a learning method described later, and have the characteristics of plural learning patterns, and each of the vectors is an approximation of plural learning patterns or is representative of plural learning patterns. The base vectors of the subspace Ω do not necessarily need to have an orthogonal relation with each other. The number of preimages, that is, the number n of base vectors of the subspace Ω is a preset parameter that influences recognition capability.


[0037] Projection of a nonlinear conversion image Φ(x) of the input pattern x to the subspace Φ is represented by a vector,


Φ(x)


[0038] which is the vector within the subspace Q with minimal Euclidean distance from the nonlinear conversion image Φ(x).


Φ(x)


[0039] is decided by finding a coefficient ai which minimizes
2E=&LeftBracketingBar;Φ(x)-Φ~(x)&RightBracketingBar;2=&LeftBracketingBar;Φ(x)-i=1naiΦ(xi)&RightBracketingBar;2(3)


[0040] The expression (3) is represented as
3E=K(x,x)-2i=1naiK(x,xi)+i=1nj~1naiajK(xi,xj)(4)


[0041] using the property (1) expression of the kernel function. ai is obtained by serially changing it by a value obtained by the following expression from its initial value by the steepest descent method.
4Δai=ξEai=2ξ{K(x,xi)-j=1najK(xi,xj)}(5)


[0042] ξ is a small positive constant.


[0043] E obtained by assigning ai finally obtained to the expression (4) denotes the distance between the nonlinear conversion image Φ(x) of the input pattern x and the subspace Ω. Specifically, E for a subspace corresponding to each category is computed, and it is judged that the input pattern belongs to the category where E is minimum.


[0044] The amount of computation depends on the number n of (preimage) vectors in an input space characterizing subspaces and the number d of dimensions, and will not increase in proportion to the number of learning samples. Since K(xi,xj) in the expressions (4) and (5) is unchanged after learning is completed, it has to be computed only once. Learning samples do not need to be saved, contributing to reduction in storage capacity.


[0045] The amount of computation required for pattern recognition is very small because computation in a high dimensional non-linear space is not required. Since the steepest descent method also permits operations on base vectors in a subspace having no orthogonal relation with each other, it is particularly effective to changes of vectors (preimages) for creating base vectors constituting a subspace, as in the present invention.



Preimage Learning

[0046] Learning of preimage xi of a base vector in a subspace is performed as follows. Where, e.g., the steepest descent method is used for learning samples, a1, . . . , an are computed using the expression (5). After the obtained a1, . . . , an are assigned to the expression (3), a change of base vector Φ(xi) is found as follows by the steepest descent method.
5ΔΦ(xi)=-ηEΦ(xi)=2ηai{Φ(x)-j=1najΦ(xj)}(6)


[0047] A change of preimage xi corresponding to the change of Φ(x1) is represented by
6Δxi=(Φ(xi)xi)-1ΔΦ(xi)whereφ(xi)xi(7)


[0048] is a matrix with dΦ) rows and d columns, and
7(φ(xi)xi)-1


[0049] is an inverse matrix thereof. Generally, since the nonlinear mapping Φ is an n−to−1 mapping, an inverse matrix
8(φ(xi)xi)-1


[0050] does not exist, but if the inverse matrix is approximated by a pseudo inverse matrix,
9(φ(xi)xi)-1(φ(xi)Txiφ(xi)xi)-1(φ(xi)xi)T=(gab(xi))-1(φ(xi)xi)T(8)


[0051] is obtained, where a matrix gab(xi) with d rows and d columns is a metric tensor and represented as
10gab(xi)=xiaxibK(xi,xi)&RightBracketingBar;x,-xi(9)


[0052] using a kernel function. If the expressions (6) and (8) are assigned to the expression (7), the following expression is obtained.
11Δxi=2ηai(gab(xi))-1{xiK(x,xi)-j=1naJxiK(xi,xj)}(10)


[0053] Learning is performed by serially updating preimage xi of base vector using the expression (10).


[0054] Since computation for the above learning is performed by updating preimages of base vectors, the amount of the computation is very small in comparison with conventional cases where all learning samples are required. Even in the case where learning samples are added after the learning is completed, since the learning may be performed for the added learning samples, additional learning is easy. The amount of computation for the above learning is very small because operations in a high dimensional non-linear space are not required.



Updating Kernel Function

[0055] A description will be made of a method of learning a kernel function. Before learning is started, well-known functions such as Gauss function kernels and polynominal kernels are set. During learning, a kernel function is deformed by a conformal mapping




K
(x, y)=C(x)C(y)K(x, y)  (11)



[0056] C(x) is changed so that variations of coefficient ai for learning samples become uniform for any coefficient ai. Specifically, where variations of coefficient ai are larger than a preset value, the value of C(x) regarding the vicinity of preimage xi of a base vector of a subspace corresponding to the coefficient ai is increased. This enlarges a space in the vicinity of xi in a nonlinear characteristic space by
12g~ab(x)=c(x)xac(x)xb+c(x)2gab(x)(12)


[0057] Accordingly, the number of learning samples having coefficient ai of a large value decreases relatively, and variations for a learning sample of coefficient ai decrease. Conversely, where variations of coefficient ai are smaller than a preset value, the value of C(x) regarding the vicinity of preimage xi of a base vector of a subspace corresponding to the coefficient ai is decreased.


[0058] C(x) regarding preimage vicinity is increased or decreased by, e.g., an expression (14).


[0059] By a variation of a kernel function as described above, a kernel function adapted to learning samples is obtained, so that base vectors Φ(x1) in a subspace represent an approximately equal number of learning samples. This increases recognition capability. As implied from the expression (10), smaller gab(x) makes variations of coefficient ai smaller because changes of input space vector xi characterizing subspaces by learning are larger, that is, xi less responsive to learning samples speeds up learning. On the other hand, xi more responsive to learning samples makes changes of input space vector xi smaller and brings about a stable condition. This yields the effect of short-time learning period and excellent convergence.


[0060] Although the above method produces only the values of C(xi) in the vicinity of preimages, the values of C(x) in other locations can be obtained through extrapolation from these values by the following expression
13C(x)=i=1naiC(xi)i=1nai(13)



Recognition Processing Procedure

[0061] Next, a detailed procedure for pattern recognition processing according to the present invention will be described using a flowchart of FIG. 1. Assume that base vectors Φ(xi) of a subspace of each category and a kernel function have been learned according to a procedure described later. In S101, pattern data to be recognized is inputted. The data is multidimensional data inputted from various sensors, such as image or sound data, or multidimensional pattern obtained by converting the data. As learning patterns and unknown patterns, files stored on computer storage media and files obtained from networks can be used, and an interface with equipment for the files can be used as a pattern input device. In S102, projection ai to a nonlinear subspace of each category of an input pattern is calculated. To do this, ai is set to an initial value by, e.g.,
14ai=K(x,xi)K(xi,xi)(14)


[0062] and serially updated by the expression (5). Each time ai is updated, an evaluation value E is calculated by the expression (4), and ai is updated until changes of E become below 1% or a predetermined number of times is reached. In S103, an evaluation value E calculated for each category is compared with a threshold value, and if, in S104, a category for which the evaluation value E is below the threshold value exists, control proceeds to S105. In S105, a category for which the evaluation value E is the smallest is outputted as recognition results. If there is no category for which the evaluation value E is below the threshold value, recognition becomes unsuccessful and control proceeds to S106. In S106, a teaching signal indicative of a category of the input pattern is inputted. The teaching may be manually given or created analogically from other information. After the teaching signal is inputted, control proceeds to S204 in FIG. 2 for additional learning described later.


[0063] Using a flowchart of FIG. 2, a description will be made of a procedure for learning base vectors Φ(xi) of a nonlinear subspace of each category and a kernel function in the present invention. The number of base vectors Φ(xi) of a nonlinear subspace is specified beforehand. Initial value of base vectors Φ(xi) is given by a random number. The kernel function is set beforehand to a known kernel such as a Gaussian kernel or polynominal kernel. In S201, a learning sample is inputted. The learning sample is the similar pattern data used in the recognition processing. In S202, the category to which the learning sample belongs is inputted as a teaching signal to select a nonlinear subspace of the category to be learned. In S203, projection ai of the learning pattern to the selected nonlinear subspace is calculated according to the procedure as in the recognition processing. In S204, the base vectors of the nonlinear subspace are updated according to the expression (10). In S205, the kernel function is deformed based on the expression (11). C(x) of the expression (11) is updated based on
15C~(x)=(σaiσconv)aC(x)(15)


[0064] so that variation σai of projection ai to all learning samples converges to a given value σconv. αis a positive constant. σconv may be set beforehand, or autonomously changed to an average value of σai of each base. Since the above method gives C(x) only to preimages of bases of nonlinear subspace, C(x) for a given input x is obtained through extrapolation from the value of C(x) at preimage. The above learning continues until an evaluation value E for the learning sample becomes significantly small.


[0065] The additional learning may start from S204 because a teaching signal has been obtained the recognition processing in FIG. 1 and projection ai to a nonlinear subspace has been calculated.


[0066]
FIG. 4 is a drawing showing a result of recognizing an image pattern by the present invention. An input pattern is an image of 27 by 27 pixels belonging to one of three categories shown in FIG. 3. FIG. 4 shows an evaluation value E for a nonlinear subspace in which learning was performed with learning samples of category 1. An evaluation value E for input of the category 1 is about one hundredth of evaluation values E for input of other categories, indicating that the pattern can be recognized. FIG. 5 shows computation time required for recognition processing by the present invention along with comparison with the conventional kernel nonlinear subspace method. The horizontal axis indicates the number of patterns used for learning and the vertical axis indicates computation time required for recognition processing. It will be understood that the present pattern recognition method enables recognition with computation time of about one hundredth in comparison with the conventional method.


[0067]
FIG. 6 shows an example of configuring hardware so that parallel processing can be performed on a category basis to increase computation speed. A pattern input unit 301 inputs a pattern signal. A teaching signal input unit 302 inputs a teaching signal. For each category, nonlinear space learning units 303-1 to 303-n, and nonlinear projection computation units 304-1 to 304-n are provided. The nonlinear projection computation units 304-1 to 304-n are respectively provided with subspace projection computation units 305-1 to 305-n to which a pattern signal inputted from the pattern input unit 301 is inputted, and evaluation value computation unit 306-1 to 306-n to which projection computation results are inputted and which determine a relation with the category, and projection variation computation units 307-1 to 307-n to which projection computation results are inputted. The nonlinear space learning units 303-1 to 303-n are respectively provided with base vector updating units 308-1 to 308-n that update base vectors, based on the projection of the inputted learning pattern and a teaching signal, and kernel function updating units 309-1 to 309-n that update a kernel function according to the degree of projection variations. The base vector updating units 308-1 to 308-n have an internal storing part for storing, e.g., preimage data. Of course, the preimage data may also be stored in other storing units. The kernel function updating units 309-1 to 309-n also have an internal storing unit for storing data on a kernel function. Of course, the data on a kernel function may also be stored in other storing units. Evaluation results judged for each category are inputted to an evaluation result comparing unit 310, which determines to which category the inputted pattern belongs, and outputs the result.


[0068] It will be easily understood that this configuration also permits the same processing described using FIGS. 1 and 2 to be performed.


[0069] As has been described above, the present invention is provided as a computer program for executing the above-described algorithm, and also may be configured on dedicated hardware as described above.


[0070] As has been described above, according to a specific configuration of the present invention, not all learning samples need to be used to recognize complicated patterns, recognition is enabled with a small amount of computation, and a memory for storing learning samples is not required. Also, additional learning in which learning samples are newly added is easy. Moreover, a kernel function can be adaptively changed, offering the effects of increased recognition accuracy and speeding up learning.


[0071] As has been described above, the present invention can decrease the amount of computation for pattern recognition and adapt flexibly to an increase and change in learning samples.


[0072] The entire disclosure of Japanese Patent Application No. 2000-390459 filed on Dec. 22, 2001 including specification, claims, drawings and abstract is incorporated herein by reference in its entirety.


Claims
  • 1. A pattern recognition method, comprising: calculating an evaluation value by using a set of vectors obtained by mapping a set of vectors conformed to at least one learning sample in an input space respectively to a nonlinear space defined by a kernel function as a set of base vectors constituting each of plural subspaces in the nonlinear space, defined for each of categories into which a pattern is classified, the evaluation value representing a relation between the plural subspaces represented by a linear combination of corresponding sets of the base vectors and mapping of an unknown input pattern to the nonlinear space; and recognizing a category to which the unknown input pattern belongs, based on the evaluation value.
  • 2. The pattern recognition method according to claim 1, wherein the evaluation value calculation includes the steps of: obtaining projection of the mapping of the unknown input pattern to the nonlinear space to a subspace of each of the categories by making serial computations by a steepest descent method on a distance between the mapping of the input pattern to the nonlinear space and the subspaces; and calculating the distance from the obtained projection, and the category recognition includes the step of: determining that the input pattern belongs to a category where the distance from the subspace is minimum.
  • 3. A method of learning base vectors constituting subspaces used for pattern recognition, comprising: deciding, for each mapping of a learning pattern to a nonlinear space defined by a kernel function, projection to a subspace that corresponds to a category into which the learning pattern is classified, the subspace being represented by a linear combination of a set of base vectors created by a mapping of a set of vectors, respectively, in an input space to the nonlinear space; and updating the vectors in the input space in which the base vectors are created, and increasing a relation between the mapping of the learning pattern obtained by the decided projection to the nonlinear space and the subspace corresponding to the category into which the learning pattern is classified.
  • 4. The method of learning base vectors constituting subspaces used for pattern recognition according to claim 3, wherein a distance of a mapping of the learning pattern to the nonlinear space from the subspace is serially calculated by a steepest descent method to decide the projection, and the vectors are updated so as to decrease a distance between the mapping of the learning pattern obtained by the decided projection to the nonlinear space and the subspace corresponding to the category into which the learning pattern is classified.
  • 5. A method of deforming a kernel function, comprising the steps of: setting a kernel function for defining a mapping of a pattern in an input space to a nonlinear space which comprises subspaces each defined for each of categories to which the pattern is classified; calculating a relation between the mapping of a learning pattern in the input space to the nonlinear space and the subspaces; and deforming the kernel function according to the result of the calculation of the relation.
  • 6. The method of deforming the kernel function according to claim 5, wherein the relation is calculated based on variations of projection components of the mapping of the learning pattern in the input space to the nonlinear space to base vectors of the subspaces, and the kernel function is deformed based on the calculation result and a predetermined threshold value.
  • 7. The method of deforming the kernel function according to claim 5, wherein: the base vectors are obtained by mapping a set of vectors conformed to at least one learning sample in an input space respectively to a nonlinear space by the kernel function; a relation between the mapping of the learning pattern to the nonlinear space and the subspaces is obtained as variations of projection components of the mapping to the base vectors of the subspaces; and the kernel function is deformed, for the base vectors large in the variations, to increase a scale of the kernel function in the vicinity of the input space in which the base vectors are created, and for the base vectors small in the variations, to decrease the scale of the kernel function in the vicinity of the input space in which the base vectors are created.
  • 8. The method of deforming the kernel function according to claim 6, wherein a scale conversion is subjected to the function form of a pre-learning kernel function, based on the variations of projection components of the base vectors, to deform the kernel function.
  • 9. The method of learning base vectors constituting subspaces used for pattern recognition according to claim 3, comprising the steps of: obtaining a relation between the mapping of an input pattern to the nonlinear space and a subspace of each of the categories; and if relations between the mapping of the input pattern to the nonlinear space and all the subspaces are lower than a predetermined value, presenting a teaching signal indicative of a category to which the input pattern belongs and learning base vectors of a subspace corresponding to the category.
  • 10. The method of learning base vectors constituting subspaces used for pattern recognition according to claim 3, comprising the steps of: obtaining projection of the mapping of an input pattern to the nonlinear space to a subspace of each of the categories by making serial computations by the steepest descent method on a distance between the mapping of the input pattern to the nonlinear space and the subspaces; and if distances between the mapping of the input pattern to the nonlinear space and all the subspaces are larger than a desired value, presenting a teaching signal indicative of a category to which the input pattern belongs, and learning base vectors of a subspace corresponding to the category.
  • 11. A storage medium readable by a computer, the storage medium storing a program of instructions executable by the computer to perform a function for pattern recognition, the function comprising the steps of: calculating an evaluation value by using a set of vectors obtained by mapping a set of vectors conformed to at least one learning sample in an input space respectively to a nonlinear space defined by a kernel function as a set of base vectors constituting each of plural subspaces in the nonlinear space, defined for each of categories into which a pattern is classified, the evaluation value representing a relation between the plural subspaces represented by a linear combination of corresponding sets of the base vectors and mapping of an unknown input pattern to the nonlinear space; and recognizing a category to which the unknown input pattern belongs, based on the evaluation value.
  • 12. A pattern recognition apparatus, comprising: an input part that inputs patterns; an evaluation value calculating part that uses a set of vectors obtained by mapping a set of vectors conformed to at least one learning sample in an input space respectively to a nonlinear space defined by a kernel function as a set of base vectors constituting a subspace in the nonlinear space, defined for each of categories into which a pattern is classified, to calculate an evaluation value representative of a relation between the plural subspaces represented by a linear combination of corresponding sets of the base vectors, and mapping of an unknown input pattern to the nonlinear space; and a category recognition part that recognizes a category to which the unknown input pattern belongs, based on the evaluation value.
  • 13. The pattern recognition apparatus according to claim 12, comprising: a dedicated processing device that performs parallel processing for each of the categories.
  • 14. The pattern recognition apparatus according to claim 12, comprising: a base vector updating part that decides projection of mapping of a learning pattern inputted from the input part to the nonlinear space to a subspace corresponding to a category into which the learning pattern is classified, and updates the base vectors to increase a relation between the mapping of the learning pattern obtained by the decided projection to the nonlinear space and the subspace corresponding to the category into which the learning pattern is classified.
  • 15. The pattern recognition apparatus according to claim 12, comprising: a vector updating part that decides projection of mapping of a learning pattern inputted from the input part to the nonlinear space to a subspace corresponding to a category into which the learning pattern is classified, by serial computations by a steepest descent method on a distance between the mapping of the learning pattern to the nonlinear space and the subspaces, and updates, by the steepest descent method, the vectors of the input space in which the base vectors are created, so as to decrease a distance between the mapping of the learning pattern to the nonlinear space obtained by the decided projection and the subspace corresponding to the category into which the learning pattern is classified.
  • 16. The pattern recognition apparatus according to claim 12, comprising: a kernel function deforming part that calculates a relation between mapping of at least one learning pattern in the input space to the nonlinear space and the subspaces by using the kernel function, and deforms the kernel function according to the result of calculation of the relation.
  • 17. The pattern recognition apparatus according to claim 12, comprising: a kernel function deforming part that calculates variations of projection components of mapping of at least one learning pattern in the input space to the nonlinear space to base vectors of the subspaces by the kernel function, and deforms the kernel function so that the calculation of the variations results in a predetermined value.
Priority Claims (1)
Number Date Country Kind
2000-390459 Dec 2000 JP