1. Field of the Invention
The invention relates generally to a system and method for extracting relevant information from raw text data. More particularly, the invention concerns itself with a system and method for identifying patterns in text using structures defining types of patterns. In this context a “pattern” is to be understood as a part of a written text of arbitrary length. Thus, a pattern may be any series of alphanumeric characters within a text. Particular examples of patterns that might be identified in a text, such as a word-processor document or an email-text, are dates, events, numbers such as telephone numbers, addresses or names.
2. Description of the Background Art
Technologies for searching interesting patterns in a text presented by a computer to a user (in the following “computer text”) are well-known. U.S. Pat. No. 5,864,789 is one example of a document describing such a technology.
A system that searches patterns in a computer text and provides to the user some actions based on the kind of identified patterns is described in two variants The first variant is an application termed “AppleDataDetectors” and the second variant an application termed “LiveDoc”.
Both variants use the same method to find patterns in an unstructured text. The engine performing the pattern search refers to a library containing a collection of structures, each structure defining a pattern that is to be recognized.
The structure #7 gives a definition of what is to be identified as a street address. In this context, a street address is to be understood as a postal address excluding the name of the recipient. A typical example of a street address is: 225 Franklin Street, 02110 MA Boston. According to the definition given by structure #7, a pattern is a street address if it has elements matching the following sequence of definition items:
This definition of a street address is deliberately broad in order to ensure that the application is able to identify not only street addresses written according to a single specific notation but also addresses written according to differing notations.
However, an application using such a broad definition is prone to the detection of a large number of false positives. For example, with the definition of a street address given above, the pattern “4 Apple Pies” will be wrongly recognized as a street address. The obvious solution to reduce the number of false positives is to make the structure definitions narrower. Yet, with narrow definitions there is an increased risk of missing interesting patterns.
At least certain embodiments of the present invention provide a method and system for identifying patterns in text using structures, which increase the flexibility of structure definitions and which, in particular, permit the formulation of structure definitions that lead to more accurate results during pattern identification.
A computer-based method, in one embodiment, for identifying patterns in text using structures defining types of patterns which are to be identified, wherein a structure comprises one or more definition items, and wherein the methods include assigning a weighting to each structure and each definition item; searching the text for a pattern to be identified on the basis of a particular structure, a pattern being provisionally identified if it matches the definition given by said particular structure; in a provisionally identified pattern, determining those of the definition items making up said particular structure that have been identified in the provisionally identified pattern; combining the weightings of the determined definition items and optionally, the weighting of the particular structure, to a single quantity; assessing whether the single quantity fulfils a given condition; depending on the result of said assessment, rejecting or confirming the provisionally identified pattern.
Through the introduction of weightings for each structure and definition item, pattern definition and identification becomes more flexible and accurate. Indeed, in contrast to the conventional method of pattern identification, at least certain embodiments of a method of the invention introduce a supplementary test for the identification of patterns. It is no longer sufficient for a pattern to be recognized that it matches the definition of the corresponding structure. On top of that, at least certain embodiments of the invention use a second procedure which consists in performing a sort of plausibility check. The weightings of the definition items of the relevant structure that have been matched to the elements of the provisionally identified pattern must in combination fulfill a given condition. If this is the case, it is assumed that the identified pattern is sufficiently likely to really correspond to the relevant structure (e.g., if the structure defines telephone numbers, when the given condition is met by the combined weightings, it is assumed that the identified pattern is indeed a telephone number and not a false positive).
The introduction of weightings and of a probability test based on those weightings allows for structures with broad pattern definitions without the risk of an overly high number of false positives. A structure having a broad definition will lead to a lot of incorrect matches. However, these false positives may then be “sieved out” with the described “plausibility test” based on the assigned weightings. The weightings are assigned to the structures and definition items such that the combined weightings of a false positive are very unlikely to fulfill the given condition. The use of weightings gives more flexibility and freedom in the definition of structures and definition items.
A machine-implemented method is a method which is preferably implemented via a data processing system such as a computer. The term “computer” includes any data processing system such as any computing device as, for example, a desktop computer, laptop, personal digital assistant, mobile phone, multimedia device, notebook, or other consumer electronic devices and similar devices.
In the present context, a weighting is a quantity used to emphasize, to suppress or even to penalize a structure or definition item associated with it. A structure with a greater weighting is considered to be more desirable or more accurate than a structure with a lower, no or even a negative weighting. Preferably, the weighting is a number and in particular an integer. In the latter case, each weighting may take the form of either a bonus in the form of a positive integer, or a malus in the form of a negative integer. Within the context of the invention, the term “malus” is to be understood as being the antonym of the term “bonus”. A “malus” may also be qualified as a penalty.
A bonus may be assigned to a structure or definition item if it is well-defined, meaning that there is a high probability for correct pattern identification if the identified pattern contains said structure or definition item. A malus or penalty may be assigned if the structure or definition item is ambiguous. This may mean that the structure or definition item allows different interpretations, only one of which leads to correct pattern identification. It may also mean that the structure or definition item defines a set of elements of which only a subset may be contained in the pattern sought-after.
In a preferred embodiment, each weighting is an integer multiple of the same integer. Accordingly, the weightings may be quantized as multiples of a single integer. This renders the weighting scheme of the invention more manageable and easier to implement.
In a most preferred embodiment, the weightings are quantized as multiples of the integer “1”, meaning that the whole integer range is used for the weightings.
Preferably, the given condition corresponds to the single quantity being above or below a given threshold. Furthermore, the single quantity may be obtained by combining the weightings using one or more arithmetic operations, such as addition, subtraction, multiplication and/or division. The most preferred arithmetic operation is a summation over all weightings, the single quantity being the sum of all the weightings.
In a further aspect of the invention, which may also be implemented independently from the inventive weighting scheme described above, the structures are automatically generated or extended on the basis of information available from a data source, such as a calendar application or an address book application. For example, a structure defining the pattern “city name” may be automatically completed by the system with the help of city names fetched from an address book application containing postal addresses of user contacts or from another source of city names such as a locally stored (or remotely stored) database which includes city names. Each time a new contact is added to the address book, the corresponding city name may be automatically added to the structure “city name”. This feature, which may be termed “automatic learning system”, leads to an automatic increase in the knowledge base of known patterns and an automatic improvement of pattern detection as the system learns more and more from the data sources of the user. In particular, thanks to this “automatic learning” feature, there is less need for a programmer or user to actively administrate and update the structures and definition items as this is done “on the fly” by the system itself.
In yet a further aspect of the invention, which may as well be implemented independently from the inventive weighting scheme described above, the computer text is indexed using the patterns identified in it in order to improve search capabilities of computer texts. This means that interesting patterns that have been found in a text using the inventive or any other pattern identification method may be used to tag the text with corresponding metadata. In this way, any computer text can be flagged with all the patterns that have been identified in it. This type of text indexing may be used for more advanced searches in a desktop search application such as “Spotlight” from Apple Inc. of Cupertino, Calif. For example, thanks to the new metadata represented by the identified patterns, one may query all the texts that contain a date within a certain range or that contain a street address near a given city.
The inventive methods may be implemented in a computer-based system operable to execute said methods, the term “computer-based system” including any data processing system such as any computing device as, for example, a desktop computer, laptop, personal digital assistant, mobile phone, multimedia device, notebook, or other consumer electronic devices and similar devices. In a typical embodiment, a data processing system includes one or more processors which are coupled to memory and to one or more buses. The processor(s) is also typically coupled to input/output devices through the one or more buses. Examples of data processing systems are shown and described in U.S. Pat. No. 6,222,549, which is hereby incorporated herein by reference.
The inventive methods may also be implemented as a program storage medium having a program stored therein for causing a computer or other data processing system to execute said inventive methods. A program storage medium may be a hard disk drive, a USB stick, a CD, a DVD, a magnetic disk, a Read-Only Memory (ROM), or any other computer storage means.
In the following, a preferred embodiment of the invention will be described, with reference to the accompanying drawings, in which:
a and 4b show a first example of the user experience provided by the pattern detection application of
a to 6e show a third example of the user experience provided by the pattern detection application of
The engine 4 receives a text 6, which is to be searched for known patterns. This text 6 may be a word processor document or an email message. The text is often encoded in some standards-based format, such as ASCII or Unicode. If system 2 is implemented in a mobile phone, the text 6 may also be an SMS or MMS message. If system 2 is part of an instant messaging application, such as iChat from Apple Inc. of Cupertino, Calif., the text 6 may be a message text received via such an instant messaging application. As a further example, text 6 may also correspond to a web page presented by a web browser, such as Safari from Apple Inc. of Cupertino, Calif. Generally, text 6 may correspond to any text entity presented by a computing device to a user.
The text 6 is searched for patterns by the engine 4 according to structures and rules 8. The structures and rules 8 are formulated according to the inventive pattern identification method using weightings. The search by engine 4 yields a certain number of identified patterns 10. These patterns 10 are then presented to the user of the searched text 6 via user interface 12. For each identified pattern, the user interface 12 may suggest a certain number of actions 14. For example, if the identified pattern is a URL address the interface 12 may suggest the action “open corresponding web page in a web browser” to the user. If the user selects the suggested action a corresponding application 16 may be started, such as, in the given example, the web browser.
The suggested actions 14 preferably depend on the context 18 of the application with which the user manipulates the text 6. More specifically, when performing an action 14, the system can take into account the application context 18, such as the type of the application (word processor, email client, . . . ) or the information available through the application (time, date, sender, recipient, reference, . . . ) to tailor the action 14 and make it more useful or “intelligent” to the user.
Of course, the type of suggested actions 14 does also depend on the type of the associated pattern. If the recognized pattern is a phone number, other actions will be suggested than if the recognized pattern is a postal address.
The pattern search is done in the background without the user noticing it. However, when the user places his mouse pointer over a text element that has been recognized as an interesting pattern having actions associated with it, this text element is visually highlighted to the user (operations 2 and 3 in
The patterns identified in the text could of course also be highlighted automatically, without the need of a user action. However, it is preferred that the highlighting is only done upon a mouse rollover so that it is less intrusive.
The area highlighted by a mouse rollover includes a small arrow. The user can click on this arrow in order to visualize actions associated with the identified pattern in a contextual menu (operations 4 and 5 in
In
Action 40, named “Large Type”, allows Paul to obtain a magnified view of the telephone number so that he can read it off the screen easily when dialing.
There may be a special highlight in entry 50 to indicate to the user that some fields have been auto-completed.
Of course, the various embodiments of the invention are not limited to this specific example. The system may obtain any kind of supplementary information from any available data source in order to automate and enhance the action initiated by the user.
a to 6e give a third example, again involving an email message. This time, the message contains a pattern indicative of an appointment. The appointment is part of the first sentence of the message, as can be seen from
Two patterns might be regarded as related if they are in close proximity to each other in the text. When the user rolls over one of several related patterns, both patterns may be highlighted to express their relatedness.
The information represented by the event pattern 56 is automatically entered in the head line field of the new entry 54, as indicated by the arrow. Furthermore, the date of the meeting 60 is automatically generated on the basis of the appointment pattern 58. As pattern 58 is only a contextual date indication (“tomorrow at 7:30 p.m.”), which needs to be interpreted in the light of the context of the message, the system cannot simply copy pattern 58 into the new entry 54. The system solves this by obtaining the date of the email message from the email client of the user. Knowing the date of the email, the system can infer the exact date of the indication “tomorrow” and enter it into the entry 54. This process of using context information to deduce accurate information from context dependent patterns is visualized in
The new entry 54 may also contain a URL 62 of a special kind that points toward the original email message, allowing the user to return to the email message when viewing entry 54.
e shows the result of the action “New Calendar Event”: a new event has been created in the user's calendar application.
Structures #1, #5 and the structure “known city” have been given a positive bonus because their respective definitions are rather precise, meaning that a pattern matching the definition is highly likely to be of the type defined by the structure. For example, structure #5 is a simple enumeration of strings which are known to represent streets, such as “Street” or “Boulevard” or “Road”. There is a high probability that a pattern in a text that corresponds to such a string is indeed of the “Street” type.
Structure #7 has been given a malus of −10, because, as discussed earlier on, its definition is rather broad, potentially including a substantial number of false positives.
Structures #1 and #5 may be elaborated further by assigning weightings to their respective definition items. For example, structure #1 may contain the definition item “ID” referring to the US state Idaho (not shown). This definition item is preferably given a malus of −5 because the string “ID” is ambiguous. Indeed, “ID” may not only be used in a text as an abbreviation for “Idaho” but also for “Identification”.
Structure #5 may contain the string “Drive” as one of its definition items in order to cover the “street type” “Drive” (not shown). However, this definition item should be given a malus as the string “Drive” may appear in various contexts in a computer text, not necessarily being a synonym for “Street”.
The pattern identification method of the invention will now be described in detail with reference to
Operation 100 of
With operation 102, structure #7 is given a weighting w, namely w=−10 as the structure is rather broad in its definition of what may constitute a street address. Structure #7 having been defined and assigned a weighting, it may then be used by the pattern search engine to search for corresponding patterns in a text (operation 104).
Let us introduce two example texts that are to be searched by the search engine using structure #7:
With the conventional method using structure #7 without the weighting scheme, the underlined patterns in each of the two texts would each be identified as a “street address”, leading to a false positive in the case of Text 2.
It will now be explained how the use of the inventive weighting scheme suppresses the false positive in Text 2 while detecting the correct pattern in Text 1.
In the inventive method, in the same way as the conventional method, both texts are searched for a match with the definition given by structure #7 (operation 106). If no match is found, the method goes on searching for other patterns using other structures (operation 108). However, if a match is found, “225 Franklin Street, 02110 MA Boston” (pattern 1) and “4 Apple Pies” (pattern 2) in the two texts above, it is not immediately validated as it was done conventionally. Rather, it is determined which of the definition items of the structure have been found in the identified pattern (operation 110).
The next step is to calculate the sum of the weightings of all identified definition items, to which is added the weighting of the structure, giving a total sum of A (operation 112).
In the case of pattern 1, we obtain for A the value of 5 (cf.
In the case of pattern 2, we obtain for A a value of −10, the value of the malus associated with structure #7, since the elements of the pattern “4 Apple Pies” do not match any of the definition items with a bonus.
In operation 114, A is then compared to a predetermined threshold, here 0. Accordingly, pattern 1 is confirmed since A=5>0 (operation 116), whereas pattern 2 is rejected since A=−10<0 (operation 118).
Hence, with the inventive weighting scheme, contrary to the prior art, false positives such as “4 Apple Pies” are spotted and discarded. The inventive method therefore renders pattern searching more effective and accurate.
Number | Name | Date | Kind |
---|---|---|---|
4791556 | Vilkaitis | Dec 1988 | A |
5034916 | Ordish | Jul 1991 | A |
5155806 | Hoeber et al. | Oct 1992 | A |
5189632 | Paajanen et al. | Feb 1993 | A |
5390281 | Luciw et al. | Feb 1995 | A |
5434777 | Luciw | Jul 1995 | A |
5442742 | Greyson et al. | Aug 1995 | A |
5477447 | Luciw et al. | Dec 1995 | A |
5583921 | Hidaka | Dec 1996 | A |
5608624 | Luciw | Mar 1997 | A |
5621903 | Luciw et al. | Apr 1997 | A |
5627948 | Fukunaga | May 1997 | A |
5644735 | Luciw et al. | Jul 1997 | A |
5666552 | Greyson et al. | Sep 1997 | A |
5687333 | Dobashi et al. | Nov 1997 | A |
5692032 | Seppänen et al. | Nov 1997 | A |
5708845 | Wistendahl et al. | Jan 1998 | A |
5790875 | Andersin et al. | Aug 1998 | A |
5794142 | Vanttila et al. | Aug 1998 | A |
5815138 | Tsubaki et al. | Sep 1998 | A |
5815142 | Allard et al. | Sep 1998 | A |
5838458 | Tsai | Nov 1998 | A |
5859636 | Pandit | Jan 1999 | A |
5864789 | Lieberman et al. | Jan 1999 | A |
5900005 | Saito | May 1999 | A |
5946629 | Sawyer et al. | Aug 1999 | A |
5946647 | Miller et al. | Aug 1999 | A |
5966652 | Coad et al. | Oct 1999 | A |
5987029 | Kotani et al. | Nov 1999 | A |
6026233 | Shulman et al. | Feb 2000 | A |
6034689 | White et al. | Mar 2000 | A |
6044250 | Kuramatsu et al. | Mar 2000 | A |
6049796 | Siitonen et al. | Apr 2000 | A |
6125281 | Wells et al. | Sep 2000 | A |
6222549 | Hoddie | Apr 2001 | B1 |
6249283 | Ur | Jun 2001 | B1 |
6262735 | Eteläperä | Jul 2001 | B1 |
6282435 | Wagner et al. | Aug 2001 | B1 |
6323853 | Hedloy | Nov 2001 | B1 |
6460058 | Koppolu et al. | Oct 2002 | B2 |
6608637 | Beaton et al. | Aug 2003 | B1 |
6622306 | Kamada | Sep 2003 | B1 |
6711624 | Narurkar et al. | Mar 2004 | B1 |
7467181 | McGowan et al. | Dec 2008 | B2 |
20020194379 | Bennett et al. | Dec 2002 | A1 |
20040042591 | Geppert et al. | Mar 2004 | A1 |
20050022115 | Baumgartner et al. | Jan 2005 | A1 |
20050125746 | Viola et al. | Jun 2005 | A1 |
20070282900 | Owens et al. | Dec 2007 | A1 |
20080293383 | Rastas | Nov 2008 | A1 |
20090006994 | Forstall et al. | Jan 2009 | A1 |
20090235280 | Tannier et al. | Sep 2009 | A1 |
20090292690 | Culbert | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0 458 563 | Nov 1991 | EP |
0 458 563 | Nov 1991 | EP |
0 698 845 | Feb 1996 | EP |
0 698 845 | Jan 2001 | EP |
3046855 | Feb 1991 | JP |
10040014 | Feb 1998 | JP |
11088633 | Mar 1999 | JP |
WO 9534998 | Dec 1995 | WO |
WO 9732439 | Sep 1997 | WO |
WO 9966747 | Dec 1999 | WO |
WO 2008109835 | Sep 2008 | WO |
WO 2009041982 | Apr 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20080243841 A1 | Oct 2008 | US |