The present teachings relate to the field of ink jet printing devices and, more particularly, to a high density piezoelectric ink jet print head and methods of making a high density piezoelectric ink jet print head and a printer including a high density piezoelectric ink jet print head.
Drop on demand ink jet technology is widely used in the printing industry. Printers using drop on demand ink jet technology can use either thermal ink jet technology or piezoelectric technology. Even piezoelectric ink jet devices are more expensive to manufacture than thermal ink jet devices, piezoelectric ink jets are generally favored as they can use a wider variety of inks.
Piezoelectric ink jet print heads typically include a flexible diaphragm and a piezoelectric element attached to the diaphragm. When a voltage waveform is applied to the piezoelectric element, typically through electrical connection with an electrode electrically coupled to a voltage source, the piezoelectric element oscillates, causing the diaphragm to oscillate. Consequently, this will expel a quantity of ink from a chamber through a nozzle. The oscillation further draws ink into the chamber from a main ink reservoir through an opening to replace the expelled ink.
Increasing the printing resolution of an ink jet printer employing piezoelectric ink jet technology is a goal of design engineers. Increasing the jet density of the piezoelectric ink jet print head can increase printing resolution. One way to increase the jet density is to eliminate manifolds which are internal to a jet stack. With this design, it is preferable to have a single port through the back of the jet stack for each jet. The port functions as a pathway for the transfer of ink from the reservoir to each jet chamber. Because of the large number of jets in a high density print head, the ink inlets must pass vertically through the diaphragm and between the piezoelectric elements.
Manufacturing a high density ink jet print head assembly having an external manifold has required new processing methods. Piezoelectric ink jet print heads with an external manifold require ink inlets to pass through the electronic portion of the print head assembly. Assembly methods for a print head having an electrical interconnect layer that is easier to manufacture than prior assemblies would be desirable.
The following presents a simplified summary in order to provide a basic understanding of some aspects of one or more embodiments of the present teachings. This summary is not an extensive overview, nor is it intended to identify key or critical elements of the present teachings nor to delineate the scope of the disclosure. Rather, its primary purpose is merely to present one or more concepts in simplified form as a prelude to the detailed description presented later.
An embodiment of the present teachings can include a method for forming an ink jet print head, including attaching a plurality of piezoelectric elements to a diaphragm, dispensing an interstitial layer comprising a dielectric to encapsulate the plurality of piezoelectric elements and to contact the diaphragm, attaching a plurality of conductive elements to a top surface of the interstitial layer, wherein a plurality of conductive particles within the interstitial layer dielectric electrically couples the plurality of conductive elements to the plurality of piezoelectric elements, and curing the interstitial layer.
In another embodiment, an ink jet print head can include a diaphragm comprising a plurality of openings therethrough, a body plate attached to the diaphragm with a diaphragm attach material, a plurality of piezoelectric elements attached to the diaphragm, and an interstitial layer encapsulating the plurality of piezoelectric elements. The ink jet print head can further include a plurality of conductive elements and a plurality of conductive particles interposed between each conductive element and each piezoelectric element, wherein the plurality of conductive particles are dispersed within the interstitial layer, are electrically isolated from each other, and electrically couple the plurality of piezoelectric elements to the plurality of conductive elements.
An embodiment of the present teachings can further include a printer having an ink jet print head which includes a diaphragm comprising a plurality of openings therethrough, a body plate attached to the diaphragm with a diaphragm attach material, a plurality of piezoelectric elements attached to the diaphragm, an interstitial layer encapsulating the plurality of piezoelectric elements, and a flex circuit comprising a plurality of conductive elements. The printer can further include a plurality of conductive particles interposed between each conductive element and each piezoelectric element, wherein the plurality of conductive particles are dispersed within the interstitial layer, are electrically isolated from each other, and electrically couple the plurality of piezoelectric elements to the plurality of conductive elements, a manifold attached to the flex circuit, and an ink reservoir formed by a surface of the manifold and a surface of the flex circuit.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the disclosure. In the figures:
It should be noted that some details of the FIGS. have been simplified and are drawn to facilitate understanding of the inventive embodiments rather than to maintain strict structural accuracy, detail, and scale.
Reference will now be made in detail to embodiments of the present teachings, an example of which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As used herein, the word “printer” encompasses any apparatus that performs a print outputting function for any purpose, such as a digital copier, bookmaking machine, facsimile machine, a multi-function machine, etc. The word “polymer” encompasses any one of a broad range of carbon-based compounds formed from long-chain molecules including thermoset polyimides, thermoplastics, resins, polycarbonates, epoxies, and related compounds known to the art.
Embodiments of the present teachings can simplify the manufacture of a jet stack for a print head, which can be used as part of a printer. The present teachings can include the use of an anisotropic conductive epoxy, which is a material that is an electrical conductor in the z-axis and a nonconductor in the x-axis and the y-axis. Other embodiments can include the use of a localized z-axis conductor. In some prior processes, an electrically nonconductive interstitial layer formed between adjacent piezoelectric elements (i.e., transducers) was formed over the top surface of the plurality of piezoelectric elements, and had to be removed from the top piezoelectric element surface to facilitate electrical communication with a printed circuit board (PCB) electrode. Removal of the overlying interstitial layer would require the use of an etch mask and an etching process. In an embodiment of the proposed process, the interstitial layer would function as both a standoff layer to provide large area adhesion and electrical connection to the PCB electrodes and the piezoelectric elements. In another embodiment, the interstitial layer epoxy over the top of the piezoelectric elements has conductive elements placed selectively over the tops of each of the piezoelectric elements. This can be accomplished using a stencil or mask that would later be removed.
The formation and use of a print head is discussed in U.S. patent Ser. No. 13/011,409, titled “Polymer Layer Removal on PZT Arrays Using A Plasma Etch,” filed Jan. 21, 2011, which is incorporated herein by reference in its entirety. The present teachings can form the interstitial layer without the requirement for a patterned etch of the interstitial layer covering the top surface of the piezoelectric elements, and without forming a patterned standoff layer to provide large area adhesion to the electronic interface.
An embodiment of the present teachings can include the formation of a jet stack, a print head, and a printer including the print head. In the perspective view of
After forming the
After forming the individual piezoelectric elements 20, the
In an embodiment, the
Subsequently, the transfer carrier 12 and the adhesive 14 are removed from the
Next, an interstitial fill material is dispensed over the
Subsequent to dispensing the anisotropic conductive filler 50, a flexible printed circuit (i.e., “flex circuit”) 60 having a plurality of conductive elements (i.e., electrodes) 62 is attached to the exposed surface of the interstitial layer 50. The conductive elements 62 are aligned with the piezoelectric elements 20, and physical contact is made between the flex circuit 60 and the interstitial layer 50. A sufficient downward force is applied to the upper surface 64 of the flex circuit 60 during attachment of the flex circuit 60 to the interstitial layer 50 to ensure that some of the conductive particles 54 contact both the piezoelectric elements 20 and the conductive elements 62. In an embodiment, the downward force can be sufficient to deform the plurality of particles 54 which are interposed between the piezoelectric element 20 and the conductive element 62 as depicted in
Additionally, the application of force to the upper surface 64 of the flex circuit 60 levels the upper surface of the uncured interstitial layer 50. After the application of downward force, the interstitial layer is cured using a technique appropriate for the anisotropic conductive filler. Typically, this can include curing the material through the application of heat to remove volatile solvents within the interstitial layer 50. In another embodiment, the interstitial layer 50 can be cured using exposure to ultraviolet radiation. The interstitial layer 50 thus functions as an adhesive to physically attach the flex circuit 60 to the jet stack subassembly 30, and the conductive particles 54 dispersed therein function as a z-axis conductor to electrically coupled the piezoelectric elements 20 to the conductive elements 62.
Next, the openings 40 through the diaphragm 36 can be cleared to allow passage of ink through the diaphragm 36. Clearing the openings 40 includes removing a portion of the adhesive diaphragm attach material 38, the interstitial layer 50, and the flex circuit 60 which cover the opening 40. In various embodiments, chemical or mechanical removal techniques can be used. In an embodiment, a self-aligned removal process can include the use of a laser 70 outputting a laser beam 72 as depicted in
Subsequently, an aperture plate 90 can be attached to the inlet/outlet plate 32 with an adhesive (not individually depicted) as depicted in
Subsequently, a manifold 100 can be bonded to the flex circuit 60, for example using a fluid-tight sealed connection 102 such as an adhesive to result in an ink jet print head 104 as depicted in
In use, the reservoir 106 in the manifold 100 of the print head 104 includes a volume of ink. An initial priming of the print head can be employed to cause ink to flow from the reservoir 106, through the ports 108 in the jet stack 94, and into chambers 110 in the jet stack 94. Responsive to a voltage 112 placed on each conductive element 62, each PZT piezoelectric element 20 oscillates at an appropriate time in response to a digital signal. The oscillation of the piezoelectric element 20 causes the diaphragm 36 to flex which creates a pressure pulse within the chamber 110 causing a drop of ink to be expelled from the nozzle 94.
The methods and structure described above thereby form a jet stack 94 for an ink jet printer. In an embodiment, the jet stack 94 can be used as part of an ink jet print head 104 as depicted in
The embodiment described above can thus provide a jet stack for an ink jet print head which can be used in a printer. The method for forming the jet stack, and the completed jet stack, does not require the use of a standoff layer which provides large area adhesion to the polymer fill interstitial layer and the electrical interconnect. Additionally, the method does not require the removal of an interstitial layer from the top of each piezoelectric element. In this embodiment, the interstitial layer 50 includes conductive particles 54 which electrically couple each conductive element 60 to a piezoelectric element 20. Further, the interstitial layer 50 remains over the top of each piezoelectric element 20 during use of the device.
As depicted in
Another embodiment of the present teachings is described below with reference to
This embodiment can include the formation of a structure similar to that depicted in
After depositing the interstitial layer 120, it can be partially cured, for example by heating the
Next, a patterned mask 130 is formed over the surface of the
After application of the patterned mask, conductive particles 140 are applied to the
Next, a flex circuit 160 having a plurality of conductive elements 162 can be attached to the top surface of the
After forming the
Subsequently, the openings 40 within the diaphragm 36 can be cleared to remove the diaphragm attach material 38, the interstitial layer 120, and the flex circuit 160 which covers the opening 40. The material can be cleared using a wet or dry chemical etch, mechanical techniques such as by drilling, or by using a laser 70 outputting a laser beam 72 as depicted in
In this embodiment, the laser ablation at
Note that while the exemplary method is illustrated and described as a series of acts or events, it will be appreciated that the present invention is not limited by the illustrated ordering of such acts or events. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the present teachings. In addition, not all illustrated steps may be required to implement a methodology in accordance with the present teachings. Other embodiments will become apparent to one of ordinary skill in the art from reference to the description and FIGS. herein.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the present teachings are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume negative values, e.g.—1, −2, −3, −10, −20, −30, etc.
While the present teachings have been illustrated with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the disclosure may have been described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” The term “at least one of” is used to mean one or more of the listed items can be selected. Further, in the discussion and claims herein, the term “on” used with respect to two materials, one “on” the other, means at least some contact between the materials, while “over” means the materials are in proximity, but possibly with one or more additional intervening materials such that contact is possible but not required. Neither “on” nor “over” implies any directionality as used herein. The term “conformal” describes a coating material in which angles of the underlying material are preserved by the conformal material. The term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated embodiment. Finally, “exemplary” indicates the description is used as an example, rather than implying that it is an ideal. Other embodiments of the present teachings will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present teachings being indicated by the following claims.
Terms of relative position as used in this application are defined based on a plane parallel to the conventional plane or working surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “horizontal” or “lateral” as used in this application is defined as a plane parallel to the conventional plane or working surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal. Terms such as “on,” “side” (as in “sidewall”), “higher,” “lower,” “over,” “top,” and “under” are defined with respect to the conventional plane or working surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate.