The invention relates generally to optical members having resistively heatable coatings and more particularly to patterning such coatings.
Single layer or multi layer coatings are often used to achieve desirable optical characteristics for windows used in vehicles, homes and buildings. For example, Southwall Technologies, Inc. sells a film under the federally registered trademark XIR. The XIR film is incorporated into a glass lamination to significantly reduce solar heat gain through the glass lamination. The control of solar heating is significant to some applications, such as automobile windshields.
U.S. Pat. No. 6,204,480 to Woodard et al., which is assigned to the assignee of the present invention, describes the use of an optical coating on a vehicle window to heat the window for purposes of providing de-icing or defogging. The coating is a thin film stack that is electrically conductive, but is sufficiently thin to be substantially transparent. The term “transparent” is defined herein as the ability to transmit at least 30% of radiation within the visible range of the light spectrum. Electrical connections to the thin film conductive coating are provided by bus bars. The bus bars may be patterned to achieve desired current distribution or to focus heating into certain regions of the window. The patent is herein incorporated by reference.
U.S. Pat. No. 6,703,586 to Kast is also assigned to the assignee of the present invention and is incorporated by reference. Kast teaches that localized heating of a window, such as a vehicle windshield or sidelight, can be provided by dividing an electrically conductive optical coating into high and low heating zones.
It is well known that heat energy may be delivered to “glazing assemblies” by incorporating resistive heating elements either on or within the glazing assembly. Then, a voltage may be applied across the resistive heating elements to cause localized heating of the elements, resulting in heat transfer to the surface of the assembly. The purpose of the localized heating may be one or more of demisting, defrosting, de-icing, or improving human comfort. The resistive heating elements may be designed with a roughly sinusoidal two-dimensional pattern in the plane of the glazing and may comprise an array of electrically parallel opaque conductors with individual widths typically narrower than 75 microns. The waveform of the conductive elements may consist in part of repeating patterns which are substantially linear and substantially parallel to one another.
A concern with prior art approaches is that the incorporation of resistive heating elements on or within the glazing assembly may adversely affect the optical performance of the assembly. For example, when applied to a window of an automobile, visibility may be affected, particularly during nighttime driving.
In accordance with the present invention, a pattern of conductive traces is designed to avoid occurrences of adjacent trace segments that are linear and parallel. It has been determined that multiple linear elements or sub-elements with predominantly parallel angular orientations are a basic cause of some optical distortions. Although spaced apart from one another, linear, parallel sub-elements of a conductive pattern may cause additive diffraction-like visual effects which can be annoying and distracting. The visual effects are easily noticed in transmissive viewing conditions in which a distant point source of light is viewed through a glazing that is close to the viewer, as would be the case with nighttime driving or riding in a vehicle with oncoming traffic or adjacent street and safety lighting. For example, occupants of a vehicle may notice two opposed rays emanating from an image of an external point source of light, with brighter sources creating more intense sets of rays. The ray-like disturbances are oriented at right angles to the predominant axes of the linear, parallel sub-elements of the heating elements.
In one embodiment, the pattern of electrically conductive traces is defined by a large angular distribution with respect to intersections among the traces. That is, the traces intersect at irregular angles, but combine to form electrical paths for the flow of current. Power connections, such as busbars, are provided to induce the current flow when a power source is connected. The pattern may be quasi random, as would be the case when the pattern includes randomization within a sub-pattern, but the sub-pattern repeats across the surface of a transparent member, such as a windshield. Individual traces may be linear, but the randomization avoids the occurrences of adjacent trace segments that are parallel.
Alternatively, the traces may be curved.
In another embodiment of the invention, the pattern is a continuous series of sub-elements that are preferably exclusively curved in the plane of the surface on which the sub-elements are formed. As one possibility, each conductive trace may be a resistive element in the form of a continuous series of semicircular trace segments. Alternatively, a resistive element may be a continuous series of quarter-arc trace segments or partial elliptical trace segments.
While the invention will be described primarily with respect to automobile windshields, other applications are contemplated. For example, the invention may be utilized with windows of homes or buildings or with reflective surfaces, such as rearview mirrors. In attempting to augment or supersede known films, such as XIR-type films sold by Southwall Technologies, prior art conductive patterns of elements and sub-elements were evaluated. Under certain likely viewing conditions, a negative viewing effect of the known heating elements was observed. The presence of conventional elements caused a pair of angularly crossed ray-like bright lines to be seen emanating from distinct point sources viewed at nighttime through the glass. A similar problem is reported with a microwire-heated backlight (rear window) in a vehicle when a driver views headlights of a following car reflected by the internal rearview mirror.
The problem of a “star filter” effect was identified with simulated microwire patterns (quarter-arcs+straight segments in modified sinusoidal pattern). A sample was taped to a car windshield. Observations and photographs showed the “star filter” effect during nighttime transmissive viewing conditions. The problem was confirmed using a second set of tests with a stationary car (headlines on and facing the viewing station) located approximately 80 feet from a conventional heatable windshield sample and two models with straight traces and simulated conventional traces. A modified set of continuous curvilinear lines containing no intentionally linear segments (i.e., made only of curved sub-elements) exhibited far superior performance in the nighttime point-source transmission situation. The ray-like bright lines were much reduced in intensity. Subsequently, further sets of various patterns, again made only with curved elements, exhibited virtually no ray-like bright lights.
For purposes of the experimentation, samples were all made with opaque ink or metal deposited on glass or film in various patterns and linewidths. The film samples were laminated in glass to reduce the effect of surface haze. The baseline heatable microwave windshield sample was not modified.
There were two test methods, namely the outdoor test method and the indoor test method. For outdoor testing, the sample was placed at a desired orientation (vertical or tilted) and the observer was situated such that the viewing zone of the glass (line of sight to the target) was approximately 45-50 cm from the eyes. The observer looked directly at one or a pair of vehicle headlights at a distance of 25 meters. The test was performed at nighttime in a low-light situation. General street lighting did not affect the test. The observations could also be made when viewing passing traffic while the vehicle was parked parallel to one side of a straight road. The observer viewed the subject patterned glazing sample and an unpatterned glazing sample of otherwise similar construction and noted the intensity and orientation of any ray-like patterns. A camera could be set to focus on the distant light sources in order to record the image.
The indoor test is represented in
In determining the results of the experimentation, it was noted that both the outdoor and the indoor tests showed that the conventional microwire heating glazing and the simulation of a similar pattern resulted in a double pair of objectionable diffraction-like rays seen to emanate from the light source. If the sample was rotated about the viewing axis slightly during the observation, the rays rotated exactly with the sample orientation. When the sample was tilted about the horizontal axis, the angles diminished, becoming closer to the horizontal plane. Other results were as follows:
The “star filter” effect is exhibited when a headlight or other bright point source is viewed in transmission in a darkened, night-like environment. In such a situation, the observer views a pair of extended rays emanating from the bright spot of the image.
In experimentation, copper-on-glass patterns were photolithographically formed. Two prior art patterns are shown in
In
In
As a final illustration of the effect,
Thus, the problem was to design a heatable trace pattern with “parallel” resistance elements that reduce or eliminate the objectionable rays or “star filter” line image when viewed in nighttime point-source transmissive viewing conditions. The current invention addresses this problem by means of an improved design that eliminates or reduces the occurrence of angularly repeating linear elements or subelements within a field of resistive glazing heating elements, while maintaining the desired spatial density of the elements and the desired heating performance. The improved design uses predominantly curvilinear elements arrayed in a fashion so as to increase the angular dispersion of the subelements within the plane of the glazing, while still maintaining the desired element spatial density and heating performance.
While not limiting, other contemplated patterns are shown in
There are also possibilities for forming traces that are defined by short, randomized linear elements. Because the orientation of the linear elements is non regular, the pattern is less susceptible to observation of the “star filter” effect. One embodiment is shown in
The microwire windshield prototype sample was analyzed visually and by spectrophotometer. The diffraction pattern can be described by considering grating theory. The basic equation of this theory is presented below.
Here, the angles θi and θm are represented in
That is why it is difficult to see the separate diffraction spots. We instead see a line.
Simple observation based on the above grating theory and super-position principle for lamellar gratings yield to a structure which may have a halo round headlights in the imaging plane. For example, when a glass plate with water droplets was tested visually, only halo was observed. The randomness in position as well as the circular nature of the droplets contributes to a more uniform halo instead of diffraction in a particular direction.
Candidates for a wire structure, which should have halo round headlights in the imaging plane include those shown in
Simplified problem. First we will use the superposition principle and will reduce the problem to the case of lamellar grating shown at
where d>0 is the period. For example, in the case of silver lamellar structure shown in
Here h is the wire width and m is an integer number. In this particular example, the refractive index of modulated area does not depend on y. Further, we assumed a monochromatic light source with incident angle θ1 close to zero. Procedure of monochromatic light summation with photopic response curve will yield to a case of broadband light source.
Algorithm of Solution. We will use a standard solution of Maxwell equations for upper half space and for lower half space. The Maxwell equations for modulated area can be reduced to:
for TE polarization and
for TM polarization. These equations can be further reduced to the ordinary differential equations if we use periodicity of the electric and magnetic fields with respect to variable x. Both TE and TM polarizations are important for the evaluation of the light transmittance in the considering problem because λ/d<<1.
Boundary conditions are the continuity conditions for tangential components of electric and magnetic field at the boundary y=0 and y=a. Finite difference method together with the conditions of continuity leads to an algebraic system of equations with respect to Fourier coefficients of electric (TE polarization) and magnetic (TM polarization) fields.
Relative intensity of the transmitted light in the diffraction pattern and its color distribution will result from this simulation of electric and magnetic fields.
Let us assume that the grating structure (see the example of the grating structure of
α0=0, β0=−k0, γ0=0,
and the polarization vector
Ax=−sin δ, Ay=0, Az=cos δ
The incident electric field is chosen such that |
Due to the x and z periodicity, the electric field in front of the glass with metal traces can be expressed by the sum of the incident electric wave and reflected waves
where
The transmitted electric field can be represented by the expression
The similar equations apply to magnetic fields in front and behind the window with metal traces. Inside the modulated area (glass with metal traces) we have Maxwell equations [1, 2] with a periodic permittivity
Typical values for refractive indices of the aluminum and silver traces are shown in the Table 1.
Based on this approach we can develop an algorithm for the diffraction pattern |
A simplified optical structure of an automotive headlight is shown at
A possible experimental setup for the testing of the glass/plastic plate with metal traces is shown at
It is important to differentiate the diffraction pattern from aperture and a pattern produced by the diffused light. For example, at
This application claims priority from co-pending provisional application Ser. No. 60/760,072, filed Jan. 19, 2006.
Number | Date | Country | |
---|---|---|---|
60760072 | Jan 2006 | US |