In magnetic disk drive storage technology, the fluctuation of magnetization due to thermal agitation is called the superparamagnetic effect. The superparamagnetic effect posses a serious challenge for continuing to increase the areal density and storage capacity of disc drives and other magnetic recording media.
Current magnetic recording media adopt a perpendicular magnetic recording method in which recording is performed so that a magnetic material is magnetized in a direction perpendicular to the surface of a disk. Perpendicular recording has helped push out the superparamagnetic limit to achieve higher recording densities and has become the state-of-art technology for the magnetic recording industry. However, continued increases in recording density will still need to face the superparamagnetic limit and new approaches need to be introduced. This is because bit density is increased by reducing the size of the recorded bits on the media. Thus, as each bit consists of a certain number of grains, the volume of the magnetic fine grain is significantly reduced; thereby a superparamagnetic effect becomes remarkable again. That is, energy stabilizing the direction of magnetization is reduced by thermal energy, and recorded magnetization changes with the progress of time, thereby sometimes causing erasure of recording.
In one embodiment in accordance with the invention, a magnetic recording medium includes a substrate with a plurality of dots deposited on the substrate. The dots have a first electroplated ferromagnetic composition having a first coercivity and a second electroplated ferromagnetic composition having a second coercivity.
In another embodiment in accordance with the invention, a magnetic recording medium with a substrate has a ferromagnetic composition electrodeposited thereon. The ferromagnetic composition has a variable coercivity that generally changes relative to the distance from the substrate. The coercivity should increase or decrease as the distance from the substrate increases.
In another embodiment in accordance with the invention, a method for depositing a magnetic recording medium on a substrate includes placing the substrate in an electrolytic solution. A first ferromagnetic material is electrolytically deposited on the substrate. The electroplating potential or current density of the electrodeposition process is then changed, and a second ferromagnetic material is electrolitically deposited on the first ferromagnetic material.
These and various other features and advantages will be apparent from a reading of the following detailed description.
The following drawings are illustrative of particular embodiments of the invention and therefore do not limit the scope of the invention. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
One of the most promising methods to circumvent the density limitation imposed by the superparamagnetic effect is the use of bit-patterned media (BPM). The concept is that each bit is stored in a single lithographically defined magnetic switching volume, i.e. dot. The formation of sub-25 nm dots represents a great challenge in terms of fabrication and large volume manufacturing. Different methods for fabricating nano-holes with diameter of sub-25 nm with adequate spacing corresponding to the areal density of 1 Tbit/in2 have been demonstrated. The formation of nano-dots by electrodeposition of hard magnetic material with perpendicular anisotropy through lithographically obtained nano-holes is one embodiment of the present invention.
An exemplary perpendicular media comprises a multilayer structure including a substrate covered by a soft magnetic under layer (SUL), an interlayer and hard bit-patterned magnetic layer. The hard magnetic layer can be cobalt platinum alloy material of hexagonal close-packed crystal structure (“hcp-crystal structure”) with crystalline grains oriented along the c-axis (a vertically oriented crystal axis, usually the principal axis) in the direction normal to the film planes and with a well-defined orientation. An important magnetic property is high out-of-plane coercivity (Hc), which is largely determined by magnetocrystalline anisotropy and to lesser extent by shape anisotropy of magnetic grains. Additional benefits include magnetic properties such as, remanent magnetization (Mr), remanence squareness of the hysteresis loop (Mr/Ms), sufficient magnetic anisotropy (Ku), negative nucleation field (Hn) and small grain size but within the thermal stability limit. Moreover, the grain boundaries should be able to magnetically isolate the neighboring grains from each other to a large extent.
The electrodeposition of cobalt platinum and cobalt platinum phosphorous alloys according to certain embodiments of the present invention is one possible method for fabrication of bit patterned media and MEMS devices.
Generally, cobalt platinum alloys showed a low perpendicular coercivity (Hc=200-1000 Oe) in as-deposited state at room temperature. Annealing of cobalt platinum nano-wires deposited into Al2O3 templates at 700° C. gave high perpendicular coercivity (Hc=8000-10000 Oe). Electrodeposition of cobalt platinum alloy in external magnetic field of 1 Tesla applied in the plane normal direction gave Hc (perp.)=6100 Oe. However electrodeposition without applied magnetic field produced Cobalt platinum films with low perpendicular coercivity (Hc=600 Oe).
Cobalt platinum phosphorous electrodeposited thin films with coercivities as high as 4500-7000 Oe occur at the thickness of Cobalt platinum phosphorous film from 100 to 600 nm. However, at the thickness of interest in bit-patterned media (10-15 nm), the perpendicular coercivities were rather low, i.e. 600-800 Oe, which makes cobalt platinum phosphorous electrodeposited alloys less optimal for BPM.
In another embodiment in accordance with the invention, a bit-patterned media comprising electrodeposited cobalt platinum dots, a seed layer, an inter layer, and a substrate can be produced. The structurally oriented seed layer 10, which can be Cu, Cr, Ag, NiCu, Ru or other appropriate material, may be deposited on a substrate 20 or on an interlayer 30 that was previously deposited on the substrate 20 prior to resist patterning. A photoresist 40 is patterned into an array of nanoholes 50 by, for example, photolithography or other acceptable methods. The formation of nano-dots (islands) 60 is carried out by electrodeposition of cobalt platinum 60 and subsequent removal of the photoresist 40.
The process of electrodeposition is analogous to a galvanic cell acting in reverse. The seed layer 10 may be the cathode of the circuit. In one technique, an anode or anodes are made of the metal to be plated on the part. Both components are immersed in an electrolyte that may contain one or more dissolved metal salts as well as other ions that permit the flow of electricity. Direct current may be supplied to the cathode causing the metal ions in the electrolyte solution to lose their charge and plate out on the cathode. As the electrical current flows through the circuit, the anode slowly dissolves and replenishes the ions in the bath.
In one exemplary embodiment, the cobalt platinum dots 60 may be produced from a solution containing 0.5M NH4Cl2, 0.4M H3BO3, 0.1M CoSO4, 3 mM PtCl2 or H2PtCl6, 0.01 mM NaLS and 3 mM of an organic additive at constant current density (0.7-1.2 mA/cm2) without agitation of plating solution.
Organic additives found to be effective in producing such dots or films include the following:
(1) Heterocyclic compounds:
Where R1 may be CH3, CH3CH2 or CH3CH2CH2CH2 and R2 may be CH3 or CH3CH2, CH3CH2CH2CH2.
(2) C6H3— compounds:
(3) Semicarbazide compounds:
Where Ar1 may be C6H5, p-OH—C6H5, 2-Furyl, 2-Thienyl, or NH2 and Ar2 may be C6H5, p-OH—C6H5, 2-Furyl, 2-Thienyl, or NH2.
Products produced in accordance with embodiments of the invention may be even more valuable if layers of material having different anisotropy, and thus coercivity levels, can be produced within one deposited ferromagnetic deposit.
A first ferromagnetic layer HK1 is disposed on top of the seed layer 10. A non-magnetic exchange coupling layer 70 is disposed on top of the first magnetic layer HK1, and a second magnetic layer HK2 is disposed on top of the exchange coupling layer 70. The exchange coupling layer 70 will be non-magnetic and could be formed of, for example, platinum. These layers can all be formed in a single bath electrodeposition process with the compositions of the various layers effected by changing the electrodeposition cathodic electrode plating potential or current density as described below.
The layers HK1 and HK2 will have different anisotropy levels and coercivity levels, with one having a relatively high coercivity or resistance to magnetic fields (referred to as “hard”) and the other having relatively low coercivity (referred to as “soft”). Either HK1 or HK2 could be the soft layer, and the other would be the hard layer.
ECC BPMs in accordance with embodiments of the invention can be formed by electrodeposition of cobalt and platinum to form alloys of various concentrations of each metal. In embodiments where these metals are used, cobalt-rich compositions are relatively soft with lower coercivity and compositions with less cobalt (e.g. the compositions close to Co3Pt) are relatively hard with higher coercivity.
In cases where this recording medium is deposited in a bit-patterned fashion, an individual dot or deposit (60 of
In this example, the soft magnetic layer, which, in some embodiments, is pure cobalt or cobalt rich alloys, can be plated by using potentials at the high end (−1.0V to −1.5 V depending on the bath composition). The exchange coupling layer, which is typically platinum or platinum rich alloys, can be plated by using potentials at the low end (−0.3V to −0.5 V). The hard magnetic layer, which is cobalt platinum alloy with composition around 75 at % Co, can be plated by using potentials in between −0.8 V to −0.9V.
The embodiment shown in
Gradient coercivity recording media or ECC recording media can be produced electrolytically from a single bath electrodeposition by varying the electroplating potential or current density as described herein. Variations will occur to those of skill in the art upon reading this disclosure and the implementations described above and others are within the scope of the following claims. The embodiment in
The implementations described above and other implementations are within the scope of the following claims.