Modern road surfaces typically comprise asphalt, macadam, concreter, or other bituminous material processed and applied to form a smooth paved surface. Where low quality pavement components are used, or where pavement components are improperly implemented or combined, the paved surface may deteriorate quickly, necessitating frequent maintenance and repair. Even under normal conditions, temperature fluctuations, weather, and vehicular traffic over the paved surface may result in cracks and other surface irregularities over time. Road salts and other corrosive chemicals applied to the paved surface, as well as accumulation of water in surface cracks, may accelerate pavement deterioration. In some cases, concrete roads may shift over time resulting in uneven roads which are often planed to restore a smooth surface.
U.S. Pat. No. 6,439,317 to Minotti, et al., which is herein incorporated by reference for all that it contains, discloses a device for breaking up a paved surface which attaches to a host transport, such as a skid steer or backhoe, having a hydraulic power supply and preferably comprises a closed hydraulic system which includes a regenerative and concentric type double hydraulic cylinder arrangement adjustably supported within a vertical frame. The cylinder is operably attached to a weight such that when fluid is pumped into a first chamber, a piston drives a rod, thereby lifting a weight while at the same time, the piston forces hydraulic fluid from a second chamber to the host. The piston separates the first chamber form the second chamber within the cylinder. Upon reaching a prescribed height, a valve is opened, allowing fluid to flow from the first chamber into the second chamber, thereby allowing the weight to drop rapidly under the influence of gravity. The inventive device for breaking a paved surface includes an adjustment system for adjusting the vertical position of the cylinder within the frame and a system for preventing operation of the device unless it is properly positioned above the surface for breaking.
U.S. Pat. No. 4,767,162 to Reed, III which is herein incorporated by reference for all that it contains, discloses a hydraulic system for a pavement cutting machine that controls the engagement and disengagement of a rotating blade with a pavement surface. A proportional-flow manual-release valve is arranged in series with a pressure-compensated maximum-flow control valve to allow a rapid raising of the blade and an initial relatively rapid lowering of the blade followed by a controllable slower blade descent.
In one aspect of the present invention, a pavement degradation machine has a motorized vehicle adapted to traverse a paved surface. At least one piston apparatus has a distal end and a proximal end, the proximal end adapted for attachment to an underside of the motorized vehicle and the distal end extending towards the paved surface and comprising a rotary bit. The piston apparatus has a shaft disposed within a sleeve. The sleeve is adapted for axial motion and the shaft is adapted for rotational motion independent of the sleeve. The sleeve may comprise chrome while the shaft may comprise nitride.
The distal end of the piston apparatus may have a tapered threaded portion adapted for attachment to a cylindrical bit comprising a plurality of cutters adapted to degrade the paved surface. The shaft may be adapted to rotate the cylindrical bit, thus increasing the rate of degradation. A plurality of bearings intermediate the sleeve and the shaft rotationally supports the shaft. The plurality of bearings may comprise needle 9bearings. A seal may be positioned intermediate the distal and proximal ends of the piston apparatus and may be adapted to support the axial motion of the piston. The seal may be a bronze T-seal. A plurality of retaining rings may be fitted within grooves formed in the sleeve adjacent the seal and may be adapted to axially position the piston apparatus. A plurality of spacers may be disposed adjacent the plurality of retaining rings. The plurality of spacers may be beneficial in securing the bronze T-seal to the sleeve of the piston apparatus. An H-wiper seal may be disposed intermediate a plurality of retaining rings proximate the distal end of the piston apparatus; a spacer being disposed intermediate the H-wiper seal and a retaining ring. The H-wiper may restrict lubrication fluid from leaking from the piston apparatus.
A plurality of roller thrust bearings may be disposed proximate the proximal end of the piston apparatus may be adapted to take an axial load applied to the piston apparatus. The axial load may be caused by the force of the rotary bit against a paved surface. A spacer may be disposed intermediate the roller thrust bearing and a recessed portion of the shaft. A preload cap may be disposed on the proximal end of the piston apparatus; the preload cap being adapted to secure the shaft to the roller thrust bearing.
In some embodiments the shaft may have a plurality of splines formed near the proximal end of the piston apparatus, the shaft being adapted for attachment to a motor. In other embodiments, the shaft may have a polygonal geometry near the proximal end of the piston apparatus in which the shaft is adapted for attachment to a motor. A sensor may be disposed within the shaft and may be adapted to measure an axial position of the piston apparatus. In some embodiments, the sensor may be a Hall effect sensor.
In this application, “pavement” or a “paved surface” refers to any artificial, wear-resistant surface that facilitates vehicular, pedestrian, or other form of traffic. Pavement may include composites containing oil, tar, tarmac, macadam, tarmacadam, asphalt, asphaltum, pitch, bitumen, minerals, rocks, pebbles, gravel, sand, polyester fibers, Portland cement, petrochemical binders, or the like. The term “degrade” is used in this application to mean milling, grinding, cutting, ripping apart, tearing apart, or otherwise taking or pulling apart a pavement material into smaller constituent pieces. Similarly, the term “pavement constituents” is used to mean any materials or components used to create a paved surface, including new or reclaimed materials, or combinations thereof.
Under the shroud 101, the motorized vehicle 100 may include an engine and hydraulic pumps for powering the translational elements 103, the carriages 105, or other components. Likewise, the vehicle 100 may include a tank 107 for storing hydraulic fluid; a fuel tank 108; a tank 109 for storing rejuvenation materials such as asphalt, bitumen, oil, tar, or the like; a water tank 110; a hopper 111 for storing aggregate such as gravel, rock, sand, grit, pebbles, macadam, concrete, or the like; or any other storage containers. The vehicle 100 may also comprise a heating element connected to the underside 106 for heating the paved surface.
Referring now to
In the preferred embodiment, a sensor 250 may be disposed within the shaft 202 and may be adapted to measure an axial position of the piston apparatus 150. In the preferred embodiment, the sensor 250 may be a Hall effect sensor. This may be beneficial such that an ideal fluid pressure may be applied to the piston apparatus 150 based on the axial position of the piston apparatus 150. The sensor 250 may be in communication with a central rod 251; the central rod 251 remaining stationary as the piston apparatus 150 axially displaces during a pavement degradation operation.
In the embodiment shown in
Thus, it is believed that separating the rotational motion and the axial motion may prolong the life of the seal used to support the axial motion of the piston apparatus. In this embodiment, the shaft 202 may be adapted to rotate independent of the sleeve 203. A plurality of bearings 400 may be positioned intermediate the shaft 202 and the sleeve 203 so that during pavement degradation the shaft 202 may rotate, thus rotating the rotary bit 151, while the sleeve 203 remains rotationally stationary with respect to the pavement. The bearings 400 may comprise needle bearings. The rotary bit 151 may comprise a plurality of cutters 401 adapted to degrade the paved surface.
Referring now to
In the embodiment of
Referring now to
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/421,105, which was filed on May 31, 2006 now U.S. Pat. No. 7,591,607 and entitled Asphalt Recycling Vehicle. U.S. patent application Ser. No. 11/421,105 is a continuation-in-part of U.S. patent application Ser. No. 11/379,643 which was filed on Apr. 21, 2006 now U.S. Pat. No. 7,641,418 and entitled Method for Depositing Pavement Rejuvenation Materials into a layer of Aggregate. Application Ser. No. 11/379,643 is a continuation-in-part of Ser. No. 11/164,947 which was filed on Dec. 12, 2005 now U.S. Pat. No. 7,473,052 and entitled Apparatus for Depositing Pavement Rejuvenation Materials on a Road Surface. U.S. patent application Ser. No. 11/164,947 is a continuation-in-part of U.S. patent application Ser. No. 11/163,615 filed on Oct. 25, 2005 now U.S. Pat. No. 7,473,052 and entitled Apparatus, System, and Method for In Situ Pavement Recycling. U.S. patent application Ser. No. 11/163,615 is a continuation-in-part of U.S. patent application Ser. No. 11/070,411 filed on Mar. 1, 2005 now U.S. Pat. No. 7,223,049 and entitled Apparatus, System, and Method for Directional Degradation of a Paved Surface All of the above mentioned U.S. patent applications are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
1887341 | Venable | Nov 1932 | A |
1898158 | Winkle | Feb 1933 | A |
2039078 | Hertwig | Apr 1936 | A |
2098895 | Velten | Nov 1937 | A |
2633782 | Clement | Apr 1953 | A |
2893299 | Moir | Jul 1959 | A |
2908206 | Melenson | Oct 1959 | A |
2938438 | Hamilton | May 1960 | A |
3075436 | McRae | Jan 1963 | A |
3248152 | Henderson et al. | Apr 1966 | A |
3360298 | Stoljarov et al. | Dec 1967 | A |
3361042 | Cutler | Jan 1968 | A |
3732023 | Rank | May 1973 | A |
3817644 | Matson | Jun 1974 | A |
3970404 | Benedetti | Jul 1976 | A |
3989401 | Moench | Nov 1976 | A |
4018540 | Jackson | Apr 1977 | A |
4104736 | Mendenhall | Aug 1978 | A |
4124325 | Cutler | Nov 1978 | A |
4127351 | Vural | Nov 1978 | A |
4172679 | Wirtgen | Oct 1979 | A |
4195946 | Swisher | Apr 1980 | A |
4215949 | Gabriel | Aug 1980 | A |
4261669 | Sindelar | Apr 1981 | A |
4313690 | Hojbjerg | Feb 1982 | A |
4335975 | Schoelkopf | Jun 1982 | A |
4347016 | Larsen | Aug 1982 | A |
4407605 | Chiostri | Oct 1983 | A |
4473320 | Register | Sep 1984 | A |
4534674 | Cutler | Aug 1985 | A |
4594022 | Jeppson | Jun 1986 | A |
4668017 | Petersen | May 1987 | A |
4676689 | Yant | Jun 1987 | A |
4692350 | Clarke | Sep 1987 | A |
4784518 | Cutler | Nov 1988 | A |
4793730 | Butch | Dec 1988 | A |
4968101 | Bossow | Nov 1990 | A |
5026205 | Gorski | Jun 1991 | A |
5131788 | Hulicsko | Jul 1992 | A |
5366320 | Hanlon | Nov 1994 | A |
5470131 | Nolan et al. | Nov 1995 | A |
5556225 | Marino | Sep 1996 | A |
5765926 | Knapp | Jun 1998 | A |
5791814 | Wiley | Aug 1998 | A |
5947636 | Mara | Sep 1999 | A |
5947638 | Heims | Sep 1999 | A |
5951561 | Pepper | Sep 1999 | A |
6122601 | Swanson | Sep 2000 | A |
6158920 | Malot | Dec 2000 | A |
6287048 | Hollon et al. | Sep 2001 | B1 |
6371689 | Wiley | Apr 2002 | B1 |
6551018 | Baker | Apr 2003 | B2 |
6577141 | Gandrud | Jun 2003 | B2 |
6623207 | Grubba | Sep 2003 | B2 |
6769836 | Llyod | Aug 2004 | B2 |
6799922 | Smith | Oct 2004 | B2 |
6846354 | Larsen | Jan 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070290544 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11421105 | May 2006 | US |
Child | 11844447 | US | |
Parent | 11379643 | Apr 2006 | US |
Child | 11421105 | US | |
Parent | 11164947 | Dec 2005 | US |
Child | 11379643 | US | |
Parent | 11163615 | Oct 2005 | US |
Child | 11164947 | US | |
Parent | 11070411 | Mar 2005 | US |
Child | 11163615 | US |