Heretofore, providing a lateral attachment between laterally adjacent elements in a paving system has been a problem. U.S. Pat. No. 5,054,253, Rigid Grating Mat with Unidirectional Elements, to Bedics, Oct. 8, 1991, describes a system for building a mat that has separate plank-like elements that are joined laterally by a tongue and groove construction. This makes for a complicated extrusion that is difficult to construct and is easily extended laterally only in one direction.
U.S. Pat. No. 5,429,451, Grid Matrix System Including Interconnected Revetment Blocks, to Pettee, Jul. 4, 1995, describes a grid matrix system that has interconnected revetment blocks. These square or hexagonal blocks have alternate recesses and locking protrusions (or ears). A disadvantage of this construction is that it can be easily vandalized because the individual blocks or elements can be lifted vertically. Further, casting the units in concrete presents problems because the ears and edges of the locking recesses can be relatively easily broken.
Embodiments of the present invention comprise in part a component having a first section with first sides parallel to a first plane containing a first bearing surface and a first thickness in a second plane orthogonal to the first plane, the first thickness of a dimension less than that of any of the first sides and a second section having second sides parallel to both the first plane and a second plane containing a second bearing surface, the second plane parallel to the first plane, the second section contacting the first section uniformly along a part of the first plane, the second section oriented to the first section such that the second sides are contained entirely within the perimeter formed by the first sides.
One embodiment is a component having the first sides form a first square and the second sides form a second square set at about a 45° angle to the first square, the second square having sides of a length approximately 0.707 that of the first sides.
Another embodiment is a component having the first sides form a hexagon and the second sides form a diamond with the long axis of the diamond extending in a line joining the center of two parallel sides of the hexagon and the short axis of the diamond chosen to be the same width as that formed by two parallel first sides of the hexagon.
Another embodiment is a component has the first sides form a square and the second sides form a single right triangle along two adjacent sides of said square.
In select embodiments of the present invention, the components may have first and second sections fabricated such that the first and second sections are incorporated inseparably in the component. In select embodiments of the present invention, the components may have at least one of the first and second sections formed of a lamination of at least two layers. In select embodiments of the present invention, the components may have at least one of the layers made of a material flexible under compression.
An embodiment of the present invention may comprise an array of any of the components above comprising a first set of four components, each component arranged in a plane to abut a first component along a first axis in that plane and a second component arranged along a second axis in that plane, the second axis orthogonal to the first axis, and a second set of four components arranged as above, the second four components inverted and arranged to interlock vertically with the first four components.
In select embodiments of the present invention, a configuration of arrays as above further comprises a plurality of the arrays abutting one to another and arranged to cover a pre-specified area. In select embodiments of the present invention, the above configuration further comprises partial components for forming finished edges of the configuration, such as a component cut in half.
In select embodiments of the present invention, the configuration may be arranged to form a pathway.
In select embodiments of the present invention, the arrays may be joined by flexible means incorporated between the first and second sections during fabrication and extending in a plane approximately parallel to each of the first and second sections so as to permanently connect and position each of the four components in the array. The flexible means may comprise material selected from the group consisting essentially of a mesh, a fabric, roving, a web-perforated fabric, a wire mesh, an elastomer, and combinations thereof.
In select embodiments of the present invention, a plurality of the connected arrays abutting one to another may be arranged to cover a pre-specified area, such a road or pathway. In select embodiments of the present invention, the configuration may comprise partial components, such as components cut in half, for forming finished edges of the configuration, e.g., a road or pathway.
Also provided as an embodiment of the present invention is a method for covering a pre-specified area, comprising leveling the pre-specified area; arranging any of the components as described above in an array as described above, abutting a number of arrays to cover the pre-specified area in a first plane, and inverting a second configuration of pre-specified like arrays over the first configuration such that the second configuration interlocks vertically with the first configuration and adding partial components, such as components cut in half, for forming finished edges of the interlocked configurations.
In select embodiments of the present invention, the method employs components comprising first sides forming a first square, second sides forming a second square set at about a 45° angle to the first square, the second square having sides of a length approximately 0.707 that of the first sides.
In select embodiments of the present invention, the method employs components comprising first sides forming a hexagon and second sides forming a diamond with the long axis of the diamond extending in a line joining the center of two parallel sides of the hexagon and the short axis of the diamond chosen to be to be the same width as that formed by two parallel first sides of the hexagon.
In select embodiments of the present invention, the method employs components comprising first sides forming a square and second sides forming a single right triangle along two adjacent sides of the square.
In select embodiments of the present invention, the method employs a component comprising first and second sections fabricated such that the first and second sections are incorporated inseparably in the component.
In select embodiments of the present invention, the method employs a component in which at least one of the first and second sections is formed of a lamination of at least two layers. In select embodiments of the present invention, at least one of the layers may be constructed of a material flexible under compression.
Also provided as an embodiment of the present invention is a method of fabricating components for a vertically interlocking configuration, comprising providing a first mold to form a first section as described above, providing a second mold to form a second section as described above; pouring a fluid mixture of a first material into the first mold to be at least partially hardened in the mold as the first section; permitting the first mixture to at least partially harden in the first mold; placing a second mold over the first at least partially hardened mixture in a pre-specified orientation; pouring a fluid mixture of a second material into the second mold to be hardened in the mold; upon hardening of the first and second mixtures to a pre-specified level, removing both molds and trimming the component as necessary.
In select embodiments of the present invention, the above method of fabricating may also comprise arranging at least four like components in a pre-specified array and adding a connecting means over at least a portion of each of the first sections of each before placing the second mold so that the connecting means is embedded in each component, both connecting and orienting the components in an array. The connecting means may comprise material selected from the group consisting essentially of a mesh, a fabric, roving, a web-perforated fabric, a wire mesh, an elastomer, and combinations thereof. In select embodiments of the present invention, fabrication may employ the same material for the first and second sections.
In select embodiments of the present invention, the sections may be a mixture containing at least some Portland cement. In select embodiments of the present invention, the method may employ different materials for fabricating the first and second sections. In select embodiments of the present invention, the method of fabrication may employ layers of different materials for at least one of the first and second sections such that at least one of the first and second sections is a laminate of at least two layers. In select embodiments of the present invention, at least one material flexible in compression may be employed in at least one of the layers.
Embodiments of the present invention form a continuous paved traffic way without having to laterally interlock a paving block with its neighbor. One embodiment, suitable for quickly forming a pavement, is termed PORTAPAVE™.
This is achieved in one aspect by a paving mat that comprises an array of paving blocks, and means for connecting the paving blocks together in the array. Each paving block includes a bottom part having a first shape, and a top part having a second shape. Neighboring top parts of blocks form a cavity between them having the same shape as the top part of a block so that a second similar array of paving blocks can be turned upside down and overlapped and interlocked with the first array of paving blocks to make a two-layered block paving unit.
Also provided in an embodiment of the present invention is a method of making a paving mat that comprises: providing a first array of the above described paving blocks and providing means for connecting the paving blocks together in the array. In one embodiment, since neighboring top parts of blocks form a cavity between them having the same shape as the convex top part of a block, in one method a second similar array of paving blocks is turned upside down, thus overlapping and interlocking with the first array of paving blocks to make a two-layered block paving unit.
Embodiments of the present invention, unlike conventional “articulated concrete mats,” overlap interlocking arrays vertically thus maintaining integrity of the mat. In one embodiment, placement of the blocks involves staggering the positions of the blocks so that a block in an upper layer partly covers the intersection of the contacting blocks in the lower layer. This reduces the chance for vegetation to grow through the paving unit. In one embodiment the means for connecting the paving blocks together in an array is an opaque material, such as a fabric or an elastomer. This opaque material blocks light and either kills vegetation or confines it.
In one embodiment runoff water can be controlled by inserting a mesh fabric between layers or providing drain holes in the connecting means. In one embodiment, paving units may be moved by lifting upper layers (mats), so that the lower layers (mats) may be separated. In embodiments to be installed permanently, a layer of mortar may be spread over the lower layer and the upper layers bonded thereto. Embodiments of the present invention may facilitate a change in the direction of the pavement by staggering the layers (mats) laterally so the track “curves” as needed.
Embodiments of the present invention provide arrays of vertically interlocking units that may be employed in applications otherwise suitable for conventional individual paving blocks. In embodiments of the present invention, the connecting means prevent individual blocks from moving laterally. In conventional systems this is accomplished by attaching the connecting means from one array of blocks to adjacent arrays. A cavity formed between neighboring top parts of the un-inverted units has the same shape as a unit's top section so that a second similar array of units may be inverted and interlocked with the un-inverted array to make a two-layered paving mat, for example. Thus, in embodiments of the present invention, interlocking an un-inverted array with an inverted array of units obviates the need for any “holding” means.
In embodiments of the present invention, arrays of vertically interlocking units may be employed as “portable” pathways, e.g., pedestrian or vehicle thoroughfares that may be temporary or permanent. Embodiments of the present invention may also be employed on fords were it is necessary to anchor the units on a slope. Embodiments of the present invention may also be used to prevent stream bank erosion, as a base for a waterproof liner, or as a weed-free break to limit or control grass fires.
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
The units 110 may be manufactured in a variety of ways. For example, in one embodiment, bottom sections 101 may be made by filling a first mold or form with a self-hardening mixture such as a Portland cement-based concrete. A connecting means 501, such as web-perforated fabric or metal wire mesh, may be placed over the uncured mixture in the first form and a second form placed over the connecting means 501 to establish the top section 102. An additional layer of mixture is cast over the connecting means 501 such that the second mixture bonds to the first mixture through perforations in the connecting means 501.
A second way of manufacturing the units 110 is to pre-cast the top 102 and bottom 101 sections and bond or attach them to opposite sides of the connecting means 501.
It is obvious that many modifications and variations of the present invention are possible in light of the above teachings. The basis for getting the inverted and un-inverted units 110 to interlock is to use a “regular tessellation” on each of the top and bottom surfaces of the unit 110. The “large box-small turned box” combination of an embodiment of the present invention is two square tessellations 101, 102 with the smaller “box” 102 tessellation on the top of the “layer” of units 110 placed on the bottom and rotated 45 degrees with a grid spacing, or side length, that is 0.707 times that of the larger “box” 101 tessellation. Another usable combination would be triangles, but with triangles the orientation of the base and apex of the triangle is important since adjacent triangles are oriented in opposite directions in a regular tiling of triangles. There are exactly three regular tessellations composed of regular polygons tiling a plane. They are hexagons, squares and triangles.
Refer to
Refer to
The easiest interlocking units 110, 810, 910 to fabricate and install are those involving different sized squares, as described above for the array of
Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.
The abstract is provided to comply with the rules requiring an abstract, which will allow a searcher to quickly ascertain the subject matter of the technical disclosure of any patent issued from this disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR § 1.72(b). Any advantages and benefits described may not apply to all embodiments of the invention.
Under paragraph 1(a) of Executive Order 10096, the conditions under which this invention was made entitle the Government of the United States, as represented by the Secretary of the Army, to the entire right, title and interest therein of any patent granted thereon by the United States. This patent and related ones are available for licensing. Contact Phillip Stewart at 601 634-4113.