The present invention relates generally to the art of hand tools. More particularly, the present invention relates to a ratchet wrench which operates without the use of a pawl.
Many types of ratchet wrenches have been provided over the years. As is well known to those in the art, the ratchet mechanism permits the wrench to transmit torque in one rotational direction but allows free movement in the other rotational direction. As a result, a user is able to operate the wrench efficiently without removing the wrench from the nut or other driven component each time it is to be torqued. In some cases, ratchet heads may be mounted at both ends of the wrench. In other cases, a ratchet head will be mounted at one end of the wrench handle with an open box head provided at the other end.
Generally speaking, ratchet wrenches utilize a pawl having teeth that engage a rotatable gear (or ratchet wheel). The gear is retained within an opening located in the head of the wrench. The ratchet wheel may define a configured opening to directly engage a nut or to receive a particular insert tool. In other cases, the ratchet wheel may carry a tang for use with a variety of different sized sockets.
Ratchet wrenches that function without the use of pawls are known in the art. For example, U.S. Pat. No. 5,842,391 to Chaconas, incorporated herein by reference, discloses such a wrench. While many existing pawl-less wrenches have worked generally well, there exists room in the art for additional novel constructions.
The present invention recognizes and addresses the foregoing disadvantages, and others, of prior art constructions and methods.
The present invention provides a wrench having a handle integral with a ratchet head. The ratchet head defines a chamber having a generally circular sidewall. An annular rotor having radial teeth about an outer surface thereof is located in the chamber. The rotor teeth engage a set of teeth extending radially inward from the sidewall of the chamber. A biasing element, such as a leaf spring, is provided to urge the rotor teeth into engagement with the sidewall teeth. Preferably, the sidewall teeth will be configured having progressively increasing heights in the direction in which the rotor turns during ratcheting.
Other objects, features and aspects of the present invention are provided by various combinations and subcombinations of the disclosed elements, as well as methods of utilizing same, which are discussed in greater detail below.
A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
Referring now also to
Referring to
As can be seen in
Rotor 20 further includes a plurality of radial teeth 34 equally spaced about its outer circumferential surface. As will be explained more fully below, teeth 34 engage a set of teeth (generally 36) extending radially inward from sidewall 18. In this case, a total of six such teeth 36a-f are provided having progressively increasing heights in the direction that rotor 20 turns.
As shown most clearly in
In addition, teeth 36 (along with spring 22) are preferably located in the distal hemisphere of head 14 (i.e., the arcuate segment of head 14 opposite the hemisphere proximal to handle 12). Location of teeth 36 in the distal hemisphere as shown places the first two teeth (36a and 36b) in a position that prevents loss of re-engagement when handle 12 is pulled down along its axis. In other words, teeth 36a and 36b will engage even when rotor 20 bears against the surface of sidewall 18 between tooth 36a and recess 24. In addition, this portion of sidewall 18 advantageously promotes ratcheting with minimal back torque by providing a fulcrum on which to pivot rotor 20 while compressing spring 22.
Referring to
Referring now to
To ratchet the wrench, the user pulls handle 12 in a generally longitudinal direction so as to move rotor 20 out of engagement with teeth 36 (as indicated by arrow C). Because teeth 34 no longer engage teeth 36, handle 12 can be rotated as desired. The more gradual slopes of back surfaces 44 and 50 facilitate such rotation. Because rotor 20 compresses spring 22 when the wrench is rotated in this manner, spring 22 provides a restoring force to re-engage teeth 34 and 36 once the user slightly releases the longitudinal pull on handle 12.
While preferred embodiments of the invention have been shown and described, modifications and variations may be made thereto by those of ordinary skill in the art without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention.
This application claims the benefit of provisional application Ser. No. 60/490,641, filed Jul. 28, 2003, which is relied upon herein and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60490641 | Jul 2003 | US |