Payment vehicle with on and off function

Information

  • Patent Grant
  • 11100495
  • Patent Number
    11,100,495
  • Date Filed
    Wednesday, December 18, 2019
    4 years ago
  • Date Issued
    Tuesday, August 24, 2021
    3 years ago
Abstract
A computer system and method for enabling or disabling a payment vehicle at the request of a payment card holder from a remote device. The computer system comprises a computer having memory and a processor for processing input data received from a remote device. The input data comprises an instruction executable by the processor in a form of a text message or electronic mail received from the remote device, with the instruction to enable or disable a payment card of a payment card holder by changing the status of the payment card. An interactive remote interface computer software application is provided to the payment card holder for use on the remote or other device.
Description
FIELD OF THE INVENTION

The present invention relates to a computer system and computer-implemented method for use with a payment vehicle to provide a payment vehicle holder with the ability to turn on and off (i.e. enable and disable) its payment vehicle for use in electronic payment transactions.


BACKGROUND OF THE INVENTION

In today's payment environment, there are a very few number of payment transactions or other financial transactions that occur with cash. Most purchases occur with forms of payment other than cash using various payment instruments such as credit cards, debit cards, among others. Furthermore, there are an increasing number of payment transactions that occur electronically or via a web interface such as over the internet or worldwide web. With an increasing volume of transactions conducted with payment instruments other than cash and often not by the purchaser in person at point of sale, there is an increased likelihood of fraudulent transactions and lack of personal control over the payment transaction.


Additionally, in today's payment environment, a payment instrument is always turned “on” leading to abuse and fraud. Currently, a payment vehicle can be blocked if a credit or debit card, for example, is lost or stolen by calling a customer service representative of the card issuer after occurrence of the fraudulent event and requesting that the card be canceled or blocked after the occurrence. There are numerous disadvantages associated with such a process. For example, there may be a delay before a payment instrument holder even recognizes that a fraudulent event occurred or is occurring using the payment holder's payment instrument. There is also a real-time delay between when a payment instrument holder recognizes that there has been fraud or abuse associated with its payment instrument and when the customer service representative is able to cancel or block the account. Fraudulent use of a card can even occur while the customer service representative is canceling or blocking the account associated with the payment vehicle. Thus, a payment holder does not have direct control and is limited by currently existing processes. Likewise, a payment instrument holder who desires to make changes to its account does not have direct control to do so and also customarily relies upon a customer service representative.


With respect to misuse or fraudulent use of a payment instrument, there are ways in today's existing payment systems to minimize fraud and abuse of the payment vehicle; however, they require assistance outside of the control of the payment vehicle holder. For example, a credit or debit card account can be closed, a temporary block can be placed on the card, or a country level block can be placed (for example, do not accept any charges being made in a specified country). Unfortunately, such controls are implemented after occurrence of the event.


Thus, there is a need to minimize the current risk to a holder of a payment instrument. There is also a need to find a way to shift control of the payment instrument to the payment instrument holder as well as to mitigate abuse and fraud associated with unauthorized use of a payment vehicle and the delays associated with mitigating such loss. There is also a need to have greater control in the payment process.


As indicated above, most payment transactions today involve the transfer of electronic funds. For purposes of background, the current industry practice with respect to electronic funds payment using a payment instrument is best shown by referring now to FIG. 1 which is a flow diagram illustrating a known process for purchaser payment. According to FIG. 1, a purchaser typically carries multiple forms of payment to allow the purchaser to choose which source of funding to use to pay for a given purchase. As is the current practice in the industry, a line of communication must be made between each form of payment used by a purchaser and each source of funds via an existing computer payment network or system. This occurs for each transaction. Thus, each transaction may require a different form of payment, a different point of sale (POS) terminal, a different computer payment system, a different source of funds, or a combination thereof. Thus, for multiple transactions, there are numerous communications and many transaction processing steps that must occur.



FIG. 2A is a flow diagram which expands upon the existing computer payment system infrastructure of FIG. 1 and is an example of a credit or debit route for a VISA or MasterCard transaction. The parties to an authorization and a settlement VISA or MasterCard transaction typically comprise a purchaser, a merchant, an optional International Sales Organization (ISO), a merchant acquirer, VISA/MasterCard, an optional issuer processor, an issuer, and a source of funds. A series of events shown in FIG. 2A has to occur for each VISA/MasterCard transaction using a VISA/MasterCard payment card used at a merchant point of sale (POS) terminal. Among the disadvantages associated with such a system is that it requires purchasers to carry multiple payment instruments that are always “on,” increases the risk that a payment instrument such as a credit card or a debit card will get lost or stolen which in turn increases the risk of fraud, and does not provide the payment instrument holder the ability to control the terms and conditions of the use of the payment instrument at point of sale.



FIG. 2B is a flow diagram illustrating the current industry process for authorization of a VISA/MasterCard transaction. FIG. 2C is a flow diagram illustrating the current industry process for settlement of a VISA/MasterCard transaction. In the authorization process, as shown in FIG. 2B, a purchaser uses a VISA/MasterCard payment card to pay for goods or services at a merchant point of sale (POS) terminal, the transaction is captured by an ISO or a merchant acquirer. An ISO is an independent sales organization that is a reseller of acquirer services. A merchant acquirer is typically a bank member of a card network that collects payments on behalf of a merchant. The transaction is then routed by the merchant acquirer to the computer payment network which, in this example, is VISA or MasterCard. The transaction is then routed to an issuer. The issuer is typically a bank member of a card network that issues network approved cards. The issuer may approve or deny a transaction based upon the presence of fraudulent activity or upon funds availability. The funds availability is communicatively connected to a source of funds as shown in FIG. 2A. The transaction is either approved or declined and returned to the merchant POS terminal.


With respect to the process for settlement shown in FIG. 2C, VISA/MasterCard facilitates settlement between the merchant acquirer and issuer. The merchant acquirer then settles with the merchant. The issuer then settles with the purchaser using the funding source that is linked to the VISA MasterCard payment card.


The above process is known and currently occurs for each such payment transaction. As indicated above, there is no means for a payment holder to have direct control over the payment instrument's availability for use because it is always “on.” There is no means to address fraudulent use until after the occurrence of the fraud or misuse. Thus, there remains a need for an alternative payment instrument that addresses these enumerated concerns as well as others of the payment instrument holder.


SUMMARY OF THE INVENTION

The present invention is directed to a computer system and a computer-implemented method for use with a payment vehicle to provide a payment vehicle holder with the ability to turn on and off (i.e. enable and disable) its payment vehicle for use in electronic payment transactions in an automated process and without human intervention by a bank, card issuer, or other institution.


In accordance with an aspect of the present invention, the computer system comprises a computer having memory and a processor for processing input data received from a remote device. The input data comprises an instruction executable by the processor in a form of a text message or electronic mail received from the remote device, with the instruction to enable a payment card of a payment card holder by changing the payment card from a disabled status to an enabled status.


In accordance with an aspect of the present invention, the computer system comprises a computer having memory and a processor for processing input data received from a remote device. The input data comprises an instruction executable by the processor in a form of a text message or electronic mail received from the remote device, with the instruction to disable a payment card of a payment card holder by changing the payment card from an enabled status to a disabled status.


In accordance with another aspect of the present invention, a computer system comprises a computer having memory and a processor for processing input data received from a remote device. The input data comprises an instruction executable by the processor in a form of a text message or electronic mail received from the remote device, with the instruction to check a status of a payment card of a payment card holder.


In accordance with another aspect of the present invention, a computer system comprises a processor and memory wherein the memory comprises instructions executable by the processor. The instructions comprise instructions for a first module for enabling a payment card of a payment card holder, wherein the first instructions are received from a remote device in a form of a text message or electronic mail.


In accordance with yet another aspect of the present invention, a computer system comprises a processor and memory wherein the memory comprising instructions executable by the processor. The instructions comprise first instructions for a first module for disabling a payment card of a payment card holder, wherein the first instructions are received from a remote device in a form of a text message.


In accordance with still yet another aspect of the present invention, a computer-implemented method is provided. The method comprises receiving by a computer system a text message or electronic mail with instructions to enable or disable a payment card, the instructions being sent from a remote device to a computer of the computer system having memory and a processor for processing the text message or electronic mail as input data, processing the input data by the processor, and enabling or disabling the payment card.


There are also numerous features and functions associated with the computer system and computer-implemented method of the present invention. Many of which are described in detail herein. Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, which are not necessarily to scale, wherein:



FIG. 1 is a flow diagram illustrating a known process for making purchaser payments with a traditional payment instrument and computer network payment system.



FIG. 2A is a flow diagram which expands upon the existing computer payment system infrastructure of FIG. 1 and is an example of a credit or debit route for a typical VISA or MasterCard transaction.



FIG. 2B is a flow diagram of the current industry process for authorization of a VISA/MasterCard transaction using a traditional payment card and computer network payment system.



FIG. 2C is a flow diagram of the current industry process for settlement of a VISA/MasterCard transaction.



FIG. 3 is a flow diagram of the overall system and method of the present invention.



FIG. 4A is a flow diagram of the authorization process for a payment transaction using a payment vehicle having the on and off feature of the present invention.



FIG. 4B is a flow diagram illustrating the overall environment in which the computer-based payment system and payment vehicle of the present invention operates.



FIG. 4C is a flow diagram illustrating the settlement process for a payment transaction using a payment vehicle having the on and off feature of the present invention.



FIG. 5 is a flow diagram illustrating the method employed by the computer system to enable a payment card in accordance with aspects of the present invention.



FIG. 6 is a flow diagram illustrating the method employed by the computer system to disable a payment card in accordance with aspects of the present invention.



FIG. 7 is a flow diagram illustrating the method employed by the computer system to check the status of a payment card.



FIG. 8 is a flow diagram illustrating a customer using a remote interface computer software application in accordance with aspects of the present invention.



FIG. 9 is an illustration of a computer screenshot depicting the information displayed to a payment card holder when using a remote interface in accordance with aspects of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.


The present invention relates to a computer system and computer-implemented method for providing a payment vehicle holder with the ability to turn a payment vehicle an “on” and “off” (i.e. enable and disable) in an automated process and without human intervention by a bank, card issuer, or other institution. In accordance with the computer system and method, the holder of a payment vehicle sends instructions from a remote device to the computer system to turn its payment vehicle “on” when it is ready to be used and to turn its payment vehicle “off” to prevent use when the holder of the payment vehicle so chooses. The use to be prevented may either be of the payment vehicle holder itself or to prevent unauthorized use by another.


The present invention provides a way in which a holder of a payment vehicle, preferably a customer of the card issuer, can exert leverage or control over its payment vehicle.


A payment vehicle, as referred to herein, refers to an instrument used to conduct a payment transaction excluding cash. Examples of payment vehicles suitable for use in the present invention include, but are not limited to, a debit card, credit card, pre-paid card, stored value card, automated teller machine (ATM), wire, automated clearinghouse (ACH), online banking, online bill pay, and internet payment account. The payment vehicle of the present invention may be extended to other online payment services or instruments.


For example, a payment vehicle holder uses a device such as a personal data assistant (PDA) or a cell phone to send a text message or electronic mail to the computer system of the bank or other institution that issued the payment vehicle such as a payment card to the cardholder. The text message or electronic mail states, for example, “card on”, “card off”, or check the status of the payment card.


The payment vehicle holder keeps the payment vehicle “off” and then sends a text message or electronic mail to the payment vehicle issuer to turn it “on” for any number of reasons or at any time the holder of the payment vehicle so chooses. Likewise, a text message or electronic mail can be sent to turn it back “off” when done. Unlike existing systems, the default in the computer system of the present invention is that the payment vehicle is turned “off.” There are any number of methods that are able to be used to notify to turn the payment vehicle “on” and “off” within the scope of the present invention. A text message and electronic mail are non-limiting examples.


The payment vehicle holder can establish or set rules with the card issuer as to when the card is to be turned “on” or “off.” The holder of the payment vehicle can check card status at any time. The payment vehicle can be set to have time-based access. For example, rules may be set by time period such as the payment vehicle holder instructs to turn the payment vehicle off from 11 pm to 8 am daily. Another example is that the payment vehicle can be turned on or off based upon a specified transaction type such as by a merchant category code. Still yet another example is that the payment vehicle holder could determine that the payment vehicle only is “on” for gas and grocery purchases but “off” for internet purchases, international purchases, among others. Any number of rules could be set alone or in combination. Another example is that the payment vehicle can be turned on or off based upon country code.


In addition, the present invention relates to a payment vehicle having the “on” and “off” feature such as where the payment vehicle is an online banking account having established rules for when access is turned on and off. For example, the holder of the online banking account could set a rule that there can be no payments made using the online banking account, for example, between 11 pm and 8 am daily. Alternatively, the online banking account can be set such that fund status can be viewed but funds cannot be moved or transferred.


The “on” and “off” feature could be utilized in an authorization environment or in an environment where authorizations are not utilized. An important aspect to the present invention is the “on” and “off” functionality and the ability to give a payment vehicle holder who is typically a customer of a financial institution control of the payment vehicle in a computer-based network system leveraging that functionality.


The logic which is the basis for the “on” and “off” functionality in the computer-based network system is comprised within the payment vehicle's processing environment. The following non-limiting example relates to the processing of credit cards and debit cards although the logic is readily applied to other types of payment vehicles.


As mentioned previously, a typical credit card transaction involves a two-part transaction, namely authorization and settlement. During authorization, the question is asked if the money or funds are there and the question is asked if the card is valid. It can be a signature-based transaction or a PIN-based transaction. A pin-based transaction is a transaction in which authorization and settlement occur at same time. The method of authorization is card specific and is known in the industry. For example, VISA has a different payment network than other card providers. With the payment vehicle having the “on” and “off” feature of the present invention, the merchant would know that an invalid card is turned “off” for purposes of the transaction.


Settlement processing occurs with purchases made by internet, mail order, phone order, or card on file. Some of these go through an authorization transaction coming in looking for settlement from a merchant. A payment vehicle having the “on” and “off” feature of the present invention could be used in these transactions as well as other transactions that may involve interlink, automated teller machine (ATM), ACH, wires and others.


Referring now to the figures, FIG. 3 is a flow diagram illustrating the overall system and method of the present invention. As shown in FIG. 3, a payment vehicle holder sends an “on” or “off” message regarding its payment vehicle. After receipt of the message, the payment vehicle is either disabled (i.e. turned off) by a block being placed or enabled (i.e. turned on) by a block being removed. A confirmation of whether the block is on or off is electronically sent to the payment vehicle holder. The payment vehicle holder uses its payment vehicle to for example, make a purchase, sign-on to online banking, make an ATM withdrawal, make an ACH deposit, or money transfer. It is checked to see if the block is off for the payment vehicle. If the block is not off, the transaction ends. If the block is off, the transaction proceeds through normal processing for that respective payment vehicle.



FIG. 4A illustrates a payment vehicle having an “on” and “off” feature in accordance with the present invention for use in a computer-based environment for processing electronic payment transactions. As shown in FIG. 4A, the computer system comprises a payment vehicle, a computer payment network comprising an “on” and “off” transaction engine, and a source of funds. Preferably, the user is the holder of the payment vehicle; however, it is within the scope of the present invention that someone other than the payment vehicle holder would use the payment vehicle to make a purchase or to access funds. The “on” and “off” transaction engine further comprises the “on” and “off” logic to determine whether or not the payment vehicle is enabled or disabled (i.e. “on” or “off”) prior to a payment transaction. If the payment vehicle is “on” and a transaction is enabled (i.e. not disabled or blocked), it is a valid option and the computer payment network is connected to the source of funds. Each user potentially has access to multiple payment vehicles having this “on” and “off” functionality.



FIG. 4B is a flow diagram of the authorization process for a payment transaction using a payment vehicle having the “on” and “off” feature of the present invention. As shown in FIG. 4B, a purchaser uses a payment card to pay for goods and services at a merchant point of sale terminal. The transaction is captured by the ISO or merchant acquirer. The transaction is routed to VISA/Mastercard. From VISA/Mastercard, the transaction is routed to the issuer. The “on” and “off” transaction engine of the computer payment network queries whether the payment card is “off” If it is “off,” the transaction is declined and returned to merchant point of sale terminal. If the payment card is not “off,” it is further processed to determine if there is fraud associated with the transaction. If there is fraud, the transaction is declined and returned to merchant point of sale terminal. If there is no fraud, the computer payment network checks to see if funds are available. If funds are available, the transaction is approved and returned to merchant point of sale terminal. If funds are not available, the transaction is declined and returned to merchant point of sale terminal.



FIG. 4C is a flow diagram illustrating the settlement process for a payment transaction using a payment vehicle having the “on” and “off” feature of the present invention. As shown in FIG. 4C, the merchant acquirer settles with VISA/Mastercard. From VISA/Mastercard, the issuer settles with VISA/Mastercard. The “on”/“off” transaction engine queries whether the payment card is “off.” If the payment card is not “off,” the issuer settles with the purchaser. If the payment card is “off,” the issuer does not settle with the purchaser and initiates charge back to the card.


As discussed herein, a payment vehicle having the “on” and “off” feature of the present invention allows the holder of the payment vehicle to remotely enable or disable its payment vehicle. The present invention provides a payment vehicle holder such as a customer of a financial institution control over its payment vehicle through leveraging of the “on” and “off” logic that may be transmitted, for example, via text message, e-mail, or other electronic means. While the present invention may be run in a variety of settings, it is advantageous for its logic to be run in a card processing environment.


There are numerous other features that are optionally associated with a payment vehicle having the “on” and “off” feature of the present invention. For example, a payment vehicle holder such as a customer of a financial institution is able to get the latest status of his or her payment vehicle. For example, the status may be enabled or disabled as well as more detailed reporting. This core functionality leads to additional features as described below.


Among the features of the present invention include time based access to the payment vehicles. For example, the payment vehicle is enabled from x time to y time. This may also be used for online banking access also.


A two credit/debit level authorization per transaction is another feature. For example, a customer will receive a communication, including but not limited to, a short message service (sms), a phone recording, or email verifying that it is permissible to allow the transaction.


Another feature of the payment vehicle of the present invention provides for the holder of the payment vehicle to refuse or stop a transaction that exceeds a predefined amount. The user may also refuse or stop a transaction of a specific type or limit the use of the payment vehicle to transactions of a certain type or merchant category code.


Yet another feature of the payment vehicle of the present invention is confirmation messaging. The payment vehicle holder receives a communication, including but not limited to, a sms, a phone recording, or email verifying that the payment vehicle holder's request to turn the payment vehicle on or off has been accomplished.


Still yet another feature of the payment vehicle of the present invention is vendor messaging. For example, when a person attempts to use a payment vehicle that has been turned off, the vendor receives a message informing him or her that the card is rejected as it is turned off.


It is within the scope of the present invention that this “on” and “off” feature associated with a payment vehicle is applicable to both existing and new customers, for example, of an institution such as a financial institution that is a card issuer. A customer enrolls for such a program and his/her account is marked accordingly. A customer selects a card account and agrees to use a card having the “on” and “off” feature. A customer then receives notification of enrollment, instructions, and initial card status. Such functionality is comprised, for example, in a card on/off transaction engine.


Thus, the payment vehicle of the present invention is advantageous for many reasons including because it provides additional security for payment vehicles. The payment vehicle of the present invention having the “on” and “off” feature permits customers to easily manage the security of their payment vehicles by switching them off when not in use. With the present invention, it is possible to disable the payment vehicle, such as a credit card, for safety or other purposes whenever the holder of a payment vehicle so chooses. For example, messaging is accomplished by sms or email.


Another advantage of the payment vehicle and method of the present invention is that it enhances loyalty through appreciation for the additional security, flexibility, and control that it provides consumers over their payment vehicles.


In accordance with aspects of the present invention, the computer system of the present invention comprises a computer having memory and a processor for processing input data received from a remote device, a computer software application for use by the computer in processing the input data, and a computer output display device in communication with the computer for providing output data. The memory comprises instructions executable by the processor.


The computer processor, memory and computer software application(s) of the computer system are used to process and analyze the input data, among other factors. The computer software application comprises automated decision rules and computer-implemented algorithms which are used to, for example, estimate, calculate and generate recommendations.


In accordance with aspects of the present invention, a computer-implemented and automated method is provided for a payment vehicle holder to manage his/her own payment vehicle status without human intervention on the part of a payment vehicle provider. In accordance with the computer-implemented method, the computer system enables a payment vehicle by removing a block placed on the payment vehicle by a transaction engine in the payment network at the request of the payment vehicle holder. The payment vehicle is enabled without human intervention on the part of a bank, card issuer, or other institution. FIG. 5 sets forth a flow diagram illustrating the method employed by the computer system and the executable instructions by which the computer system turns “on” or enables a payment card. FIG. 6 sets forth a flow diagram illustrating the method employed by the computer system and the executable instructions by which the computer system turns “off” or disables a payment card. FIG. 7 sets forth a flow diagram illustrating the method employed by the computer system and the executable instructions by which the computer system checks the status of a payment card.


As shown in FIG. 5, the computer system receives input data such as a text message stating “cardon 23422” transmitted from a mobile device or other remote device of a customer or payment vehicle holder. The text message and mobile device phone number are used to identify the customer or payment vehicle holder and to provide an instruction as to whether the payment vehicle such as a credit card is to be turned on or off. The computer system verifies identifying information such as the phone number of the device to see if the input data is being received from a registered customer or registered payment vehicle holder. If not registered, the payment vehicle holder is invited to sign-up and join the program administered by the bank or other institution that utilizes the computer system. If registered, the computer system finds the relevant customer information. The computer system creates a temporary code such as “12345”. The computer system sends a reply text message to the mobile device with the temporary code and a dynamic challenge question such as “What is your favorite ice cream?” The mobile device sends a reply message with the temporary code and an answer to the challenge question such as “chocolate.” The computer system verifies that the temporary code is being received in less than a predetermined time interval, such as a minute, after the temporary code is sent and also verifies the challenge answer. The computer system then checks to see if the temporary code matches. If temporary code does not match, a fail message is sent to the device. If temporary code matches, then the question and answer to the security question is checked to see if it is a match. If not, a fail message is sent to the device. If yes, the payment vehicle is enabled (enable card 23422). The computer system sends a text confirmation to the device of the user or customer and the payment vehicle such as “23422” is enabled.


As shown in FIG. 6, the computer system receives input data such as a text message stating “card off 23422” transmitted from a mobile or other remote device of a customer or payment vehicle holder. The text message and mobile device phone number are used to identify the customer or payment vehicle holder and to provide an instruction as to whether the payment vehicle such as a credit card is to be turned on or off. The computer system verifies identifying information such as the phone number of the device to see if the input data is being received from a registered customer or registered payment vehicle holder. If not registered, the payment vehicle holder is invited to sign-up and join the program administered by the bank or other institution that utilizes the computer system. If registered, the computer system finds the relevant user information. The computer system creates a temporary code such as “12345”. The computer system sends a reply text message to the mobile device with the temporary code and a dynamic challenge security question such as “What is your favorite ice cream?” The mobile device sends a reply message with the temporary code and an answer to the challenge question such as “chocolate.” The computer system verifies that the temporary code is being received in less than a predetermined time interval, such as a minute, after the temporary code is sent and also verifies the challenge answer. The computer system then checks to see if the temporary code matches. If temporary code does not match, a fail message is sent to the device. If temporary code matches, then the question and answer to the security question is checked to see if it is a match. If no, a fail message is sent to the device. If yes, the payment vehicle is disabled (disable card 23422). The computer system sends a text confirmation to the device of the user or customer and the payment vehicle such as “23422” is disabled.


As shown in FIG. 7, the computer system receives input data such as a text message stating “card status 23422” transmitted from a mobile or other remote device of a customer or payment vehicle holder. The text message and mobile device phone number are used to identify the customer or payment vehicle holder. The computer system verifies identifying information such as the phone number of the device to see if the input data is being received from a registered customer or registered payment vehicle holder. If not registered, the user is invited to sign-up and join the program administered by the bank or other institution that utilizes the computer system. If registered, the computer system finds the relevant user information. The computer system creates a temporary code such as “12345”. The computer system sends a reply text message to the mobile device with the temporary code and a dynamic challenge question such as “What is your favorite ice cream?” The mobile device sends a reply message with the temporary code and an answer to the challenge question such as “chocolate.” The computer system verifies that the temporary code is being received in less than a predetermined time interval, such as a minute, after the temporary code is sent and also verifies the challenge answer. The computer system then checks to see if the temporary code matches. If temporary code does not match, a fail message is sent to the device. If temporary code matches, then the question and answer to the security question is checked to see if it is a match. If no, a fail message is sent to the device. If yes, the status of the payment card is obtained and the computer system sends a text to the device of the user or customer with the status of the payment card such as “card 23422 currently enabled.”


In another aspect of the present invention, a remote interface is provided for a user or payment vehicle holder to view and to manage his/her payment vehicle status. The remote interface is a computer software application that provides a visual interface for a user or payment vehicle holder to monitor and modify one or more payment vehicles. A user or payment vehicle holder is able to view and, at a glance, understand the current status of all payment vehicles. A user is able to use the remote computer software interface to enable or disable one or more payment vehicles at the same time without human intervention on the part of one or more payment vehicle providers. Thus, a payment vehicle is able to be monitored and affected across multiple financial institutions without any human intervention on the part of the provider to affect payment vehicle status.


The remote interface is a computer software application that is accessible on a web site, mobile device application, or tablet application, for example.



FIG. 8 is a flow diagram illustrating a customer using the remote computer software interface of the present invention. For example, as shown, a customer starts the remote device card on/card off application. The customer logs in with a phone number and password, the computer system verifies the phone number registration. If not a registered customer, the customer is invited to join the program. If registered, the computer software finds the customer's information and displays the registered status of all payment vehicles of the customer. Also, as shown in FIG. 8, a customer selects the “card off” option for one or more payment vehicles using the remote computer software application. The computer system verifies the authorization and login timeout status. The computer system sends a message to the payment vehicle management system. Disablement of requested payment vehicles is made with a direct transaction call. In other words, the computer system transaction that disables the payment vehicle is run based on a text message received directly from user. The computer system then displays the status of all registered payment vehicles. Also as shown in FIG. 8, a customer selects the “card on” option for one or more payment vehicles using the remote computer software application. The computer system verifies the authorization and login timeout status. The computer system sends a message to the payment vehicle management system. Enablement of requested payment vehicles is made with a direct transaction call. In other words, the computer system transaction that enables the payment vehicle is run based on a text message received directly from user. The computer system then displays the status of all registered payment vehicles.


The computer processor and computer software application process and compute the input data in the computer system to generate output data. The output data is transmitted to a computer output display device such as a computer display terminal. The output data includes, but is not limited to, card status as on or off, balance information, payment vehicle information, among other information. The output data is presented in numerous formats including, but not limited to, graphical representations as shown in FIG. 9. FIG. 9 illustrates a computer screenshot that depicts the information displayed to a customer or payment vehicle holder when using the remote computer software application interface. As shown in FIG. 9, GPS discount awareness and other features shown represent transactions and awareness of customer's mobile phone or remote device location and card status.


Thus, a customer is able to check the status of a payment vehicle such as a credit card remotely through a remote interface on a telecommunications device. A customer is also able to enable or disable a payment vehicle pursuant to an instruction via a mobile or other telecommunications device and subject to an approved challenge security response. An instruction such as a text message from a payment vehicle holder effects a change in status of the payment vehicle without any interaction from a bank representative. Thus, in the automated system of the present invention, a novel feature is that a customer manages his/her own card status, not the provider.


It is to be understood that depicted architectures for the computer system and system environment are merely examples and that many other architectures can be implemented which achieve the same functionality.


The foregoing detailed description has set forth various aspects of the present invention via the use of block diagrams, flow charts, and examples. It will be understood by those in the art that each block diagram component, flow chart step, operation and/or component illustrated by the use of examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof.


The present invention has been described in the context of a fully functional computer system, however, those skilled in the art will appreciate that the present invention is capable of being distributed as a program product or implemented in a variety of forms.


The above discussed embodiments include software modules that perform certain tasks. The software modules discussed herein may include script, batch or other executable files. The software modules may be stored on a machine-readable or computer-readable storage medium such as a disk drive. Storage devices used for storing software modules in accordance with the present invention include, but are not limited to, floppy disks, hard disks, and optical disks. The modules may be stored within a computer system memory to configure the computer system to perform the functions of the module. Other types of computer-readable storage media may be used to store the modules discussed herein.


It will therefore be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements.

Claims
  • 1. A method, implemented by a computer system, of providing a website that is accessible to a mobile device which includes an output display device, the method comprising: serving, by the computer system, the website to the mobile device over a telecommunications network;presenting, by the computer device and on the website, a visual interface that graphically: identifies a credit card of an account holder,indicates a card-on status that enables the credit card for processing electronic payments, andprovides a selectable icon for disabling the payment vehicle;accepting, by the computer device and via the website, a first selection submitted via the selectable icon to disable the credit card;modifying, by the computer system, the visual interface to graphically indicate that the credit card has a card-off status that disables the credit card for subsequent electronic payments;declining, by the computer system based on the card-off status, a first subsequent electronic payment being processed with the credit card;accepting, by the computer system and via the website, a second selection submitted via the selectable icon to enable the credit card;modifying, by the computer system, the visual interface to graphically indicate the credit card has a card-on status that enables the credit card for subsequent electronic payments; andauthorizing, by the computer system based on the card-on status, a second subsequent electronic payment being processed with the credit card.
  • 2. The method of claim 1, wherein the visual interface further graphically identifies a second credit card and graphically indicates a second card-off status that disables the second credit card for processing electronic payments.
  • 3. The method of claim 2, wherein the visual interface further graphically presents a second selectable icon for enabling the second credit card, and wherein the method further comprises accepting, by the computer system, a third selection to enable the second credit card for subsequent electronic payments.
  • 4. The method of claim 1, further comprising accepting and verifying, by the computer system, login credentials entered into the website via the mobile device before graphically identifying the credit card and graphically indicating the card-on status of the credit card.
  • 5. The method of claim 1, wherein the visual interface further graphically presents an account balance of the credit card.
  • 6. The method of claim 1, further comprising: transmitting, by the computer system in response to the first selection, a first message to a payment vehicle management system to disable the credit card;transmitting, by the computer system in response to the second selection, a second message to the payment vehicle management system to enable the credit card.
  • 7. The method of claim 6, further comprising: accepting, by the payment vehicle management system after receiving the first message from the computer system, a first text message from the mobile device to disable the credit card;disabling, by the payment vehicle management system, the credit card in response to the first text message;accepting, by the payment vehicle management system after receiving the second message from the computer system, a second text message from the mobile device to enable the credit card; andenabling, by the payment vehicle management system, the credit card in response to the second text message.
  • 8. The method of claim 1, wherein the visual interface further graphically presents a GPS awareness icon based on a current location of the mobile device, and wherein the GPS awareness icon provides a coupon based on the current location of the mobile device.
  • 9. A method, implemented by a computer system, of providing a remote interface on a telecommunications device that includes an output display device, the method comprising: graphically presenting, by the computer device, on the output display device of the telecommunications device while the telecommunications device accesses the remote interface: a first payment vehicle identifier for a first payment vehicle of an account holder,a first status indicator for the first payment vehicle that indicates the first payment vehicle has a first payment vehicle status that is enabled,a first selectable icon for changing the first payment vehicle status,a second payment vehicle identifier for a second payment vehicle of the account holder,a second status indicator for the second payment vehicle that indicates the second payment vehicle has a second payment vehicle status that is disabled, anda second selectable icon for changing the second payment vehicle status;accepting, by the computer system, a first selection submitted via the first selectable icon to disable the first payment vehicle;declining, by the computer system, a first electronic payment being processed with the first payment vehicle;accepting, by the computer system, a second selection submitted via the second selectable icon to enable the second payment vehicle; andauthorizing, by the computer system, a second electronic payment being processed with the second payment vehicle.
  • 10. The method of claim 9, further comprising: modifying, by the computer system after accepting the first selection, the first status indicator in the visual interface to indicate the first payment vehicle is disabled; andmodifying, by the computer system after accepting the second selection, the second status indicator in the visual interface to indicate the second payment vehicle is enabled.
  • 11. The method of claim 10, further comprising verifying, by the computer system, authorization and login timeout status for the remote interface after accepting the first selection and prior to modifying the first status indicator in the visual interface to indicate the first payment vehicle is disabled.
  • 12. The method of claim 9, further comprising: transmitting, by the computer system, a first message to a payment vehicle management system to disable the first payment vehicle in response to the first selection; andtransmitting, by the computer system, a second message to the payment vehicle management system to enable the second payment vehicle in response to the second selection.
  • 13. The method of claim 12, further comprising: accepting, by the payment vehicle management system after receiving the first message from the computer system, a first text message from the telecommunications device to disable the first payment vehicle;disabling, by the payment vehicle management system, the first payment vehicle in response to the first text message;accepting, by the payment vehicle management system after receiving the second message from the computer system, a second text message from the telecommunications device to enable the second payment vehicle; andenabling, by the payment vehicle management system, the second payment vehicle in response to the second text message.
  • 14. The method of claim 9, wherein the remote interface is a website served by the computer system.
  • 15. The method of claim 9, wherein the telecommunications device is a mobile device, and wherein the remote interface is accessed using a mobile device application running on the mobile device.
  • 16. The method of claim 9, wherein the method further comprises graphically presenting a GPS awareness icon based on a current location of the mobile device.
  • 17. The method of claim 16, wherein the GPS awareness icon provides a coupon based on the current location of the mobile device.
  • 18. A computer system comprising a processor and memory with instructions executable by the processor, the instructions providing a remote interface configured to: graphically present, on an output display device of a mobile device accessing the remote interface: a first payment vehicle identifier for a first payment vehicle of an account holder,a first status indicator indicating the first payment vehicle is enabled,a first selectable icon for disabling the first payment vehicle,a second payment vehicle identifier for a second payment vehicle of the account holder,a second status indicator indicating the second payment vehicle is disabled, anda second selectable icon for enabling the second payment vehicle;accept a first selection submitted via the first selectable icon to disable the first payment vehicle;modify the first status indicator in the visual interface to indicate the first payment vehicle is disabled;decline a first electronic payment being processed with the first payment vehicle;accept a second selection submitted via the second selectable icon to enable the second payment vehicle;modify the second status indicator in the visual interface to indicate the second payment vehicle is enabled; andauthorize a second electronic payment being processed with the second payment vehicle.
  • 19. The computer system of claim 18, the instructions further are configured to: transmit a first message to a payment vehicle management system to disable the first payment vehicle in response to the first selection; andtransmit a second message to the payment vehicle management system to enable the second payment vehicle in response to the second selection.
  • 20. The computer system of claim 18, wherein the visual interface is further configured to graphically present a GPS awareness icon based on a current location of the mobile device, and wherein the GPS awareness icon provides a coupon based on the current location of the mobile device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/829,640, filed Mar. 14, 2013, which is a continuation-in-part application which claims priority from U.S. patent application Ser. No. 12/316,996, filed Dec. 18, 2008, which claims priority from U.S. Provisional Application Ser. No. 61/197,872, filed on Oct. 31, 2008, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (415)
Number Name Date Kind
5485510 Colbert Jan 1996 A
5573457 Watts et al. Nov 1996 A
5737423 Manduley Apr 1998 A
5999978 Angal et al. Dec 1999 A
6047268 Bartoli et al. Apr 2000 A
6105006 Davis et al. Aug 2000 A
6188309 Levine Feb 2001 B1
6193152 Fernando et al. Feb 2001 B1
6408330 Delahuerga Jun 2002 B1
6422462 Cohen Jul 2002 B1
6494367 Zacharias Dec 2002 B1
6575361 Graves et al. Jun 2003 B1
6717592 Gusler et al. Apr 2004 B2
6845906 Royer Jan 2005 B2
6865547 Brake, Jr. Mar 2005 B1
6879965 Fung et al. Apr 2005 B2
6910021 Brown et al. Jun 2005 B2
6980969 Tuchler et al. Dec 2005 B1
7014107 Singer et al. Mar 2006 B2
7016877 Steele et al. Mar 2006 B1
7107243 McDonald et al. Sep 2006 B1
7219833 Cantini et al. May 2007 B2
7225156 Fisher et al. May 2007 B2
7249099 Ling Jul 2007 B2
7264154 Harris Sep 2007 B2
7319986 Praisner et al. Jan 2008 B2
7331518 Rable Feb 2008 B2
7347361 Lovett Mar 2008 B2
7359880 Abel et al. Apr 2008 B2
7383988 Slonecker, Jr. Jun 2008 B2
7392224 Bauer et al. Jun 2008 B1
7398248 Phillips et al. Jul 2008 B2
7401731 Pletz Jul 2008 B1
7451395 Brants et al. Nov 2008 B2
7512563 Likourezos et al. Mar 2009 B2
7552088 Malcolm Jun 2009 B2
7571142 Flitcroft et al. Aug 2009 B1
7587365 Malik et al. Sep 2009 B2
7653597 Stevanovski et al. Jan 2010 B1
7685037 Reiners et al. Mar 2010 B2
7689502 Lilly et al. Mar 2010 B2
7698221 Blinn et al. Apr 2010 B2
7707082 Lapstun et al. Apr 2010 B1
7712655 Wong May 2010 B2
7753265 Harris Jul 2010 B2
7778932 Yan Aug 2010 B2
7818319 Henkin et al. Oct 2010 B2
7873573 Realini Jan 2011 B2
7937325 Kumar et al. May 2011 B2
7941534 De La Huerga May 2011 B2
7949572 Perrochon et al. May 2011 B2
7954704 Gephart et al. Jun 2011 B1
8090346 Cai Jan 2012 B2
8099109 Altman Jan 2012 B2
8127982 Casey et al. Mar 2012 B1
8160933 Nguyen et al. Apr 2012 B2
8175938 Olliphant et al. May 2012 B2
8196131 Von Behren et al. Jun 2012 B1
8245909 Pletz et al. Aug 2012 B2
8249983 Dilip et al. Aug 2012 B2
8255323 Casey et al. Aug 2012 B1
8266031 Norris et al. Sep 2012 B2
8266205 Hammad et al. Sep 2012 B2
8280786 Weiss et al. Oct 2012 B1
8280788 Perlman Oct 2012 B2
8296228 Kloor Oct 2012 B1
8297502 McGhie et al. Oct 2012 B1
8301566 Mears Oct 2012 B2
8332294 Thearling Dec 2012 B1
8359531 Grandison et al. Jan 2013 B2
8360952 Wissman et al. Jan 2013 B2
8364556 Nguyen et al. Jan 2013 B2
8396808 Greenspan Mar 2013 B2
8407136 Bard et al. Mar 2013 B2
8407142 Griggs Mar 2013 B1
8423349 Huynh et al. Apr 2013 B1
8473394 Marshall Jun 2013 B2
8489894 Comrie et al. Jul 2013 B2
8543506 Grandcolas et al. Sep 2013 B2
8589335 Smith et al. Nov 2013 B2
8595074 Sharma et al. Nov 2013 B2
8595098 Starai et al. Nov 2013 B2
8625838 Song et al. Jan 2014 B2
8630952 Menon Jan 2014 B2
8635687 Binder Jan 2014 B2
8655310 Katzer et al. Feb 2014 B1
8655719 Li et al. Feb 2014 B1
8660926 Wehunt et al. Feb 2014 B1
8682753 Kulathungam Mar 2014 B2
8682802 Kannanari Mar 2014 B1
8700729 Dua Apr 2014 B2
8706625 Vicente et al. Apr 2014 B2
8712839 Steinert et al. Apr 2014 B2
8725601 Ledbetter et al. May 2014 B2
8762211 Killian et al. Jun 2014 B2
8762237 Monasterio et al. Jun 2014 B2
8781957 Jackson et al. Jul 2014 B2
8781963 Feng et al. Jul 2014 B1
8793190 Johns et al. Jul 2014 B2
8794972 Lopucki Aug 2014 B2
8851369 Bishop et al. Oct 2014 B2
8868458 Starbuck et al. Oct 2014 B1
8880047 Konicek Nov 2014 B2
8887997 Barret Nov 2014 B2
8924288 Easley et al. Dec 2014 B1
8954839 Sharma et al. Feb 2015 B2
9076134 Grovit et al. Jul 2015 B2
9105021 Tobin Aug 2015 B2
9195984 Spector et al. Nov 2015 B1
9256871 Anderson et al. Feb 2016 B2
9256904 Haller et al. Feb 2016 B1
9372849 Gluck et al. Jun 2016 B2
9390417 Song et al. Jul 2016 B2
9396491 Isaacson et al. Jul 2016 B2
9489694 Haller et al. Nov 2016 B2
9514456 England et al. Dec 2016 B2
9519934 Calman et al. Dec 2016 B2
9558478 Zhao Jan 2017 B2
9569473 Holenstein et al. Feb 2017 B1
9576318 Caldwell Feb 2017 B2
9646300 Zhou et al. May 2017 B1
9647855 Deibert et al. May 2017 B2
9690621 Kim et al. Jun 2017 B2
9792636 Milne Oct 2017 B2
9792648 Haller et al. Oct 2017 B1
9849364 Tran et al. Dec 2017 B2
9853959 Kapczynski et al. Dec 2017 B1
9858576 Song et al. Jan 2018 B2
9978046 Lefebvre et al. May 2018 B2
10032146 Caldwell Jul 2018 B2
10044647 Karp et al. Aug 2018 B1
10050779 Alness et al. Aug 2018 B2
10115155 Haller et al. Oct 2018 B1
10157420 Narayana et al. Dec 2018 B2
10187483 Golub et al. Jan 2019 B2
10275602 Bjorn et al. Apr 2019 B2
10402817 Benkreira et al. Sep 2019 B1
10402818 Zarakas et al. Sep 2019 B2
10417396 Bawa et al. Sep 2019 B2
10423948 Wilson et al. Sep 2019 B1
10460395 Grassadonia Oct 2019 B2
10521798 Song et al. Dec 2019 B2
10650448 Haller et al. May 2020 B1
10963589 Fakhraie et al. Mar 2021 B1
20010001856 Gould et al. May 2001 A1
20010032183 Landry Oct 2001 A1
20010051920 Joao et al. Dec 2001 A1
20020016749 Borecki et al. Feb 2002 A1
20020035539 O'Connell Mar 2002 A1
20020038289 Lawlor et al. Mar 2002 A1
20020095386 Maritzen et al. Jul 2002 A1
20020143655 Elston et al. Oct 2002 A1
20020169720 Wilson et al. Nov 2002 A1
20030046246 Klumpp et al. Mar 2003 A1
20030061163 Durfield Mar 2003 A1
20030097331 Cohen May 2003 A1
20030172040 Kemper Sep 2003 A1
20030195847 Felger Oct 2003 A1
20030200179 Kwan Oct 2003 A1
20030216997 Cohen Nov 2003 A1
20030217001 McQuaide et al. Nov 2003 A1
20040054591 Spaeth et al. Mar 2004 A1
20040073903 Melchione et al. Apr 2004 A1
20040078325 O'Connor Apr 2004 A1
20040090825 Nam et al. May 2004 A1
20040148259 Reiners Jul 2004 A1
20040178907 Cordoba Sep 2004 A1
20040225606 Nguyen et al. Nov 2004 A1
20040263901 Critelli et al. Dec 2004 A1
20050010483 Ling Jan 2005 A1
20050014705 Cheng et al. Jan 2005 A1
20050039041 Shaw et al. Feb 2005 A1
20050060233 Bonalle et al. Mar 2005 A1
20050114705 Reshef et al. May 2005 A1
20050131815 Fung et al. Jun 2005 A1
20050199714 Brandt et al. Sep 2005 A1
20050224587 Shin et al. Oct 2005 A1
20050228750 Olliphant et al. Oct 2005 A1
20050273431 Abel et al. Dec 2005 A1
20060046745 Davidson Mar 2006 A1
20060059110 Madhok et al. Mar 2006 A1
20060184456 De Janasz Aug 2006 A1
20060202012 Grano et al. Sep 2006 A1
20060235795 Johnson et al. Oct 2006 A1
20060278698 Lovett Dec 2006 A1
20070083463 Kraft Apr 2007 A1
20070100773 Wallach May 2007 A1
20070112673 Protti May 2007 A1
20070123305 Chen et al. May 2007 A1
20070143831 Pearson et al. Jun 2007 A1
20070203836 Dodin Aug 2007 A1
20070226086 Bauman et al. Sep 2007 A1
20070255653 Tumminaro Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20080000052 Hong et al. Jan 2008 A1
20080005037 Hammad et al. Jan 2008 A1
20080017702 Little et al. Jan 2008 A1
20080021787 Mackouse Jan 2008 A1
20080029608 Kellum et al. Feb 2008 A1
20080086398 Parlotto Apr 2008 A1
20080115104 Quinn May 2008 A1
20080149706 Brown et al. Jun 2008 A1
20080154772 Carlson Jun 2008 A1
20080191878 Abraham Aug 2008 A1
20080208726 Tsantes et al. Aug 2008 A1
20080229383 Buss et al. Sep 2008 A1
20080244724 Choe et al. Oct 2008 A1
20080260119 Marathe et al. Oct 2008 A1
20080283590 Oder et al. Nov 2008 A1
20080301043 Unbehagen Dec 2008 A1
20090005269 Martin et al. Jan 2009 A1
20090007231 Kaiser et al. Jan 2009 A1
20090055269 Baron Feb 2009 A1
20090055642 Myers et al. Feb 2009 A1
20090112763 Scipioni et al. Apr 2009 A1
20090132351 Gibson May 2009 A1
20090205014 Doman et al. Aug 2009 A1
20090228381 Mik et al. Sep 2009 A1
20090287603 Lamar et al. Nov 2009 A1
20090319638 Faith et al. Dec 2009 A1
20100036769 Winters et al. Feb 2010 A1
20100036906 Song et al. Feb 2010 A1
20100063906 Nelsen et al. Mar 2010 A1
20100082487 Nelsen Apr 2010 A1
20100094735 Reynolds et al. Apr 2010 A1
20100100470 Buchanan et al. Apr 2010 A1
20100114768 Duke et al. May 2010 A1
20100132049 Vernal et al. May 2010 A1
20100228671 Patterson Sep 2010 A1
20100274691 Hammad et al. Oct 2010 A1
20100312700 Coulter Dec 2010 A1
20110023129 Vernal et al. Jan 2011 A1
20110035318 Hargrove et al. Feb 2011 A1
20110035596 Attia et al. Feb 2011 A1
20110106698 Isaacson et al. May 2011 A1
20110176010 Houjou et al. Jul 2011 A1
20110178929 Durkin et al. Jul 2011 A1
20110191239 Blackhurst et al. Aug 2011 A1
20110196791 Dominguez Aug 2011 A1
20110202462 Keenan Aug 2011 A1
20110218849 Rutigliano et al. Sep 2011 A1
20110247055 Guo et al. Oct 2011 A1
20110276479 Thomas Nov 2011 A1
20110307826 Rivera et al. Dec 2011 A1
20120030109 Dooley Maley et al. Feb 2012 A1
20120041881 Basu et al. Feb 2012 A1
20120046994 Reisman Feb 2012 A1
20120047072 Larkin Feb 2012 A1
20120096534 Boulos et al. Apr 2012 A1
20120101938 Kasower Apr 2012 A1
20120123933 Abel May 2012 A1
20120124658 Brudnicki et al. May 2012 A1
20120158590 Salonen Jun 2012 A1
20120214577 Petersen et al. Aug 2012 A1
20120227094 Begen et al. Sep 2012 A1
20120239417 Pourfallah et al. Sep 2012 A1
20120240235 Moore Sep 2012 A1
20120254038 Mullen Oct 2012 A1
20120259782 Hammad Oct 2012 A1
20120265682 Menon Oct 2012 A1
20120270522 Laudermilch et al. Oct 2012 A1
20120296725 Dessert et al. Nov 2012 A1
20130031006 McCullagh et al. Jan 2013 A1
20130046690 Calman et al. Feb 2013 A1
20130055378 Chang et al. Feb 2013 A1
20130080219 Royyuru et al. Mar 2013 A1
20130091452 Sorden et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130117696 Robertson et al. May 2013 A1
20130132854 Raleigh et al. May 2013 A1
20130151405 Head et al. Jun 2013 A1
20130173402 Young et al. Jul 2013 A1
20130174244 Taveau et al. Jul 2013 A1
20130218758 Koenigsbrueck et al. Aug 2013 A1
20130226813 Voltz Aug 2013 A1
20130254115 Pasa et al. Sep 2013 A1
20130346302 Purves et al. Dec 2013 A1
20130346306 Kopp Dec 2013 A1
20130346310 Burger et al. Dec 2013 A1
20140006209 Groarke Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140040144 Plomske et al. Feb 2014 A1
20140053069 Yan Feb 2014 A1
20140067503 Ebarle Grecsek et al. Mar 2014 A1
20140067683 Varadarajan Mar 2014 A1
20140076967 Pushkin et al. Mar 2014 A1
20140108263 Ortiz et al. Apr 2014 A1
20140114855 Bajaj et al. Apr 2014 A1
20140123312 Marcotte May 2014 A1
20140129357 Goodwin May 2014 A1
20140129448 Aiglstorfer May 2014 A1
20140143886 Eversoll et al. May 2014 A1
20140149368 Lee et al. May 2014 A1
20140172707 Kuntagod et al. Jun 2014 A1
20140198054 Sharma et al. Jul 2014 A1
20140200957 Biggs Jul 2014 A1
20140207672 Kelley Jul 2014 A1
20140237236 Kalinichenko et al. Aug 2014 A1
20140248852 Raleigh et al. Sep 2014 A1
20140258104 Harnisch Sep 2014 A1
20140258110 Davis et al. Sep 2014 A1
20140279309 Cowen et al. Sep 2014 A1
20140279474 Evans et al. Sep 2014 A1
20140306833 Ricci Oct 2014 A1
20140337188 Bennett et al. Nov 2014 A1
20140344149 Campos Nov 2014 A1
20140344153 Raj et al. Nov 2014 A1
20140344877 Ohmata et al. Nov 2014 A1
20140357233 Maximo et al. Dec 2014 A1
20140372308 Sheets Dec 2014 A1
20140379575 Rogan Dec 2014 A1
20150019944 Kalgi Jan 2015 A1
20150026026 Calman et al. Jan 2015 A1
20150026049 Theurer et al. Jan 2015 A1
20150026057 Calman et al. Jan 2015 A1
20150032625 Dill et al. Jan 2015 A1
20150032626 Dill et al. Jan 2015 A1
20150032627 Dill et al. Jan 2015 A1
20150039457 Jacobs et al. Feb 2015 A1
20150046338 Laxminarayanan et al. Feb 2015 A1
20150046339 Wong et al. Feb 2015 A1
20150082042 Hoornaert et al. Mar 2015 A1
20150100477 Salama et al. Apr 2015 A1
20150106239 Gaddam et al. Apr 2015 A1
20150112870 Nagasundaram et al. Apr 2015 A1
20150121500 Venkatanaranappa et al. Apr 2015 A1
20150134700 Macklem et al. May 2015 A1
20150149357 Ioannidis et al. May 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150180836 Wong et al. Jun 2015 A1
20150186856 Weiss et al. Jul 2015 A1
20150193764 Haggerty et al. Jul 2015 A1
20150193866 Van Heerden et al. Jul 2015 A1
20150199679 Palanisamy et al. Jul 2015 A1
20150199689 Kumnick et al. Jul 2015 A1
20150213435 Douglas et al. Jul 2015 A1
20150220999 Thornton et al. Aug 2015 A1
20150221149 Main et al. Aug 2015 A1
20150229622 Grigg et al. Aug 2015 A1
20150248405 Rudich et al. Sep 2015 A1
20150254647 Bondesen et al. Sep 2015 A1
20150254655 Bondesen et al. Sep 2015 A1
20150286834 Ohtani et al. Oct 2015 A1
20150312038 Palanisamy Oct 2015 A1
20150319198 Gupta et al. Nov 2015 A1
20150339663 Lopreiato et al. Nov 2015 A1
20150339664 Wong et al. Nov 2015 A1
20150379508 Van Dec 2015 A1
20160026997 Tsui et al. Jan 2016 A1
20160028550 Gaddam et al. Jan 2016 A1
20160028735 Francis et al. Jan 2016 A1
20160036790 Shastry et al. Feb 2016 A1
20160042381 Braine et al. Feb 2016 A1
20160063497 Grant, IV Mar 2016 A1
20160078428 Moser et al. Mar 2016 A1
20160092870 Salama et al. Mar 2016 A1
20160092872 Prakash et al. Mar 2016 A1
20160092874 O'Regan et al. Mar 2016 A1
20160098692 Johnson et al. Apr 2016 A1
20160109954 Harris et al. Apr 2016 A1
20160119296 Laxminarayanan et al. Apr 2016 A1
20160125409 Meredith et al. May 2016 A1
20160140221 Park et al. May 2016 A1
20160155156 Gopal et al. Jun 2016 A1
20160171483 Luoma et al. Jun 2016 A1
20160189121 Best et al. Jun 2016 A1
20160239437 Le et al. Aug 2016 A1
20160260176 Bernard et al. Sep 2016 A1
20160267467 Rutherford et al. Sep 2016 A1
20160294879 Kirsch Oct 2016 A1
20160314458 Douglas et al. Oct 2016 A1
20160321669 Beck et al. Nov 2016 A1
20160328522 Howley Nov 2016 A1
20160358163 Kumar et al. Dec 2016 A1
20160379211 Hoyos et al. Dec 2016 A1
20170004506 Steinman et al. Jan 2017 A1
20170011389 McCandless et al. Jan 2017 A1
20170024393 Choksi et al. Jan 2017 A1
20170068954 Hockey et al. Mar 2017 A1
20170078299 Castinado et al. Mar 2017 A1
20170078303 Wu Mar 2017 A1
20170091759 Selfridge et al. Mar 2017 A1
20170132633 Whitehouse May 2017 A1
20170147631 Nair et al. May 2017 A1
20170161724 Lau Jun 2017 A1
20170249478 Lovin Aug 2017 A1
20170344991 Mark et al. Nov 2017 A1
20170352028 Vridhachalam et al. Dec 2017 A1
20170364898 Ach et al. Dec 2017 A1
20180005323 Grassadonia Jan 2018 A1
20180006821 Kinagi Jan 2018 A1
20180025145 Morgner et al. Jan 2018 A1
20180053200 Cronin et al. Feb 2018 A1
20180088909 Baratta et al. Mar 2018 A1
20180158137 Tsantes et al. Jun 2018 A1
20180270363 Guday et al. Sep 2018 A1
20190007381 Isaacson et al. Jan 2019 A1
20190035664 Lin et al. Jan 2019 A1
20190171831 Xin Jun 2019 A1
20190197501 Senci et al. Jun 2019 A1
20190220834 Moshal et al. Jul 2019 A1
20190228173 Gupta et al. Jul 2019 A1
20190318122 Hockey et al. Oct 2019 A1
20190333061 Jackson et al. Oct 2019 A1
20190347442 Marlin et al. Nov 2019 A1
20190356641 Isaacson et al. Nov 2019 A1
20190362069 Park et al. Nov 2019 A1
20190370798 Hu et al. Dec 2019 A1
20190392443 Piparsaniya et al. Dec 2019 A1
20200005347 Boal Jan 2020 A1
20200074552 Shier et al. Mar 2020 A1
20200090179 Song et al. Mar 2020 A1
20200118114 Benkreira et al. Apr 2020 A1
20200118133 Schmidt et al. Apr 2020 A1
20200286057 Desai Sep 2020 A1
Foreign Referenced Citations (13)
Number Date Country
2 441 156 Feb 2008 GB
20160015375 Feb 2016 KR
WO-9013096 Nov 1990 WO
WO-0072245 Nov 2000 WO
WO-03038551 May 2003 WO
WO-2004081893 Sep 2004 WO
WO-2004090825 Oct 2004 WO
WO-2004090825 Oct 2004 WO
WO-2009151839 Dec 2009 WO
WO-2012054148 Apr 2012 WO
WO-2015103443 Jul 2015 WO
WO-2015135131 Sep 2015 WO
WO-2018005635 Jan 2018 WO
Non-Patent Literature Citations (20)
Entry
Austin Telco Federal Credit Union, “Lost or Stolen Cards”, www.atfcu.org/lost-stolen-cards.htm; Apr. 9, 2004. 6 pages.
BancFirst, “Lost Card”, https://www.bancfirst.com/contact.aspx, Oct. 28, 2003. 1 page.
CM/ECF, “CM/ECF Internet Credit Card Payment Guide”, https://www.vaeb.uscourts.gov/wordpress/?page_id=340, Mar. 16, 2005. 12 pages.
Cronian, Darrin “Credit card companies Freeze Spending whilst Abroad”, published Jun. 9, 2007, Available at: http://www.travel-rants.com/2007/06/09/credit-card-companies-freeze-spending-whilst-abroad/.
Fort Knox Federal Credit Union, “Lost or Stolen VISA Card”, http://www.fortknoxfcu.org/loststolen.html, Feb. 1, 2001. 2 pages.
Merrick Bank, “Reporting Lost or Stolen Card Help Return to the Cardholder Center FAQs”, http://www.merrickbank.com/Frequent-Asked-Questions/Report-Stolen-Card.aspx, Aug. 9, 2004. 1 page.
Microsoft, “Automatically summarize a document”, 2016. 3 pages.
RBC Royal Bank, “If Your Card is Lost or Stolen”, http://www.rblbank.com/pdfs/CreditCard/FAQs.pdf, Oct. 1, 2002. 2 pages.
State Employees Credit Union, “Lost or Stolen Account Info”, https://www.secumd.org/advice-planning/money-and-credit/privacy-fraud-protection/lost-or-stolen-account-info.aspx, May 20, 2005. 2 pages.
Union Bank & Trust, “Report Lost or Stolen Card”, http://www.fortknoxfcu.org/loststolen.html, Jul. 10, 2005. 13 pages.
IEEE Xplore; 2009 First Asian Himalayas International Conference on Internet: Emergence of Payment Systems in the age of Electronic Commerce.; The state off Art. Author S Singh Nov. 1, 2009 pp. 1-18 (Year: 2009).
IP.com Search Query; May 5, 2020 (Year: 2020).
Konsko: “Credit Card Tokenization: Here's What You Need to Know”, Credit Card Basics, Credit Card—Advertisement Nerdwallet (Year: 2014).
ASB, “How to command your cards with ASB Card Control” Apr. 20, 2015, https://www.youtube.com/watch?v=O1sfxvVUL74 (Year: 2015).
Authorize.Net. Authorize.Net Mobile Application: iOS User Guide. Sep. 2015. Authorize.Net LLC. Ver.2.0, 1-23. https://www.authorize.net/content/dam/anet-redesign/documents/iosuserguide.pdf (Year: 2015).
CP-OP THINK, Rachna Ahlawat at CO-OP THINK—Evolution Sessions from THINK14, Dec. 22, 2014, 26:22. https://www.youtube.com/watch?v=yEp-qfZoPhl (Year: 2014).
Fiserv. CardValet: Mobile Application Training. Fiserv, Inc. 1-93. https://www.westernbanks.com/media/1664/ cardvalet-application .pdf (Year: 2015).
Notre Dame FCU “Irish Card Shield: How to Control Transaction Types” Jan. 15, 2016, 0:27, https://youtube.com/watch?v=0eZG1c6Bn38 (Year: 2016).
PCM Credit Union, “CardValet Tutorial” Jun. 24, 2015, https://www.youtube.com/watch?v=uGPh9Htw0Wc (Year: 2015).
Purchasing charges ahead. (1994). Electronic Buyers' News,, 68. Retrieved from https://dialog.proquest.com/professional/docview/681599288?accountid=131444 on Nov. 13, 2020 (Year: 1994).
Provisional Applications (1)
Number Date Country
61197872 Oct 2008 US
Continuations (1)
Number Date Country
Parent 13829640 Mar 2013 US
Child 16719419 US
Continuation in Parts (1)
Number Date Country
Parent 12316996 Dec 2008 US
Child 13829640 US