PCR-based detection of Rhizoctonia cerealis

Information

  • Patent Grant
  • 6485907
  • Patent Number
    6,485,907
  • Date Filed
    Tuesday, January 11, 2000
    25 years ago
  • Date Issued
    Tuesday, November 26, 2002
    22 years ago
Abstract
Internal Transcribed Spacer (ITS) DNA sequences from the ribosomal RNA gene region are described for different strains of the wheat fungal pathogen, Rhizoctonia cerealis. Specific primers from within these sequences are identified as being useful for the identification of Rhizoctonia cerealis using PCR-based techniques.
Description




FIELD OF THE INVENTION




The present invention relates to the use of species-specific primers in polymerase chain reaction assays for the detection of


Rhizoctonia cerealis


, a fungal pathogen of wheat. The use of these primers enables the monitoring of disease development in plant populations.




BACKGROUND OF THE INVENTION




Diseases in plants cause considerable crop loss from year to year resulting both in economic deprivation to farmers and, in many parts of the world, to shortfalls in the nutritional provision for local populations. The widespread use of fungicides has provided considerable security against plant pathogen attack. However, despite 1 billion worth of expenditure on fungicides, worldwide crop losses amounted to approximately 10% of crop value in 1981 (James, 1981


; Seed Sci. & Technol


. 9: 679-685).




The severity of the destructive process of disease depends on the aggressiveness of the pathogen and the response of the host. One aim of most plant breeding programs is to increase the resistance of host plants to disease. Typically, different races of pathogens interact with different varieties of the same crop species differentially, and many sources of host resistance only protect against specific pathogen races. Furthermore, some pathogen races show early signs of disease symptoms, but cause little damage to the crop. Jones and Clifford (1983; Cereal Diseases, John Wiley) report that virulent forms of the pathogen are expected to emerge in the pathogen population in response to the introduction of resistance into host cultivars and that it is therefore necessary to monitor pathogen populations. In addition, there are several documented cases of the evolution of fungal strains that are resistant to particular fungicides. As early as 1981, Fletcher and Wolfe (1981


; Proc


. 1981


Brit. Crop Prot. Conf


.) contended that 24% of the powdery mildew populations from spring barley and 53% from winter barley showed considerable variation in response to the fungicide triadimenol and that the distribution of these populations varied between varieties, with the most susceptible variety also giving the highest incidence of less susceptible types. Similar variation in the sensitivity of fungi to fungicides has been documented for wheat mildew (also to triadimenol), Botrytis (to benomyl), Pyrenophora (to organomercury), Pseudocercosporella (to MBC-type fungicides) and


Mycosphaerella fijiensis


to triazoles to mention just a few (Jones and Clifford; Cereal Diseases, John Wiley, 1983).




Wheat is currently the most important agricultural commodity in international markets and occupies about 20% of the world's farmed land (1977; Compendium of Wheat Diseases, Amer. Phytopath. Soc. page 1). Eightly percent of the world's supply of wheat is grown in North America, Europe, China, and the Soviet Union. Approximately 20% of the worldwide production of wheat is lost to disease annually.




Sharp eyespot is caused by


Rhizoctonia cerealis


van der Hoeven (teleomorph


Ceratobasidium cereale


Murray & Burpee) and occurs on wheat, barley, oat and rye (1977; Compendium of Wheat Diseases, Amer. Phytopath. Soc. Page 50). Some isolates of the pathogen are also capable of infecting turfgrass causing yellow patch. Severe wheat infections cause premature ripening and lodging, thereby effecting yield. There are presently no known sharp eyespot-resistant cultivars.




In view of the above, there is a real need for the development of technology that will allow the identification of specific fungal pathogens early in the infection process. By identifying the specific pathogen before disease symptoms become evident in the crop stand, the agriculturist can assess the likely effects of further development of the pathogen in the crop variety in which it has been identified and can choose an appropriate fungicide if such application is deemed necessary.




SUMMARY OF THE INVENTION




The present invention is drawn to methods of identification of different pathotypes of plant pathogenic fungi. The invention provides Internal Transcribed Spacer (ITS) DNA sequences that show variability between different fungal pathotypes. Such DNA sequences are useful in the method of the invention as they can be used to derive primers for use in polymerase chain reaction (PCR)-based diagnostic assays. These primers generate unique fragments in PCR reactions in which the DNA template is provided by specific fungal pathotypes and can thus be used to identify the presence or absence of specific pathotypes in host plant material before the onset of disease symptoms.




In a preferred embodiment, the invention provides ITS1 and ITS2 DNA sequences (e.g., SEQ ID NO:17-26) for the pathogen


Rhizoctonia cerealis


. In another preferred embodiment, the invention provides ITS-derived diagnostic primers (e.g., SEQ ID NO:7-16) for the detection of


Rhizoctonia cerealis.






This invention provides the possibility of assessing potential damage in a specific crop variety-pathogen strain relationship and of utilizing judiciously the diverse armory of fungicides that is available. Furthermore, the invention can be used to provide detailed information on the development and spread of specific pathogen races over extended geographical areas. The invention provides a method of detection that is especially suitable for diseases with a long latent phase.




Kits useful in the practice of the invention are also provided. The kits find particular use in the identification of the fungal pathogen


Rhizoctonia cerealis.






BRIEF DESCRIPTION OF THE SEQUENCES IN THE SEQUENCE LISTING




SEQ ID NO:1 Oligonucleotide Primer ITS 1.




SEQ ID NO:2 Oligonucleotide Primer ITS2.




SEQ ID NO:3 Oligonucleotide Primer ITS3.




SEQ ID NO:4 Oligonucleotide Primer ITS4.




SEQ ID NO:5 M13 Universal-20 Primer.




SEQ ID NO:6 Reverse Primer used in Example 2.




SEQ ID NO:7 Oligonucleotide Primer JB643.




SEQ ID NO:8 Oligonucleotide Primer JB644.




SEQ ID NO:9 Oligonucleotide Primer JB645.




SEQ ID NO:10 Oligonucleotide Primer JB646.




SEQ ID NO:11 Oligonucleotide Primer JB647.




SEQ ID NO:12 Oligonucleotide Primer JB648.




SEQ ID NO:13 Oligonucleotide Primer JB649.




SEQ ID NO:14 Oligonucleotide Primer JB650.




SEQ ID NO:15 Oligonucleotide Primer JB687.




SEQ ID NO:16 Oligonucleotide Primer JB688.




SEQ ID NO:17 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate 44235, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-242), 5.8S rRNA gene (nucleotides 244-395), Internal Transcribed Spacer 2 (nucleotides 397-630), and 5′ end of the large subunit rRNA gene (nucleotides 631-687).




SEQ ID NO:18 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate AGDC57, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-242), 5.8S rRNA gene (nucleotides 243-395), Internal Transcribed Spacer 2 (nucleotides 396-629), and 5′ end of the large subunit rRNA gene (nucleotides 630-686).




SEQ ID NO:19 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate CAG1BN1, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-243), 5.8S rRNA gene (nucleotides 244-396), Internal Transcribed Spacer 2 (nucleotides 397-630), and 5′ end of the large subunit rRNA gene (nucleotides 631-687).




SEQ ID NO:20 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate AGDC73, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-241), 5.8S rRNA gene (nucleotides 242-394), Internal Transcribed Spacer 2 (nucleotides 395-628), and 5′ end of the large subunit rRNA gene (nucleotides 629-685).




SEQ ID NO:21 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate 52182, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-243), 5.8S rRNA gene (nucleotides 244-396), Internal Transcribed Spacer 2 (nucleotides 397-630), and 5′ end of the large subunit rRNA gene (nucleotides 631-687).




SEQ ID NO:22 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate Bn505, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer I (nucleotides 31-243), 5.8S rRNA gene (nucleotides 244-396), Internal Transcribed Spacer 2 (nucleotides 397-630), and 5′ end of the large subunit rRNA gene (nucleotides 631-686).




SEQ ID NO:23 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate R88-303, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-243), 5.8S rRNA gene (nucleotides 244-396), Internal Transcribed Spacer 2 (nucleotides 397-630), and 5′ end of the large subunit rRNA gene (nucleotides 631-687).




SEQ ID NO:24 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate 52184, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer 1 (nucleotides 31-240), 5.8S rRNA gene (nucleotides 241-393), Internal Transcribed Spacer 2 (nucleotides 394-627), and 5′ end of the large subunit rRNA gene (nucleotides 628-684).




SEQ ID NO:25 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate 62063, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer I (nucleotides 31-242), 5.8S rRNA gene (nucleotides 243-395), Internal Transcribed Spacer 2 (nucleotides 396-629), and 5′ end of the large subunit rRNA gene (nucleotides 630-686).




SEQ ID NO:26 DNA sequence of the ITS region PCR-amplified from


R. cerealis


isolate 52183, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-30), Internal Transcribed Spacer I (nucleotides 31-242), 5.8S rRNA gene (nucleotides 243-395), Internal Transcribed Spacer 2 (nucleotides 396-629), and 5′ end of the large subunit rRNA gene (nucleotides 630-686).




SEQ ID NO:27 GenBank sequence (accession #AF063019) listing of DNA sequence of the ITS region from


R. cerealis


, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene (nucleotides 1-29), Internal Transcribed Spacer 1 (nucleotides 30-241), 5.8S rRNA gene (nucleotides 242-394), Internal Transcribed Spacer 2 (nucleotides 395-628), and 5′ end of the large subunit rRNA gene (nucleotides 629-685).




SEQ ID NO:28 DNA sequence of the ITS region PCR-amplified from


P. herpotrichoides


isolate R1, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




SEQ ID NO:29 DNA sequence of the ITS region PCR-amplified from


S. nodorum


isolate 24425, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




SEQ ID NO:30 DNA sequence of the ITS region PCR-amplified from


S. tritici


isolate 26517, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




SEQ ID NO:31 DNA sequence of the ITS region PCR-amplified from


P. tritici-repentis


isolate 6715, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




SEQ ID NO:32 DNA sequence of the ITS region PCR-amplified from


F. culmorum


isolate 62215, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




SEQ ID NO:33 DNA sequence of the ITS region PCR-amplified from


M. nivale


isolate 520, comprising in the 5′ to 3′ direction: 3′ end of the small subunit rRNA gene, Internal Transcribed Spacer 1, 5.8S rRNA gene, Internal Transcribed Spacer 2, and 5′ end of the large subunit rRNA gene.




DETAILED DESCRIPTION OF THE INVENTION




The present invention provides unique DNA sequences that are useful in identifying different pathotypes of plant pathogenic fungi. Particularly, the DNA sequences can be used as primers in PCR-based analysis for the identification of fungal pathotypes. The DNA sequences of the invention include the Internal Transcribed Spacer (ITS) sequences of the ribosomal RNA gene regions of particular fungal pathogens as well as primers derived from these regions that are capable of identifying the particular pathogen. These ITS DNA sequences from different pathotypes within a pathogen species or genus, which vary between the different members of the species or genus, can be used to identify those specific members.




Biomedical researchers have used PCR-based techniques for some time and with moderate success to detect pathogens in infected animal tissues. Only recently, however, has this technique been applied to detect plant pathogens. The presence of


Gaumannomyces graminis


in infected wheat has been detected using PCR of sequences specific to the pathogen mitochondrial genome (Schlesser et al., 1991


; Applied and Environ. Microbiol


. 57: 553-556), and random amplified polymorphic DNA (i.e. RAPD) markers were able to distinguish numerous races of


Gremmeniella abietina


, the causal agent of scleroderris canker in conifers. U.S. Pat. No. 5,585,238 (incorporated herein by reference in its entirety) describes primers derived from the ITS sequences of the ribosomal RNA gene region of strains of


Septoria, Pseudocercosporella


, and


Mycosphaerella


and their use in the identification of these fungal isolates using PCR-based techniques. In addition, WO 95/29260 (herein incorporated by reference in its entirety) describes primers derived from the ITS sequences of the ribosomal RNA gene region of strains of Fusarium and their use in the identification of these fungal isolates using PCR-based techniques. Furthermore, U.S. Pat. No. 5,800,997 (incorporated herein by reference in its entirety) describes primers derived from the ITS sequences of the ribosomal RNA gene region of strains of


Cercospora, Helminthosporium, Kabatiella, and Puccinia


and their use in the identification of these fungal isolates using PCR-based techniques.




Ribosomal genes are suitable for use as molecular probe targets because of their high copy number. Despite the high conservation between mature rRNA sequences, the non-transcribed and transcribed spacer sequences are usually poorly conserved and are thus suitable as target sequences for the detection of recent evolutionary divergence. Fungal rRNA genes are organized in units, each of which encodes three mature subunits of 18S (small subunit), 5.8S, and 28S (large subunit). These subunits are separated by two Internal Transcribed Spacers, ITS1 and ITS2, of around 300 bp (White et al., 1990; In: PCR Protocols; Eds.: Innes et al.; pages 315-322). In addition, the transcriptional units are separated by non-transcribed spacer sequences (NTSs). The ITS and NTS sequences are particularly suitable for the detection of specific pathotypes of different fungal pathogens.




The DNA sequences of the invention are from the Internal Transcribed Spacer sequences of the ribosomal RNA gene region of different plant pathogens. The ITS DNA sequences from different pathotypes within a pathogen species or genus vary among the different members of the species or genus. Once having determined the ITS sequences of a pathogen, these sequences can be aligned with other ITS sequences. In this manner, primers can be derived from the ITS sequences. That is, primers can be designed based on regions within the ITS sequences that contain the greatest differences in sequence among the fungal pathotypes. These sequences and primers based on these sequences can be used to identify specific pathogens.




Particular DNA sequences of interest include ITS DNA sequences from


Rhizoctonia cerealis


. Such ITS DNA sequences are disclosed in SEQ ID NOs: 17-26. Sequences of representative oligonucleotide primers derived from these ITS sequences are disclosed in SEQ ID NOs: 7-16. The sequences find use in the PCR-based identification of the pathogen of interest.




Methods for the use of the primer sequences of the invention in PCR analysis are well known in the art. For example, see U.S. Pat. Nos. 4,683,195 and 4,683,202, as well as Schlesser et al. (1991)


Applied and Environ. Microbiol


. 57:553-556. See also, Nazar et al. (1991


; Physiol. and Molec. Plant Pathol


. 39: 1-11), which used PCR amplification to exploit differences in the ITS regions of


Verticillium albo-atrum


and


Verticillium dahliae


and therefore distinguish between the two species; and Johanson and Jeger (1993


; Mycol. Res


. 97: 670-674), who used similar techniques to distinguish the banana pathogens


Mycosphaerella fijiensis


and


Mycospharella musicola.






The ITS DNA sequences of the invention can be cloned from fungal pathogens by methods known in the art. In general, the methods for the isolation of DNA from fungal isolates are known. See, Raeder & Broda (1985)


Letters in Applied Microbiology


2:17-20; Lee et al. (1990)


Fungal Genetics Newsletter


35:23-24; and Lee and Taylor (1990) In:


PCR Protocols: A Guide to Methods and Applications


, Innes et al. (Eds.); pages 282-287.




Alternatively, the ITS sequences of interest can be determined by PCR amplification. In an exemplified embodiment, primers to amplify the entire ITS region are designed according to White et al. (1990; In: PCR Protocols; Eds.: Innes et al. pages 315-322), and the amplified ITS sequence are subcloned into the pCR2.1 cloning vector. The subcloned sequence include the left hand ITS (ITS 1), the right hand ITS (ITS2), as well as the centrally located 5.8S rRNA gene. This is undertaken for several isolates of


Rhizoctonia cerealis.






The determined ITS sequences are compared within each pathogen group to locate divergences that might be useful to test in PCR to distinguish the different species and/or strains. Exemplary determined ITS DNA sequences are shown in SEQ ID NOs: 17-26. A comparative alignment is made of these ITS DNA sequences. From the identification of divergences, numerous primers are synthesized and tested in PCR-amplification. Templates used for PCR-amplification testing are firstly purified pathogen DNA, and subsequently DNA isolated from infected host plant tissue. Thus, it is possible to identify pairs of primers that are diagnostic, i.e. that identify one particular pathogen species or strain but not another species or strain of the same pathogen.




Preferred primer combinations are able to distinguish between the different species or strains in infected host tissue, i.e. host tissue that has previously been infected with a specific pathogen species or strain. This invention provides numerous primer combinations that fulfill this criterion for detection of


Rhizoctonia cerealis


. The primers of the invention are designed based on sequence differences among the fungal ITS regions. A minimum of one base pair difference between sequences can permit design of a discriminatory primer. Primers designed to a specific fungal DNA's ITS region can be used in combination with a primer made to a conserved sequence region within the ribosomal DNA's coding region to amplify species-specific PCR fragments. In general, primers should have a theoretical melting temperature between about 60 to about 70 degree ° C. to achieve good sensitivity and should be void of significant secondary structure and 3′ overlaps between primer combinations. Primers generally have 100% sequence identity with at least about 5-10 contiguous nucleotide bases of ITS 1 or ITS2. In preferred embodiments, primers are anywhere from approximately 5-30 nucleotide bases long.




The present invention lends itself readily to the preparation of “kits” containing the elements necessary to carry out the process. Such a kit may comprise a carrier being compartmentalized to receive in close confinement therein one or more container, such as tubes or vials. One of the containers may contain unlabeled or detectably labeled DNA primers. The labeled DNA primers may be present in lyophilized form or in an appropriate buffer as necessary. One or more containers may contain one or more enzymes or reagents to be utilized in PCR reactions. These enzymes may be present by themselves or in admixtures, in lyophilized form or in appropriate buffers.




Finally, the kit may contain all of the additional elements necessary to carry out the technique of the invention, such as buffers, extraction reagents, enzymes, pipettes, plates, nucleic acids, nucleoside triphosphates, filter paper, gel materials, transfer materials, autoradiography supplies, and the like.




The examples below show typical experimental protocols that can be used in the isolation of ITS sequences, the selection of suitable primer sequences, the testing of primers for selective and diagnostic efficacy, and the use of such primers for disease and fungal isolate detection. Such examples are provided by way of illustration and not by way of limitation.











EXAMPLES




Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by J. Sambrook, E. F. Fritsch and T. Maniatis,


Molecular (


1989) and by T. J. Silhavy, M. L. Berman, and L. W. Enquist,


Experiments with Gene Fusions


, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1984) and by Ausubel, F. M. et al.,


Current Protocols in Molecular Biology


, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).




Example 1




Fungal Isolates and Genomic Fungal DNA Extraction




See Table 1 for a listing of the fungal isolates used and their source. Fungi are grown in 150 ml potato dextrose broth inoculated with mycelial fragments from PDA (Potato Dextrose Agar) cultures. Cultures are incubated on an orbital shaker at 28° C. for 7-11 days. Alternatively, mycelia are isolated directly from a PDA plate. Mycelia are pelleted by centrifugation and then ground in liquid nitrogen, and total genomic DNA is extracted using the protocol of Lee and Taylor (1990; In:


PCR Protocols: A Guide to Methods and Applications


; Eds.: Innes et al; pages 282-287).












TABLE 1











Source of Test Isolates














Isolate




Organism




Source




Origin









44235






Rhizoctonia cerealis






ATCC


1






Germany






AGDC57






Rhizoctonia cerealis






M. Cubeta


2






Japan






CAGBN1






Rhizoctonia cerealis






M. Cubeta


2






Georgia, USA






AGDC73






Rhizoctonia cerealis






M. Cubeta


2






Japan






52182






Rhizoctonia cerealis






ATCC


1






Ohio, USA






Bn505






Rhizoctonia cerealis






L. Burpee


3






Georgia, USA






R88/303






Rhizoctonia cerealis






S. Edwards


4






Cambridge,









UK






52184






Rhizoctonia cerealis






ATCC


1






Ohio, USA






62063






Rhizoctonia cerealis






ATCC


1






Japan






52183






Rhizoctonia cerealis






ATCC


1






Ohio, USA






44234






Rhizoctonia cerealis






ATCC


1






Netherlands






24425






Septoria nodorum






ATCC


1






Montana






308






Pseudocercosporella






Novartis


5
















herpotrichoides


-R type






5391






Fusarium culmorum






P. Nelson


6






Germany






36885






Fusarium graminearum






ATCC


1






Finland






520






Microdochium nivale






Novartis


5




















Rhizoctonia solani






Novartis


7






Florida, USA






44643






Pseudocercosporella






ATCC


1






Germany









herpotrichoides


-W type






26517






Septoria tritici






ATCC


1






Minnesota






6715






Pyrenophora tritici-repentis






ATCC


1













11404






Drechslera sorokiniana






ATCC


1






Minnesota






60531






Cladosporium herbarum






ATCC


1






New Zealand






52476






Cercospora arachidicola






ATCC


1






Oklahoma






36570






Pyrenophora teres






ATCC


1






Denmark






18222






Microdochium nivale






ATCC


1






Scotland






wf-7-98






Rhizoctonia solani






Ocamb


8






Oregon, USA






wf-9a-98






Rhizoctonia solani






Ocamb


8






Oregon, USA






wf-9b-98






Rhizoctonia solani






Ocamb


8






Oregon, USA






wf-36a-98






Rhizoctonia solani






Ocamb


8






Oregon, USA






R-9367






Fusarium graminearum






P. Nelson


6






Iran






42040






Pseudocercosporella






ATCC


1
















herpotrichoides


-W type






R1






Pseudocercosporella






P. Nicholson


9






Belgium









herpotrichoides


-R type






62215






Fusarium culmorum






ATCC


1






Switzerland






93






Microdochium nivale






Novartis


5














var.


majus








R-9420






Fusarium graminearum






P. Nelson


6






Washington,









USA













1


American Type Culture Collection, Rockville, Maryland, USA












2


Dr. Marc Cubeta, North Carolina State University, Raleigh, North Carolina, USA












3


Dr. Lee Burpee, University of Georgia, Athens, Georgia, USA












4


Dr. Simon Edwards, Harper Adams Agricultural College, Newport, Shropshire, UK












5


Novartis Crop Protection AG, CH-4002 Basel, Switzerland












6


Dr. Paul Nelson, Penn State University, Pennsylvania, USA












7


Novartis, Vero Beach, Florida, USA












8


Dr. Cynthia Ocambi, Oregon State University, Corvallis, Oregon, USA












9


Dr. Paul Nicholson, John Innes Centre, Norwich, UK













Example 2




Isolation of the Internal Transcribed Spacer (ITS) Regions




Approximately 700-bp long internal transcribed spacer region fragments are PCR amplified from 10 ng of genomic DNA isolated from selected fungal isolates listed in Table 1 using 50 pmol of primers ITS 1 (5′-tccgtaggtgaacctgcgg-3′; SEQ ID NO: 1) and ITS4 (5′-tcctccgcttattgatatgc-3′; SEQ ID NO:4). PCRs are performed as described in Example 4. PCR products are cloned using the Invitrogen Corporation's (San Diego, Calif.) TA Cloning Kit (part no. K2000-01) using the PCR2.1 cloning vector. The DNA sequences of the ITS regions are determined by the dideoxy method using the Applied Biosystems (Foster City, Calif.) automated sequencer with the primers ITS1 (SEQ ID NO:1), ITS4 (SEQ ID NO:4), the M13 universal-20 (5′-gtaaaacgacggccagt-3′; SEQ ID NO:5) and Reverse (5′-aacagctatgaccatg-3′; SEQ ID NO:6) primers. The ITS primers ITS1 and ITS4 are detailed in White et al. (1990; In: PCR Protocols; Eds.: Innes et al. pages 315-322).




Example 3




DNA Extraction from Wheat




DNA is extracted from wheat using a bulk maceration method. The bulk maceration method is used to isolate DNA from several naturally infected wheat stems from the field to optimize the field sampling method for high throughput analysis.




Bulk Maceration Method:




(1) Place the appropriate number of 4 cm wheat stem sections cut from the main tiller directly above the basal culm in a Bioreba (Reinach, Switzerland) heavy duty plastic bag (cat#490100). Weigh the plant tissue, plastic bag with stem sections minus the tare (weight of the plastic bag).




(2) Add an equal volume (ml) of Muller Extraction Buffer (0.1% w/v Tween-80; 0.04 M Tris-Cl, pH 7.7; 0.15 M NaCl; 0.1% w/v BSA-Pentex fraction V; 0.01% w/v sodium azide; 200 mM EDTA) per weight (g) of wheat tissue. Macerate the tissue using a Bioreba Homex 6 homogenizer set at 70. Grind the leaves until the tissue is fibrous.




(3) Pool the extracts from multiple bags, if used, and vortex well. Aliquote the extraction juice into eppendorf tubes on ice.




(a) Boil 100 μl of the concentrated extract for 5 minutes.




(b) Place the boiled extract on ice.




(c) Make a 1:10 dilution by adding 10 μl from the boiled, concentrated extract to 90 μl of sterile dH


2


O.




(d) Store the diluted extracts on ice until ready to use.




Example 4




Polymerase Chain Reaction Amplification




Polymerase chain reactions are performed with the GeneAmp Kit from Perkin-Elmer/Cetus (Norwalk, Conn.; part no. N


808-0009


) using 50 mM KCl, 2.5 mM MgCl


2


, 10 mM Tris-HCl, pH8.3, containing 200 μM of each dTTP, dATP, dCTP, and dGTP, 50 pmol each primer, 2.5 units of Taq polymerase and 10 ng of genomic DNA or 1 μl of 1:10 diluted plant extract in a final volume of 50 μl. Reactions are run for 30-40 cycles of 15 s at 94° C., 15 s at 50° C.-70° C., and 45 s at 72° C. in a Perkin-Elmer/Cetus Model 9600 or Model 9700 thermal cycler. The products are analyzed by loading 10 μl of each PCR sample on a 1.0% agarose gel and electrophoresing.




Example 5




Synthesis and Purification of Oligonucleotides




Oligonucleotides (primers) are synthesized by, for example, either Integrated DNA Technologies (Coralville, Iowa) or Midland Certified Reagent Company (Midland, Tex.).




Example 6




Selection of Species-Specific Primers




The ITS region from


R. cerealis


isolate 44234 is aligned with the ITS regions from


S. nodorum, P. herpotrichoides


R-type,


P. tritici-repentis, F. culmorum, M. nivale


and


S. tritici


. Oligonucleotide primers such as those shown below in Table 2 are synthesized according to Example 5 based on analysis of the aligned sequences. Primers are designed to the regions that contain the greatest differences in sequence among the fungal species. An additional alignment is made with the ITS regions from the following


R. cerealis


isolates: 44235, AGDC57, CAGBN1, AGDC73, 52182, Bn505, R88/303 and 52184. Primers are also designed to regions highly conserved among the


R. cerealis


isolates. In addition, the published ribosomal gene-specific primers ITS1, ITS2, ITS3 and ITS4 (White et al., 1990; In: PCR Protocols; Eds.: Innes et al. pages 315-322) are synthesized for testing in combination with the primers specific for the ITS regions.












TABLE 2











Primers Designed for Fungal Detection













Primer Template




Primer




Primer Sequence









18S rDNA




ITS1




5′-tccgtaggtgaacctgcgg-3′ (SEQ ID NO:1)






5.8S rDNA




ITS2




5′-gctgcgttcttcatcgatgc-3′ (SEQ ID NO:2)






5.8S rDNA




ITS3




5′-gcatcgatgaagaacgcagc-3′ (SEQ ID NO:3)






25S rDNA




ITS4




5′-tcctccgcttattgatatgc-3′ (SEQ ID NO:4)








R. cerealis






JB643




5′-gcgagagagaggctggct-3′ (SEQ ID NO:7)








R. cerealis






JB644




5′-ctcgcgagagagaggctggct-3′ (SEQ ID NO:8)








R. cerealis






JB645




5′-gagatcagatcataaagtgtg-3′ (SEQ ID NO:9)








R. cerealis






JB646




5′-gagatcagatcataaagtgtgtttg-3′ (SEQ ID NO:10)








R. cerealis






JB647




5′-ctgtgcaactgtttagacggtcg-3′ (SEQ ID NO:11)








R. cerealis






JB648




5′-tgcaactgtttagacggtcg-3′ (SEQ ID NO:12)








R. cerealis






JB649




5′-accgttagaagcggttcgtccat-3′ (SEQ ID NO:13)








R. cerealis






JB650




5′-gttagaagcggttcgtccat-3′ (SEQ ID NO:14)








R. cerealis






JB687




5′-tgcacctgtttagacggttg-3′ (SEQ ID NO:15)








R. cerealis






JB688




5′-tgtgcacctgtttagacggt-3′ (SEQ ID NO:16)














Example 7




Determination of Primer Specificity to Purified Fungal Genomic DNA




PCRs are performed according to Example 4 using different primer combinations (Table 3) in an attempt to amplify a single specific fragment. Specific PCR amplification products are produced from primers designed from the ITS regions between the small and large ribosomal DNA subunits of each fungal strain of interest.












TABLE 3











ITS-Derived Diagnostic PCR Primers

















Approximate size






Primer Specificity




5′ Primer




3′ Primer




of amplified fragment











R. cerealis






JB648 (SEQ ID NO:12)




JB645 (SEQ ID NO:9)




523 bp








R. cerealis






ITS1 (SEQ ID NO:1)




JB646 (SEQ ID NO:10)




637 bp








R. cerealis






ITS1 (SEQ ID NO:1)




JB645 (SEQ ID NO:9)




637 bp








R. cerealis






ITS1 (SEQ ID NO:1)




JB650 (SEQ ID NO:14)




596 bp








R. cerealis






JB648 (SEQ ID NO:12)




ITS4 (SEQ ID NO:4)




573 bp








R. cerealis






JB643 (SEQ ID NO:7)




JB645 (SEQ ID NO:9)




485 bp








R. cerealis






JB687 (SEQ ID NO:15)




JB645 (SEQ ID NO:9)




523 bp








R. cerealis






JB688 (SEQ ID NO:16)




JB645 (SEQ ID NO:9)




525 bp








R. cerealis






JB687 (SEQ ID NO:15)




ITS4 (SEQ ID NO:4)




573 bp








R. cerealis






JB688 (SEQ ID NO:16)




ITS4 (SEQ ID NO:4)




575 bp








R. cerealis






JB687 (SEQ ID NO:15)




JB646 (SEQ ID NO:10)




523 bp








R. cerealis






JB688 (SEQ ID NO:16)




JB646 (SEQ ID NO:10)




525 bp














Example 8




Determination of Primer Specificity to Plant Tissue Infected with Fungi and Cross-Reactivity with Other Cereal Fungal Pathogens




Total genomic DNA is isolated as described in Example 3 from healthy wheat stems and from wheat stems infected with


R. cerealis


. PCRs are performed as described in Example 4 testing primer combinations such as those listed in Table 3 against DNA from the wheat tissue. Purified fungal genomic DNAs are obtained as described in Example I and PCR assayed as described in Example 4 using the diagnostic primers. Other fungal DNA species and isolates are tested for the ability of the diagnostic primers to cross-react therewith.






R. cerealis


-specific primer combination JB648 (SEQ ID NO: 12) and JB645 (SEQ ID NO:9) amplify a 523 bp fragment from DNA from all of the


R. cerealis


isolates listed in Table 1 and from


R. cerealis


-infected wheat tissue. This primer combination does not amplify a diagnostic fragment from healthy wheat tissue. This primer combination also does not amplify a diagnostic fragment from purified genomic DNA isolated from the following common cereal pathogens:


P. herpotrichoides


R- and W-pathotypes,


D. sorokiniana, C. herbarum, S. tritici, C arachidicola, S. nodorum, R. solani, F. culmorum, F graminearunm, M nivale, P. tritici-repentis


and


P. teres


. Similar diagnostic results are obtained with the other


R. cerealis


-specific primer combinations listed in Table 3.




While the present invention has been described with reference to specific embodiments thereof, it will be appreciated that numerous variations, modifications, and further embodiments are possible, and accordingly, all such variations, modifications and embodiments are to be regarded as being within the scope of the present invention.







33




1


19


DNA


Artificial Sequence




Description of Artificial Sequence ITS1





1
tccgtaggtg aacctgcgg 19




2


20


DNA


Artificial Sequence




Description of Artificial Sequence ITS2





2
gctgcgttct tcatcgatgc 20




3


20


DNA


Artificial Sequence




Description of Artificial Sequence ITS3





3
gcatcgatga agaacgcagc 20




4


20


DNA


Artificial Sequence




Description of Artificial Sequence ITS4





4
tcctccgctt attgatatgc 20




5


17


DNA


Artificial Sequence




Description of Artificial Sequence M13
Universal 20 Primer






5
gtaaaacgac ggccagt 17




6


16


DNA


Artificial Sequence




Description of Artificial Sequence Reverse
Primer






6
aacagctatg accatg 16




7


18


DNA


Artificial Sequence




Description of Artificial Sequence JB643





7
gcgagagaga ggctggct 18




8


21


DNA


Artificial Sequence




Description of Artificial Sequence JB644





8
ctcgcgagag agaggctggc t 21




9


21


DNA


Artificial Sequence




Description of Artificial Sequence JB645





9
gagatcagat cataaagtgt g 21




10


25


DNA


Artificial Sequence




Description of Artificial Sequence JB646





10
gagatcagat cataaagtgt gtttg 25




11


23


DNA


Artificial Sequence




Description of Artificial Sequence JB647





11
ctgtgcaact gtttagacgg tcg 23




12


20


DNA


Artificial Sequence




Description of Artificial Sequence JB648





12
tgcaactgtt tagacggtcg 20




13


23


DNA


Artificial Sequence




Description of Artificial Sequence JB649





13
accgttagaa gcggttcgtc cat 23




14


20


DNA


Artificial Sequence




Description of Artificial Sequence JB650





14
gttagaagcg gttcgtccat 20




15


20


DNA


Artificial Sequence




Description of Artificial Sequence JB687





15
tgcacctgtt tagacggttg 20




16


20


DNA


Artificial Sequence




Description of Artificial Sequence JB688





16
tgtgcacctg tttagacggt 20




17


687


DNA


Rhizoctonia cerealis



17
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg ttgaaggaaa aagtctttct cgcgagagag agggccggct ccttttcccg 180
tccaatacat aaaatcttat atatttaatc agaatgtaat cgatgtaaac gcatctataa 240
actaagtttc aacaacggat ctcttggctc tcgcatcgat gaagaacgca gcgaaatgcg 300
ataagtaatg tgaattgcag aattcagtga atcatcgaat ctttgaacgc accttgcgct 360
ccttggtatt cctcggagca cgcctgtttg agtatcatga aattctcaaa gcaagtcttt 420
tgttaattca actggctttt gttttggatt tggaggtttt gcagattcac gtctgctcct 480
cttaaatgca ttagctggat ctctataaaa ccggttccac tcggcgtgat aagtatcact 540
cgctgaggac actcttgaaa aagggtggcc ggattcatgg atgaaccgct tctaacggtc 600
tattagatta gacaaacaca ctttatgatc tgatctcaaa tcaggtggga ctacccgctg 660
aacttaagca tatcaataag cggagga 687




18


686


DNA


Rhizoctonia cerealis



18
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg ttgaaggaaa aagtctttct cgcgagagag aggccggctc cttttcccgt 180
ccaatacata aaatcttata tatttaatca gaatgtaatc gatgtaaacg catctataaa 240
ctaagtttca acaacggatc tcttggctct cgcatcgatg aagaacgcag cgaaatgcga 300
taagtaatgt gaattgcaga attcagtgaa tcatcgaatc tttgaacgca ccttgcgctc 360
cttggtattc ctcggagcac gcctgtttga gtatcatgaa attctcaaag caagtctttt 420
gttaattcaa ctggcttttg ttttggattt ggaggttttg cagattcacg tctgctcctc 480
ttaaatgcat tagctggatc tctataaaac cggttccact cggcgtgata agtatcactc 540
gctgaggaca ctcttgaaaa agggtggccg gattcatgga tgaaccgctt ctaacggtct 600
attagattag acaaacacac tttatgatct gatctcaaat caggtgggac tacccgctga 660
acttaagcat atcaataagc ggagga 686




19


687


DNA


Rhizoctonia cerealis



19
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg ttgaaggaaa aagtctttct cgcgagagag agggccggct ccttttcccg 180
tccaatacat aaaatcttat atatttaatc agaatgtaat cgatgtaaac gcatctataa 240
actaagtttc aacaacggat ctcttggctc tcgcatcgat gaagaacgca gcgaaatgcg 300
ataagtaatg tgaattgcag aattcagtga atcatcgaat ctttgaacgc accttgcgct 360
ccttggtatt cctcggagca cgcctgtttg agtatcatga aattctcaaa gcaagtcttt 420
tgttgattca actggctttt gttttggatt tggaggtttt gcagattcac gtctgctcct 480
cttaaatgca ttagctggat ctctataaaa ccggttccac tcggcgtgat aagtatcact 540
cgctgaggac actcttgaaa aagggtggcc ggattcatgg atgaaccgct tctaacggtc 600
tattagatta gacaaacaca ctttatgatc tgatctcaaa tcaggtggga ctacccgctg 660
aacttaagca tatcaataag cggagga 687




20


685


DNA


Rhizoctonia cerealis



20
tccgtaggtg aacctgcgga aggatcatta atgaatgaat gtagagtcgg ttgtagctgg 60
gtcttttaat cgaggccatg tgcacacctt ctctttcatc cactcacacc tgtgcacctg 120
tttagacggt tgaaggaaaa agtctttctc gcgagagaga ggccggctcc ttttcccgtc 180
caatacataa aatcttatat atttaatcag aatgtaatcg atgtaaacgc atctataaac 240
taagtttcaa caacggatct cttggctctc gcatcgatga agaacgcagc gaaatgcgat 300
aagtaatgtg aattgcagaa ttcagtgaat catcgaatct ttgaacgcac cttgcgctcc 360
ttggtattcc tcggagcacg cctgtttgag tatcatgaaa ttctcaaagc aagtcttttg 420
ttaattcaac tggcttttgt tttggatttg gaggttttgc agattcacgt ctgctcctct 480
taaatgcatt agctggatct ctataaaacc ggttccactc ggcgtgataa gtatcactcg 540
ctgaggacac tcttgaaaaa gggtggccgg attcatggat gaaccgcttc taacggtcta 600
ttagattaga caaacacact ttatgatctg atctcaaatc aggtgggact acccgctgaa 660
cttaagcata tcaataagcg gagga 685




21


687


DNA


Rhizoctonia cerealis



21
tcctccgctt attgatatgc ttaagttcag cgggtagtcc cacctgattt gagatcagat 60
cataaagtgt gtttgtctaa tctaatagac cgttagaagc ggttcgtcca tgaatccggc 120
cacccttttg caagagtgtc ctcagcgagt gatacttatc acgccgagtg gaaccggttt 180
tatagagatc cagctaatgc atttaagagg agcagacgtg aatctgcaag acctccaaat 240
ccaaagcaaa agccagttga attaacaaaa gacttgcttt gagaatttca tgatactcaa 300
acaggcgtgc tccgaggaat accaaggagc gcaaggtgcg ttcaaagatt cgatgattca 360
ctgaattctg caattcacat tacttatcgc atttcgctgc gttcttcatc gatgcgagag 420
ccaagagatc cgttgttgaa acttagttta tagatgcgtt tacatcgatt acattctgat 480
taaatatata agattttatg tattggacgg gaaaaggagc cggccctctc tctcgcgaga 540
aagacttttt ccttcaaccg tctaaacagg tgcacaggtg tgagtggatg aaagagaagg 600
tgtgcacatg gcctcgatta aaagacccag ctacaaccga ctctacattc atttcattaa 660
tgatccttcc gcaggttcac ctacgga 687




22


686


DNA


Rhizoctonia cerealis



22
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg ttgaaggaaa aagtctttct cgcgagagag agggccggct ccttttcccg 180
tccaatacat aaaatcttat atatttaatc agaatgtaat cgatgtaaac gcatctataa 240
actaagtttc aacaacggat ctcttggctc tcgcatcgat gaagaacgca gcgaaatgcg 300
ataagtaatg tgaattgcag aattcagtga atcatcgaat ctttgaacgc accttgcgct 360
ccttggtatt cctcggagca cacctgtttg agtatcatga aattctcaaa gcaagtcttt 420
tgttaattca actggctttt gttttggatt tggaggtttt gcagattcac gtctgctcct 480
cttaaatgca ttagctggat ctctataaaa ccggttccac tcggcgtgat aagtatcact 540
cgccgaggac actcttgaaa aagggtggcc ggattcatgg atgaaccgct tctaacggtc 600
tattagatta gacaaacaca ctttatgatc tgatctcaaa tcaggtggga ctacccgctg 660
aacttaagca ttcaataagc ggagga 686




23


687


DNA


Rhizoctonia cerealis



23
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg ttgaaggaaa aagtctttct cgcgagagag agggccggct ccttttcccg 180
tccaatacat aaaatcttat atatttaatc agaatgtaat cgatgtaaac gcatctataa 240
actaagtttc aacaacggat ctcttggctc tcgcatcgat gaagaacgca gcgaaatgcg 300
ataagtaatg tgaattgcag aattcagtga atcatcgaat ctttgaacgc accttgcgct 360
ccttggtatt cctcggagca cacctgtttg agtatcatga aattctcaaa gcaagtcttt 420
tgttaattca actggctttt gttttggatt tggaggtctt gcagattcac gtctgctcct 480
cttaaatgca ttagctggat ctctataaaa ccggttccac tcggcgtgat aagtatcact 540
cgccgaggac actcttgcaa aagggtggcc ggattcatgg acgaaccgct tctaacggtc 600
tattagatta gacaaacaca ctttatgatc tgatctcaaa tcaggtggga ctacccgctg 660
aacttaagca tatcaataag cggagga 687




24


684


DNA


Rhizoctonia cerealis



24
tccgtaggtg aacctgcgga aggatcatta atgaatgaat gtagagtcgg ttgtagctgg 60
gtcttttaat cgaggccatg tgcacgcctt ctctttcatc cacacacacc tgtgcacctg 120
tttagacggt cgaaggaaaa agtctttctc gcgagagaga ggctggctcc ttttccgtcc 180
aatacataaa atcttatata tttaatcaga atgtaatcga tgtaaacgca tctataaact 240
aagtttcaac aacggatctc ttggctctcg catcgatgaa gaacgcagcg aaatgcgata 300
agtaatgtga attgcagaat tcagtgaatc atcgaatctt tgaacgcacc ttgcgctcct 360
tggtattcct cggagcacgc ctgtttgagt atcatgaaat tctcaaagca agtcttttgt 420
taattcaact ggcttttgtt ttggatttgg aggtcttgca gattcacgtc tgctcctctt 480
aaatgcatta gctggatctc tataaaatcg gttccactcg gcgtgataag tatcactcgc 540
tgaggacact cttgcaaaag ggtggccgga ttcatggacg aaccgcttct aacggtctat 600
tagattagac aaacacactt tatgatctga tctcaaatca ggtgggacta cccgctgaac 660
ttaagcatat caataagcgg agga 684




25


686


DNA


Rhizoctonia cerealis



25
tccgtaggtg aacctgcgga aggatcatta atgaaatgaa tgtagagtcg gttgtagctg 60
ggtcttttga tcgaggccat gtgcacacct tctctttcat ccactcacac ctgtgcacct 120
gtttagacgg tcgaaggaaa aagtctttct cgcgagagag aggccggctc cttttcccgt 180
ccaatacata aaatcttata tatttaatca gaatgtaatc gatgtaaacg catctataaa 240
ctaagtttca acaacggatc tcttggctct cgcatcgatg aagaacgcag cgaaatgcga 300
taagtaatgt gaattgcaga attcagtgaa tcatcgaatc tttgaacgca ccttgcgctc 360
cttggtattc ctcggagcac gcctgtttga gtatcatgaa attctcaaag caagtctttt 420
gttaattcaa ctggcttttg ttttggattt ggaggttttg cagattcacg tctgctcctc 480
ttaaatgcat tagctggatc tctataaaac cggttccact cggcgtgata agtatcactc 540
gctgaggaca ctcttgaaaa agggtggccg gattcatgga tgaaccgctt ctaacggtct 600
attagattag acaaacacac tttatgatct gatctcaaat caggtgggac tacccgctga 660
acttaagcat atcaataagc ggagga 686




26


686


DNA


Rhizoctonia cerealis



26
tccgtaggtg aacctgcgga aggatcatta atgaatgaat gtagagatcg gttgtagctg 60
ggtcttttaa tcgaggccat gtgcacgcct tctctttcat ccacacacac ctgtgcacct 120
gtttagacgg tcgaaggaaa aagtctatct cgagagagag aggccggctc cttttccgtc 180
caatacataa aatccttata tatttaatca gaatgtaatc gatgtaaacg catctataaa 240
ctaagtttca acaacggatc tcttggctct cgcatcgatg aagaacgcag cgaaatgcga 300
taagtaatgt gaattgcaga attcagtgaa tcatcgaatc tttgaacgca ccttgcgctc 360
cttggtattc ctcggagcac gcctgtttga gtatcatgaa attctcaaag caagtctttt 420
gttaattcaa ctggcttttg ctttggattt ggaggtcttg cagattcacg tctgctcctc 480
ttaaatgcat tagctggatc tctataaaac cggttccact cggcgtgata agtatcactc 540
gctgaggaca ctcttgcaaa agggtggccg gattcatgga cgaaccgctt ctaacggtct 600
attagattag acaaacacac tttatgatct gatctcaaat caggtgggac tacccgctga 660
acttaagcat atcaataagc ggagga 686




27


685


DNA


Rhizoctonia cerealis



27
tccgtaggtg aacctgcgga agatcattaa tgaaatgaat gtagagtcgg ttgtagctgg 60
gtcttttaat cgaggccatg tgcacacctt ctctttcatc cactcacacc tgtgcacctg 120
tttagacggt tgaaggaaaa agtctttctc gcgagagaga ggccggctcc ttttcccgtc 180
caatacataa aatcttatat atttaatcag aatgtaatcg atgtaaacgc atctataaac 240
taagtttcaa caacggatct cttggctctc gcatcgatga agaacgcagc gaaatgcgat 300
aagtaatgtg aattgcagaa ttcagtgaat catcgaatct ttgaacgcac cttgcgctcc 360
ttggtattcc tcggagcacg cctgtttgag tatcatgaaa ttctcaaagc aagtcttttg 420
ttaattcaac tggcttttgt tttggatttg gaggttttgc agattcacgt ctgctcctct 480
taaatgcatt agctggatct ctataaaacc ggttccactc ggcgtgataa gtatcactcg 540
ctgaggacac tcttgaaaaa gggtggccgg attcatggat gaaccgcttc taacggtcta 600
ttagattaga caaacacact ttatgatctg acctcaaatc aggtgggact acccgctgaa 660
cttaagcata tcaataagcg gagga 685




28


627


DNA


Pseudocercosporella herpotrichoides



28
tccgtaggtg aacctgcgga aggatcatta atagagcaat ggatagacag cgccccggga 60
gaaatcctgg gggccaccct acttcggtaa ggtttagagt cgtcgggcct ctcggagaag 120
cctggtccag acctccaccc ttgaataaat tacctttgtt gctttggcag ggcgcctcgc 180
gccagcggct tcggctgttg agtacctgcc agaggaccac aactcttgtt tttagtgatg 240
tctgagtact atataatagt taaaactttc aacaacggat ctcttggttc tggcatcgat 300
gaagaacgca gcgaaatgcg ataagtaatg tgaattgcag aattcagtga atcatcgaat 360
ctttgaacgc acattgcgcc ctctggtatt ccggggggca tgcctgttcg agcgtcatta 420
taaccactca agctctcgct tggtattggg gttcgcgtct tcgcggcctc taaaatcagt 480
ggcggtgcct gtcggctcta cgcgtagtaa tactcctcgc gattgagtcc ggtaggttta 540
cttgccagca acccccaatt ttttacaggt tgacctcgga tcaggtaggg atacccgctg 600
aacttaagca tatcaataag cggagga 627




29


583


DNA


Septoria nodorum



29
tccgtaggtg aacctgcgga aggatcatta cactcagtag tttactactg taaaaggggc 60
tgttagtctg tatagcgcaa gctgatgagc agctggcctc ttttatccac ccttgtcttt 120
tgcgtaccca cgtttcctcg gcaggcttgc ctgccggttg gacaaattta taaccttttt 180
aattttcaat cagcgtctga aaaacttaat aattacaact ttcaacaacg gatctcttgg 240
ttctggcatc gatgaagaac gcagcgaaat gcgataagta gtgtgaattg cagaattcag 300
tgaatcatcg aatctttgaa cgcacattgc gccccttggt attccatggg gcatgcctgt 360
tcgagcgtca tttgtaccct caagctctgc ttggtgttgg gtgtttgtcc tctccctagt 420
gtttggactc gccttaaaat aattggcagc cagtgttttg gtattgaagc gcagcacaag 480
tcgcgattcg taacaaacac ttgcgtccac aagccttttt aacttttgac ctcggatcag 540
gtagggatac ccgctgaact taagcatatc aataagcgga gga 583




30


548


DNA


Septoria tritici



30
tccgtaggtg aacctgcgga gggatcatta ccgagcgagg gcctccgggt ccgacctcca 60
accctttgtg aacacatccc gttgcttcgg gggcgaccct gccgggcgcc cccggaggac 120
caccaaaaaa cactgcatct ctgcgtcgga gtttacgagt aaatcgaaac aaaactttca 180
acaacggatc tcttggttct ggcatcgatg aagaacgcag cgaaatgcga taagtaatgt 240
gaattgcaga attcagtgaa tcatcgaatc tttgaacgca cattgcgccc cctggtattc 300
cggggggcat gcccgttcga gcgtcattac accactccag cctcgctggg tattgggcgt 360
cttttcgcgg gggatcactc ccccgcgcgc ctcaaagtct ccggctgagc ggtctcgtct 420
cccagcgttg tggcatcacg tctcgccgcg gagttcacga gccctcacgg ccgttaaatc 480
acacctcagg ttgacctcgg atcgggtagg gatacccgct gaacttaagc atatcaataa 540
gcggagga 548




31


579


DNA


Pyrenophora tritici-repentis



31
tccgtaggtg aacctgcgga gggatcatta cacaaatatg aagccggact gggatagggc 60
ctcgctgcct tgcccgtctg gcgccatatt cacccatgtc tttttgcgta ctacttgttt 120
ccttggcggg tccgcccgcc aattggacct tattcaaacc tttttttcag ttgcaatcag 180
cgtcagcaaa acaaatgtaa tcaattacaa ctttcaacaa cggatctctt ggttctggca 240
tcgatgaaga acgcagcgaa atgcgataag tagtgtgaat tgcagaattc agtgaatcat 300
cgaatctttg aacgcacatt gcgccctttg gtattccaaa gggcatgcct gttcgagcgt 360
catttgtacc ctcaagcttt gcttggtgtt gggcgtcttg tctctctccc gagactcgcc 420
ttaaaatcat tggcagccgg cctactggtt tcggagcgca gcacattatt tgcgctcttg 480
tccagccgcg gtcgcgcgtc catgaagctt ctttcaacct tttgacctcg gatcaggtag 540
ggatacccgc tgaacttaag catatcaata agcggagga 579




32


504


DNA


Fusarium culmorum



32
tgcggaggga tcattaccga gtttacaact cccaaacccc tgtgaacata ccttatgttg 60
cctcggcgga tcagcccgcg ccccgtaaaa agggacggcc cgccgcagga accttaaact 120
ctgtttttag tggaacttct gagtataaaa aacaaataaa tcaawacttt caacaacgga 180
tctcttggtt ctggcatcga tgaagaacgc agcaaaatgc gataagtaat gtgaattgca 240
gaattcagtg aatcatcgaa tctttgaacg cacattgcgc ccgccagtat tctggcgggc 300
atgcctgttc gagcgtcatt tcaaccctca agcccagctt ggtgttggga gctgcagtcc 360
tgctgcactc cccaaataca ttggcggtca cgtcgagctt ccatarcgta gtaatttaca 420
tatcgttact ggtaatcgtc gcggccacgc cgttaaaccc caacttctga atgttgacct 480
cggatcaggt aggaataccc gctg 504




33


526


DNA


Microdochium nivale



33
ggtgaacctg cggagggatc atwactgagt ttwtaactct ccaaaccatg tgaacttacc 60
actgttgcct cggtggatgg tgytgtctct cgggacggtg ccacckcsgg tggacwacct 120
aaactctgtt aatttttgtc aatctgaatc aaactaagma ataagtrarr actwtcwacw 180
acggatctct tggttctggc atcgatgaag aacgcakcga aatgcgataa gtaatgtgaa 240
tygyagaatt cagtgaatca tcgaatcttt gaacgcacat tgcgcccaty agtattctag 300
tgggcatrcc tgttcgagcg tcatttcaac ccttaagcct agcttagtgt tggragactg 360
cctaatacgc agctcctcaa aaccagtggc ggagtcggtt cgtkctctga gcgtagtaat 420
tttttatctc gcttctgcaa gccggactgs caacagccat aaaccgcacc cttcsggggc 480
actttttaat ggttgacctc ggatcaggta ggaatacccg ctgaac 526






Claims
  • 1. An isolated DNA molecule comprising an Internal Transcribed Spacer sequence selected from the group consisting of:(a) ITS1 of Rhizoctonia cerealis, wherein ITS1 of Rhizoctonia cerealis comprises nucleotides 31-243 of SEQ ID NO:17, nucleotides 31-242 of SEQ ID NO:18, nucleotides 31-243 of SEQ ID NO:19, nucleotides 31-241 of SEQ ID NO:20, nucleotides 31-243 of SEQ ID NO:21, nucleotides 31-243 of SEQ ID NO:22, nucleotides 31-180 of SEQ ID NO:23, nucleotides 31-240 of SEQ ID NO:24, nucleotides 31-242 of SEQ ID NO:25, or nucleotides 31-242 of SEQ ID NO:26; and (b) ITS2 of Rhizoctonia cerealis, wherein ITS2 of Rhizoctonia cerealis comprises nucleotides 397-630 of SEQ ID NO:21, nucleotides 397-630 of SEQ ID NO:22, nucleotides 397-630 of SEQ ID NO:23, nucleotides 394-627 of SEQ ID NO:24, or nucleotides 396-629 of SEQ ID NO:26.
  • 2. An oligonucleotide primer selected from the group consisting of SEQ ID NO's:7-16.
  • 3. A pair of oligonucleotide primers, wherein at least one of said primers is the oligonucleotide primer of claim 2.
  • 4. A pair of oligonucleotide primers according to claim 3, wherein said pair is selected from the following primer pairs:SEQ ID NO:12 and SEQ ID NO:9, SEQ ID NO:1 and SEQ ID NO:10, SEQ ID NO:1 and SEQ ID NO:9, SEQ ID NO:1 and SEQ ID NO:14, SEQ ID NO:12 and SEQ ID NO:4, SEQ ID NO:7 and SEQ ID NO:9, SEQ ID NO:15 and SEQ ID NO:9, SEQ ID NO:16 and SEQ ID NO:9, SEQ ID NO:15 and SEQ ID NO:4, SEQ ID NO:16 and SEQ ID NO:4, SEQ ID NO:15 and SEQ ID NO:10, and SEQ ID NO:16 and SEQ ID NO:10.
  • 5. A pair of oligonucleotide primers according to claim 4, wherein said pair of primers is SEQ ID NO:12 and SEQ ID NO:9.
  • 6. A method for the detection of a fungal pathogen, comprising the steps of:(a) isolating DNA from a plant leaf infected with a pathogen; (b) subjecting said DNA to polymerase chain reaction amplification using at least one primer according to claim 2; and (c) detecting said fungal pathogen by visualizing the product or products of said polymerase chain reaction amplification.
  • 7. The method of claim 6, wherein said fungal pathogen is Rhizoctonia cerealis.
  • 8. A method for the detection of a fungal pathogen, comprising the steps of:(a) isolating DNA from a plant leaf infected with a pathogen; (b) amplifying a part of the Internal Transcribed Spacer sequence of said pathogen using said DNA as a template in a polymerase chain reaction with a pair of primers according to claim 3; and (c) detecting said fungal pathogen by visualizing the amplified part of the Internal Transcribed Spacer sequence.
  • 9. The method of claim 8, wherein said fungal pathogen is Rhizoctonia cerealis.
  • 10. A method for the detection of Rhizoctonia cerealis, comprising the steps of:(a) isolating DNA from a plant leaf infected with Rhizoctonia cerealis; (b) amplifying a part of the Internal Transcribed Spacer sequence of Rhizoctonia cerealis using said DNA as a template in a polymerase chain reaction with a pair of primers according to claim 4; and (c) detecting Rhizoctonia cerealis by visualizing the amplified part of the Internal Transcribed Spacer sequence.
  • 11. The method of claim 10, wherein said pair of primers is SEQ ID NO:12 and SEQ ID NO:9.
  • 12. A diagnostic kit used in detecting a fungal pathogen, comprising the primer of claim 2.
  • 13. A diagnostic kit used in detecting a fungal pathogen, comprising the pair of primers of claim 3.
  • 14. A diagnostic kit used in detecting a fugal pathogen, comprising the pair of primers of claim 4.
  • 15. A diagnostic kit used in detecting a fungal pathogen, comprising the pair of primers of claim 5.
US Referenced Citations (1)
Number Name Date Kind
5585238 Ligon et al. Dec 1996 A
Foreign Referenced Citations (2)
Number Date Country
0955381 Nov 1999 EP
WO 9942609 Aug 1999 WO
Non-Patent Literature Citations (15)
Entry
Mazzola Et al., “Virulence of Rhizoctonia oryzae and R. solani AG-8 on Wheat and Detection of r. oryzae in plant tissue by PCR,” Phytopathology 86:354-360 (1996).
Turner et al., “Visual disease and PCT assessment of stem base diseases in winter wheat,” Plant Pathology 48:742-748 (1999).
Database EMBL online! Accession No. AF063019, Travanty et al., “Application of nuclear rDNA sequences for detection of fungal pathogens of turfgrass,” (XP-002167321) May 18, 1999.
Database EMBL Online! Accession No. TCAB3, Kuninaga S., “Rhizoctonia solani genes for 18S rDNA”, (XP-002167322) Dec. 28, 1996.
Database EMBL Online! Accession No. TCAB19, Kuninaga S., “Rhizoctonia solani genes for 18S rDNA”, (XP-002167323) Dec. 28, 1996.
Database EMBL Online! Accession No. TCAB21, Kuninaga S., “Rhizoctonia solani genes for 18S rDNA”, (XP-002167324), Dec. 28, 1996.
Database EMBL Online! Accession No. TCAB22, Kuninaga S., “Rhizoctonia solani genes for 18S rDNA”, (XP-002167325), Dec. 28, 1996).
Database EMBL Online! Accession No. TCU7742, Salazar et al., “Thanatephorus cucumeris 23R03 ITS1 and ITS2” (XP-002167326) Mar. 6, 1997.
Database EMBL Online! Accession No. TCAJ202, Johanson A., “Thanatephorus cucumeris 5.8S rRNA gene and internal transcribed spacers 1 and 2”, (SP-002167327) Jul. 25, 1997.
Nazar et al, Physiological and Molecular Plant Pathology, vol. 39, pp. 1-11, Oct. 1991.*
Accession No. AF063019, May 1998.*
Bardsley, E.S. et al., “The use of a polymerase chain reaction diagnostic test to detect and estimate the severity of stem base diseases in winter wheat,” The 1998 Brighton Conference—Pests & Diseases, 9D-10: pp. 1041-1046 (1998).
Nicholson, P. and Parry, D.W., “Development and use of a PCR assay to detect Rhizoctonia cerealis, the cause of sharp eyespot in wheat,” Plant Pathology, 45: pp. 872-883 (1996).
White, T.J. et al., “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics,” PCR Protocols: A Guide to Methods and Applications: pp. 315-322 (1990).
Travanty, E.A. et al., Genbank Accession No. AF063019 (1998).