PCR METHOD AND KIT FOR DETERMINING PATHWAY ACTIVITY

Information

  • Patent Application
  • 20230416820
  • Publication Number
    20230416820
  • Date Filed
    August 25, 2021
    3 years ago
  • Date Published
    December 28, 2023
    11 months ago
Abstract
The present invention relates to assemblies of primers and probes for determining the cellular signalling pathway of the AR pathway and optionally the activities of the pathways ER, PI3K-FOXO, MAPK-AP1, Notch, HH, TGFbeta, JAK-STAT1/2 and NFkB. Kit or use of the set of 3 or more primers and probes to determine the expression levels of 3 or more genes of the AR cellular signalling pathway and optionally from a cellular signalling pathway selected from the ER, PI3K-FOXO, MAPK-AP1, Notch, HH, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2 and JAK-STAT3 pathways wherein the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1, POLR2A, PUM1, RPLPO, TBP, TPT1 and TUBA1B may also be determined.
Description
FIELD OF THE INVENTION

The subject matter described herein relates to cellular signaling pathway analysis based on gene expression data. More specifically the subject matter relates to primers, probes and kits which are tailored for establishing the gene expression levels in a sample for the purpose of determining cellular signaling pathway activity. The subject further relates to PCR based methods to determine the expression levels of target genes which can be used for this purpose.


BACKGROUND OF THE INVENTION

Determining the activity of cellular signaling pathways in a sample is an emerging technology with many applications in diagnosis and prognostics, as well as biotechnological applications. It was found by the inventors that using a mathematical model, the cellular signaling pathway activity can be determined based on the expression levels of target genes of the cellular signaling pathway, as e.g. described in WO2013011479A2, WO2014102668A2, WO2015101635A1, WO2016062891A1, WO2017029215A1, WO2019068585A1, WO2019068562A1, WO2019068543A1 and WO2019120658A1 (each incorporated in its entirety by reference).


For many applications it would be desirable to determine the pathway activities of multiple cellular signaling pathways simultaneously. This means that many expression levels need to be determined in a sample at the same time. Namely, for each pathway preferably at least three target genes as well as at least three reference genes for normalization purposes. This simultaneous determination of expression levels could for example by done using Affymetrix Microarray technology, however this technology has the disadvantage that it is time consuming, expensive and cannot be performed in every lab due to the required equipment and specialized personnel.


The present invention aims, among other, to solve the above problems by the methods and products as defined in the appended claims.


SUMMARY OF THE INVENTION

In an aspect, the invention relates to an assembly of primers and probe for determining the activity of the AR cellular signaling pathway, and optionally one or more additional cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the AR cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 2 of the description,

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


In an aspect the invention relates to a kit of parts for determining the expression levels for a plurality of genes, the kit comprising primers and probes for the amplification and detection of the expression levels of the plurality of genes, wherein the kit comprises an assembly of primers and probes as defined in the first aspect of the invention, wherein the kit further comprises primers and probes for the amplification and detection of three or more of the reference genes selected from ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, preferably wherein said three or more sets of primers and probes are selected from Table 8 of the description, and wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


In an aspect the invention relates to the use of the assembly of primers and probes as defined in first aspect or the kit as defined in the second aspect of the invention for determining the AR cellular signaling pathway activity, and optionally the cellular signaling pathway activity of one or more cellular signaling pathways selected from the group consisting of: HH, ER, TGFbeta, PI3K-FOXO, Notch, MAPK-AP1, JAK-STAT1/2 and NFkB.


In an aspect the invention relates to the use of a set of three or more primers and probes to determine the expression levels of three or more target genes of a cellular signaling pathway, wherein the set of primers and probe combinations are as defined in the first aspect of the invention, and

    • wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB_2, SGK1, and TMPRSS2;
    • wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;
    • the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;
    • wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;
    • wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;
    • wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;
    • wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;
    • wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;
    • wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;
    • wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;
    • wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;
    • wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1.


In an aspect the invention relates to a method for designing primers and probes for the detection of the expression levels of target genes of a cellular signaling pathway suitable for determining the activity of the AR cellular signaling pathway and optionally one or more additional cellular signaling pathways, the method comprising:

    • designing for a target gene of the AR cellular signaling pathway and optionally one or more additional cellular signaling pathway a forward primer and a reverse primer such that:
    • the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;
    • the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;
    • the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;
    • wherein the amplification product, when using the forward and reverse primers in a PCR amplification reaction, has a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning;
    • designing the probe such that:
    • the probe used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:
    • the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;
    • the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;
    • the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;
    • the binding part of the probe does not have a G at the 5′ part.


In a sixth aspect the invention relates to a method of determining the AR cellular signaling pathway activity and optionally one or more additional cellular signaling pathway activity or activities, by simultaneously determining the expression level of six or more genes in a sample, the method comprising simultaneously amplifying six or more gene products using a polymerase chain reaction to generate a plurality of amplification products, followed by the detection of the plurality of amplification products using a plurality of probes,

    • wherein the polymerase chain reaction uses, for each amplification product, a forward and a reverse primer which have the following characteristics:
    • the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;
    • the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;
    • the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;
    • wherein the amplification products have a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning,
    • wherein each of the probes used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:
    • the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;
    • the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;
    • the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;
    • the binding part of the probe does not have a G at the 5′ part, wherein the expression levels are used in a method for determining the AR cellular signaling pathway and optionally one or more cellular signaling pathway activities selected from the group consisting of: WNT, HH, ER, PR, PR, TGFbeta, NFkB, STAT1/2, STAT3, PI3K-FOXO, Notch, MAPK-AP1, and
    • wherein the primers and probes amplify and detect of the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, and
    • wherein the primers and probes further amplify and detect the expression levels of three or more target genes for the AR cellular signaling pathway and optionally one or more cellular signaling pathways selected from the group consisting of: ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2, JAK-STAT3,
    • wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB_2, SGK1, and TMPRSS2;
    • wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;
    • the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;
    • wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of: BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;
    • wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of: CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;
    • wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of: CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;
    • wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of: ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;
    • wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of: CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;
    • wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;
    • wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of: BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;
    • wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of: APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;
    • wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of: AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1, wherein the primers and probes are able to amplify and detect the respective genes under the following reaction conditions:
    • 50 mM monovalent salt;
    • 400 nM forward primer
    • 400 nM reverse primer
    • 3.0 mM divalent salt, preferably the divalent salt being Mg2+;
    • 100 nM probe; and
    • 0.8 mM dNTP.


DETAILED DESCRIPTION OF THE INVENTION

An alternative to e.g. a microarray based technology would be to use PCR based technology like qPCR, however the problem with such technology is that the used primers and probes often require different conditions for optimal performance, meaning many different reactions need to be performed. The present invention aims to overcome the above problems, among others, by narrowly defining the reaction conditions combined with the selection criteria for the primers and probes, and further by providing sets of primers and probes suitable for the designed reaction conditions which can be used to determine the expression levels of the different target genes which can be used to determining cellular signaling pathway activity. This allows the primers and probes to be used under the same reaction conditions (e.g. in the same multi-well plate or even as a multiplex).


Therefore, in a first aspect the present invention relates to a method for simultaneously determining the expression level of six or more genes in a sample, the method comprising simultaneously amplifying six or more gene products using a polymerase chain reaction to generate a plurality of amplification products, followed by the detection of the plurality of amplification products using a plurality of probes,

    • wherein the polymerase chain reaction uses, for each amplification product, a forward and a reverse primer which have the following characteristics:
    • the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;
    • the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;
    • the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;
    • wherein the amplification products have a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning,
    • wherein each of the probes used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:
    • the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;
    • the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;
    • the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;
    • the binding part of the probe does not have a G at the 5′ part,
    • wherein the expression levels are suitable for use in a method for determining one or more cellular signaling pathway activities selected from the group consisting of: WNT, HH, AR, ER, PR, PR, TGFbeta, NFkB, STAT1/2, STAT3, PI3K-FOXO, Notch, MAPK-AP1, and
    • wherein the primers and probes amplify and detect of the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, and
    • wherein the primers and probes further amplify and detect the expression levels of three or more target genes for one or more cellular signaling pathways selected from the group consisting of: AR, ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2, JAK-STAT3,
    • wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;
    • the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB_2, SGK1, and TMPRSS2;
    • the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;
    • wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of: BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;
    • wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of: CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;
    • wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of: CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;
    • wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of: ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;
    • wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of: CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;
    • wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;
    • wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of: BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;
    • wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of: APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;
    • wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of: AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1.


One of the advantages of the above method is that it allows the detection of target genes for multiple cellular signaling pathways, and can be performed in a single reaction. This allows the very quick (e.g. within 2-3 hours) detection of expression levels in target genes and subsequent determination of cellular signaling pathway activities. This is very advantageous, for example in critical care, where cellular signaling pathway analysis may be used for quick diagnosis of a patient. In such cases it is essential that the method can be performed fast and without specialized equipment or personnel, as is the case with the disclosed method. The present method allows the detection of the expression levels of target genes in a sample for multiple cellular signaling pathways in a single reaction.


A further advantage of the method as disclosed herein is that it allows reliable determination of expression levels even in samples in which this is typically difficult to do so such as Formalin-Fixed Paraffin-Embedded (FFPE) tissue.


The present method requires a simple qPCR device to run, preferably a thermal cycler with fluorescence readout such as, but not limited to, the Idylla platform. For example a premade plate or container can be used comprising the required reagents and primers and probes, on which the sample is deposited. The PCR protocol does not need to be amended depending on the pathway(s) that are to be analyzed as it is standardized. During amplification cycling, probe intensity can be measured and pathway activity can be determined following conclusion of the protocol, based on the determined expression levels of the target genes. This final step uses a mathematical method to relate the input numerical values representing the expression levels of three or more target genes to a pathway activity. This step is almost instantaneously and can either be performed locally e.g. on a computer or a phone or on a remote server.


Although the method describes target genes for each cellular signaling pathway, it is envisioned that due to the selection criteria for the primers and probes, the method can be applied to alternative target genes for the mentioned cellular signaling pathways that are not listed here. Alternatively, the expression levels of the target genes for cellular signaling pathways not listed herein may be determined using primers and probes constructed using the above criteria combined with the above method.


PCR reactions are typically performed in a 96 well format, however it will be obvious to the skilled artisan that the method is not limited to this format. It is envisioned that the method may also be performed for example, but not limited to, in a single reaction tube (e.g. when multiplexing), “PCR strips” such as 8 well strips or 12 well strips, 384 well plates or 1536 well plates, or any other format, depending on the available volume of sample and the amount of target genes that need to be analyzed.


The method of the invention determines the expression level of six or more genes in a sample, as it is envisioned that preferably for each pathway the expression level of at least three target genes is analyzed, combined with the expression level of at least three reference genes. It is therefore understood that for each additional pathway that is to be analyzed (i.e. for which the activity is to be determined) the expression levels of an additional three or more target genes should be determined in the method. Therefore in order to determine the activity of a single cellular signaling pathway, the expression levels of at least six target genes should be determined, in order to determine the activity of two cellular signaling pathways, the expression levels of at least nine target genes should be determined, in order to determine the activity of three cellular signaling pathways, the expression levels of at least twelve target genes should be determined, etcetera. The method of the invention may be used to determine the activity of one or more, e.g. one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen or more activities of cellular signaling pathways.


For each cellular signaling pathway individually, the expression levels of three or more target genes are to be determined in the method of the invention, e.g. the expression levels of three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen or more target genes. Similarly, the expression levels of three or more reference genes are to be determined in the method of the invention, e.g. the expression levels of three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen or more reference genes.


When used herein, “simultaneously determining the expression levels” should be interpreted as in a single PCR run, meaning the genes may be amplified and detected in individual wells or containers in the PCR device (e.g. in the separate wells of a 96 well plate, or in separate reaction tubes) or they may also be pooled and amplified in a single reaction (multiplexed), or partially pooled.


The term “sample” as used herein refers to any medium containing nucleotides, preferably RNA, such as but not limited to a medium containing cells, tissue, body fluids, culture medium, or any medium derive from these after further processing steps such as lysis, fixation or isolation of nucleotides, preferably RNA.


It is understood that in order to amplify RNA using PCR technology, first a reverse transcriptase step must be performed. In such a step a reverse transcriptase enzyme is used to generate a complementary DNA form an RNA template. The reverse transcriptase enzyme typically employs a primer sequence which is reverse complementary to a part of the RNA. Generally oligo dT primers may be used for such reaction, or target specific primers. For the method disclosed herein, preferably the reverse primers are used both for the reverse transcriptase reaction and the amplification reaction.


Amplification using DNA primers (polymerase chain reaction) is a technology well known to the skilled person. PCR methods rely on thermal cycling. Thermal cycling exposes reactants to repeated cycles of heating and cooling to permit different temperature dependent reactions, such as DNA melting and enzyme driven DNA replication. PCR employs two main reagents, the forward and reverse primers, which are short single strand DNA fragments known as oligonucleotides that are a complementary sequence to the target DNA region, and a DNA polymerase.


In method disclosed herein the primers and probes amplify and detect of the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, and wherein the primers and probes further amplify and detect the expression levels of three or more target genes for one or more cellular signaling pathways selected from the group consisting of: AR, ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2 and JAK-STAT3. Therefore the method may include primers and probes for the amplification and detection of three or more target genes for one, two, three, four, five, six seven, eight, nine, ten, eleven, twelve or more cellular signaling pathways. In a preferred embodiment the one or more, e.g. one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or more, cellular signaling pathways comprise one or more, e.g. one, two, three, four, five, six or seven, cellular signaling pathways selected from the group consisting of the AR, ER, PI3K-FOXO, MAPK-AP1, HH, Notch and TGFbeta cellular signaling pathways. In a more preferred embodiment the one or more, e.g. one, two, three, four, five, six seven, eight, nine, ten, eleven, twelve or more, cellular signaling pathways comprise one or more, e.g. one, two, three or four, cellular signaling pathways selected from the group consisting of the AR, ER, PI3K-FOXO and MAPK-AP1 cellular signaling pathways, and may optionally further comprise one or more, e.g. one two or three cellular signaling pathway selected from the group consisting of HH, Notch and TGFbeta.


In a further preferred embodiment the one or more, e.g. one, two, three, four, five six or seven or more cellular signaling pathways are selected from JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR. In a further preferred embodiment the one or more, e.g. one, two, three, four, five six, seven, eight, nine, ten, eleven or twelve or more cellular signaling pathway comprise one or more, e.g. one, two, three, four, five six or seven or more cellular signaling pathways selected from JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR. These embodiments are particularly useful as the JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR pathways all play a role in immunity, thus a product allowing to determine part or all of these seven signaling pathway activities is a useful tool in e.g. diagnostics of immune related diseases and disorders, such as infection, autoimmune diseases, but also cancer.


Suitable probes types for qPCR are known to the skilled person. For example, the probes may be fluorophore based, such as TaqMan probes. Fluorophore based probes generally work by including a quencher. TaqMan probes consist of a fluorophore covalently attached to the 5′-end of the oligonucleotide probe and a quencher at the 3′-end. The principle relies on the 5′-3′ exonuclease activity of Taq polymerase to cleave a dual-labeled probe during hybridization to the complementary target sequence and fluorophore-based detection. When bound to the probe the fluorophore is quenched, but once cleaved from the probe the distance with the quencher is increased resulting in fluorescence of the fluorophore when excited at the right wavelength.


In a preferred embodiment of the method of the first aspect of the invention, the primers and probes are able to amplify and detect the respective genes under the following reaction conditions:

    • 50 mM monovalent salt;
    • 400 nM forward primer
    • 400 nM reverse primer
    • 3.0 mM divalent salt, preferably the divalent salt being Mg2+;
    • 100 nM probe; and
    • 0.8 mM dNTP.


Therefore, the primers and probes are preferably able to detect the expression level of a single target gen in a medium comprising 50 mM monovalent salt, 3.0 mM divalent salt, preferably the divalent salt being Mg2+ and 0.8 mM dNTP, when the primers are present in a concentration of 400 nM for each forward and reverse primer, and wherein the probe is present in a concentration of 100 nM. It is understood that the primers and probes may work outside these parameters, but that the parameters for designing the primers and probe combinations are designed are such that they are suitable for these reaction conditions.


Preferably the divalent salt is MgSO4 or MgCl2.


In further preferred embodiment of the method of the first aspect of the invention, the primers and probes are able to amplify and detect the respective genes under the following reaction conditions:

    • a RT reaction at 500 Celsius for 30 minutes in order to synthesize cDNA, followed by a 5 minute denaturation step at 950 Celsius, followed by 45 cycli of a 15 second denaturation step at 950 Celsius and a 30 second Elongation step at 60° Celsius.


In an embodiment of the method of the first aspect of the invention, the method is used to determine one or more cellular signaling pathway activity or activities. Preferably the one or more cellular signaling Pathway activities are selected from the group consisting of AR, ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2 and JAK-STAT3, even more preferably from the group consisting of AR, ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, JAK-STAT1/2 and NFkB. An especially advantageous aspect of the invention is the ability to determine multiple pathway activities in a sample in a single reaction, therefore preferably two or more, e.g. three, four, five, six or seven or more cellular signaling pathway activities are determined using the method of the invention. Particularly preferred is using the method to determining four or more cellular signaling pathway activities, wherein the four or more cellular signaling pathway activities comprise the ER, AR, PI3K-FOXO and AP1-MAPK cellular signaling pathways. Further particularly preferred is using the method to determining seven or more cellular signaling pathway activities, wherein the seven or more cellular signaling pathway activities comprise the ER, AR, PI3K-FOXO, AP1-MAPK, Notch, HH and TGFbeta cellular signaling pathways.


In a further preferred embodiment the one or more, e.g. one, two, three, four, five six or seven or more cellular signaling pathways are selected from JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR. In a further preferred embodiment the one or more, e.g. one, two, three, four, five six, seven, eight, nine, ten, eleven or twelve or more cellular signaling pathway comprise one or more, e.g. one, two, three, four, five six or seven or more cellular signaling pathways selected from JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR. These embodiments are particularly useful as the JAK-STAT1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch and AR pathways all play a role in immunity, thus a product allowing to determine part or all of these seven signaling pathway activities is a useful tool in e.g. diagnostics of immune related diseases and disorders, such as infection, autoimmune diseases, but also cancer.


It is considered that there are multiple practical applications where the determination of multiple cellular signaling pathway activities may be extremely useful. Although determining pathway activity has been described in the literature by alternative means, known methods are generally not very quantitative and/or easy and/or fast to perform. It is therefore postulated that the presently described solution wherein in a single qPCR reaction multiple cellular signaling pathways activities can be inferred offers extremely useful applications in research and diagnostics, as often multiple cellular signaling pathways are relevant for e.g. making a clinical decision based on pathway activities in a patient sample. The invention provides an easy to perform assay where a quantitative assessment of the activities of e.g. 7 cellular signaling pathways can be determined on a difficult to process sample such as FFPE (Formalin-fixed paraffin embedded) tissue in a matter of 2-3 hours in a single reaction.


When used herein, the terms AP1-MAPK, MAPK-AP1 and MAPK are used interchangeably and refer to the MAPK signaling pathway controlled by the AP1 transcription factor complex. When used herein the terms PI3K-FOXO, FOXO-PI3K and PI3K are used interchangeably and refer to the PI3K signaling pathway, which activity may be determined by taking the inverse of the determined by FOXO pathway activity. When used herein, the terms HH and Hedgehog are used interchangeably and refer to the Hedgehog cellular signaling pathway.


In a preferred embodiment the primers and probes for the ER, AR, PI3K-FOXO, AP1-MAPK, Notch, HH, TGFbeta, JAK-STAT1/2 and NFkB cellular signaling pathways and the reference genes are selected from Tables 1 to 8 and 10 and 11 as described herein below.


In a second aspect the invention relates to an assembly of primers and probe for determining the activity of the ER cellular signaling pathway, wherein the assembly of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the ER cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 1 below, wherein each primer and/or probe individually is identical to the corresponding sequence in Table 1 or differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are selected from a single base substitution, a single base deletion or a single base addition.


Tables 1 to 8, 10 and 11 disclose different sets of primers and probes for the different target genes of the referred cellular signaling pathways. The lists are sorted per gene, each gene may have multiple sets of primers and probes, each set of primers and probes consisting of a forward primer, a reverse primer and a probe. Each set is indicated as an “assay”, therefore when used herein, a set of primers and probe refers to a forward primer, a reverse primer and a probe with the same assay name as indicated in one of tables 1 to 8, 10 and 11. The primers and probes are indicated with their respective SEQ ID NO and name (assay), the name being generated according to the following format: [GENE NAME]_[NUMBER], wherein primers and probe with the same name (thus same gene name and number) are part of a single set.


Therefore, the invention further relates to an assembly of primers and probes for determining the activity of the ER cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the ER cellular signaling pathway, wherein said sets of primers and probes are selected from Table 1 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


When used herein, a set of primers and probe refers to set consisting of a forward primer and a reverse primer for amplifying a genomic sequence and a probe for detecting the genomic sequence, where the genomic sequence is a target gene suited for determining the activity of a cellular signaling pathway. The forward and reverse primer and corresponding probe belonging to a single “set” are defined in the “assays” listed in Tables 1 to 8, and thus the primers and probe have an identical assay name when belonging to the same “set”.


When used herein, an assembly of primers and probes refers to multiple (e.g. at least two) sets of primers and probes as defined herein.


In a third aspect the invention further relates to an assembly of primers and probes for determining the activity of the AR cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the AR cellular signaling pathway, wherein said sets of primers and probes are selected from Table 2 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a fourth aspect the invention further relates to an assembly of primers and probes for determining the activity of the PI3K-FOXO cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the PI3K-FOXO cellular signaling pathway, wherein said sets of primers and probes are selected from Table 3 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a fifth aspect the invention further relates to an assembly of primers and probes for determining the activity of the AP1-MAPK cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the AP1-MAPK cellular signaling pathway, wherein said sets of primers and probes are selected from Table 4 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a sixth aspect the invention further relates to an assembly of primers and probes for determining the activity of the Notch cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the Notch cellular signaling pathway, wherein said sets of primers and probes are selected from Table 5 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a seventh aspect the invention further relates to an assembly of primers and probes for determining the activity of the HH cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the HH cellular signaling pathway, wherein said sets of primers and probes are selected from Table 6 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a eight aspect the invention further relates to an assembly of primers and probes for determining the activity of the TGFbeta cellular signaling pathway, wherein the set of primers and probes comprises at least three sets of primers or probes for determining the expression level of three or more target genes of the TGFbeta cellular signaling pathway, wherein said sets of primers and probes are selected from Table 7 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 8 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


In a ninth aspect the invention further relates to an assembly of primers and probes according to any one of the preceding claims further comprising primers and probes for determining the activity of the JAK-STAT1/2 cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the JAK-STAT1/2 cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 10 of the description,

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 10 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a tenth aspect the invention relates to an assembly of primers and probes according to any one of the preceding claims further comprising primers and probes for determining the activity of the NFkB cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the NFkB cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 11 of the description,

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the assembly further comprises three or more sets of primers and probes for determining the expression levels of three or more reference genes, wherein said sets of primers and probes are selected from Table 11 wherein the forward primer, the reverse primer and the probe have the same assay name; and

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


It is recognized that the PCR reaction is tolerant to a few, e.g. 1, 2 or 3, mismatches in the primer or probe sequences and still allows amplification and detection of the target gene expression level. Therefore, up to 3 mismatches may be allowed in the sequences of the primers and probes each. A mismatch or difference at a position of a sequence when used herein refers to a single base substitution, a single base deletion or a single base insertion with respect to the reference sequence (e.g. the respective SEQ ID NO). It is recognized that the PCR reaction is general more tolerant to a substitution as compared to a deletion or insertion in the primers or probes, therefore preferably the mismatch or difference at a position of a sequence is a single base substitution, although a deletion or insertion ay be desirable to account for genetic variation in the target DNA of the sample.


It is understood that avoiding mismatches is preferable for optimal amplification and detection of the target gene. Therefore preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 or 2 positions, more preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO or differs at 1 position, most preferably each primer and/or probe individually is identical to the corresponding SEQ ID NO.


The assembly may further comprise one or more, e.g. one, two, three, four, five, six, seven, eight or more, additional assemblies of primers and probes as defined herein.


In a particularly preferred embodiment, the invention relates to an assembly of primers and probe for determining the activity of the AR cellular signaling pathway, and optionally one or more additional cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the AR cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 2 of the description,

    • wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition,
    • wherein said invention further comprises one or more, such as one, two, three, four, five, six, seven or eight or more, additional assemblies as defined herein, e.g. an assembly of primers and probes for determining the ER, PI3K-FOXO, MAPK-AP1, Notch, HH, TGFbeta, JAK-STAT1/2 and/or NFkB pathway activity. However it is envisioned that other combinations of assemblies may also be made in accordance with the invention, e.g. combinations of assemblies not including an assembly of primers and probes for determining the AR pathway activity.


In an embodiment of the assembly according the second to the tenth aspect of the invention, all of the primers and probes in the three or more sets of primers and probes in the assembly are identical to the corresponding sequences according to Tables 1 to 7, 10 and 11 or the sequences represented by the indicated SEQ ID Nos.


In a eleventh aspect the invention relates to a kit of parts for determining the expression levels for a plurality of genes, the kit comprising primers and probes for the amplification and detection of the expression levels of the plurality of genes, wherein the kit comprises primers and probes are as defined in the first aspect of the invention or an assembly of primers and probes as defined in any one of the second to the tenth aspect of the invention, wherein the kit further comprises primers and probes for the amplification and detection of three or more of the reference genes selected from ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B. Preferably said three or more sets of primers and probes are selected from Table 8 of the description, and wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.


Preferably the kit is suitable for determining the activity of a cellular signaling pathway. Therefore the kit preferably comprises at least three sets of primers which are suitable for the amplification and detection of the expression levels of at least three target genes of a cellular signaling pathway as described in the first to the eight aspect of the invention. Preferably the cellular signaling pathway is selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, WNT, HH, PR, TGFbeta, NFkB, STAT1/2, STAT3, and Notch. More preferably the kit comprises three or more sets of primers and probes, e.g. three, four, five, six, seven, eight, nine, ten, eleven or twelve or more, as described herein each for the detection of one or more, e.g. one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve, pathway activities selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, WNT, HH, PR, TGFbeta, NFkB, STAT1/2, STAT3, and Notch, more preferably selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, Notch, HH and TGFbeta. Preferably said one or more, e.g. one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve, pathway activities selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, WNT, HH, PR, TGFbeta, NFkB, STAT1/2, STAT3, and Notch comprise one or more, e.g. one, two, three, four, five, six or seven, eight or nine pathways selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, Notch, HH, TGFbeta, JAK-STAT1/2 and NFkB. Preferably said one or more, e.g. one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve, pathway activities selected from the group consisting of ER, AR, PI3K-FOXO, MAPK-AP1, WNT, HH, PR, TGFbeta, NFkB, STAT1/2, STAT3, and Notch comprise one or more, e.g. one, two, three or four, pathways selected from the group consisting of ER, AR, PI3K-FOXO and MAPK-AP1, or comprises one or more, e.g. one, two, three, four, five, six or seven pathways selected from the groups consisting of ER, AR, PI3K-FOXO, MAPK-AP1, Notch, HH, TGFbeta, or comprises one or more, e.g. one, two, three, four, five, six or seven pathways selected from the groups consisting of JAK-STAT 1/2, NFkB, TGFbeta, PI3K-FOXO, MAPK-AP1, Notch en AR.


Optionally the primers and probes for the amplification and detection of the reference genes are selected from Table 8 below, although it is understood that other sets of primers and probes may be used, provided the primers and probes are suitable at the reaction conditions described herein above.


The kit may optionally further comprise one or more of a polymerase enzyme, a reverse transcriptase enzyme, a suitable buffer and a container for performing the PCR reaction. Suitable containers may be reaction tubes, PCR strips such as 8 well or 12 well strips or multiwell plates, also known as microwell plates, microtiter plates or microplates, such as 6, 12, 24, 48, 96, 384, or 1536 well plates, or any other container which can be used in a thermal cycler, preferably a thermal cycler with fluorescence readout capability.


In an twelfth aspect the invention relates to the use of the primers and probes as defined in the first aspect or the assembly of primers and probes as defined in the second to the tenth aspect or the kit as defined in eleventh aspect for determining the cellular signaling pathway activity for one or more cellular signaling pathways selected from the group consisting of: ER, AR, PI3K-FOXO, MAPK-AP1, WNT, HH, PR, TGFbeta, NFkB, STAT1/2, STAT3, and Notch.


In a thirteenth aspect the invention relates to the use of a set of three or more primers and probes to determine the expression levels of three or more target genes of a cellular signaling pathway, wherein the primers and probe combinations are as defined in the second to the eleventh aspect, and

    • wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB_2, SGK1, and TMPRSS2;
    • wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;
    • the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;
    • wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of: BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;
    • wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of: CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;
    • wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of: CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;
    • wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of: ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;
    • wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of: CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;
    • wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;
    • wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of: BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;
    • wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of: APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;
    • wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of: AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1.


In a fourteenth aspect the invention relates to a method for designing primers and probes for the detection of the expression levels of target genes of a cellular signaling pathway suitable for determining the activity of said cellular signaling pathway, said cellular pathway preferably being one or more, for example on, two, three, four, five six, seven, eight or nine, cellular signaling pathways selected from the groups consisting of ER, AR, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFBeta, JAK-STAT1/2 and NFkB, the method comprising:

    • designing for a target gene of a cellular signaling pathway a forward primer and a reverse primer such that:
    • the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;
    • the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;
    • the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;
    • wherein the amplification product, when using the forward and reverse primers in a PCR amplification reaction, has a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning;
    • designing the probe such that:
    • the probe used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:
    • the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;
    • the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;
    • the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;
    • the binding part of the probe does not have a G at the 5′ part.


Primers designed according t this method are useful as they can be used in an assay for determining one or more cellular signaling pathway activities. Preferably the primers and probes are able to detect the expression level of a target gene under the following reaction conditions:

    • 50 mM monovalent salt;
    • 400 nM forward primer
    • 400 nM reverse primer
    • 3.0 mM divalent salt, preferably the divalent salt being Mg2+;
    • 100 nM probe; and
    • 0.8 mM dNTP
    • Preferably the divalent salt is MgSO4 or MgCl2.


Preferably the primers and probes are able to amplify and detect the respective genes under the following reaction conditions:

    • a RT reaction at 500 Celsius for 30 minutes in order to synthesize cDNA, followed by a 5 minute denaturation step at 950 Celsius, followed by 44 cycli of a 15 second denaturation step at 950 Celsius and a 30 second Elongation step at 60° Celsius.


In a fifteenth embodiment the invention relates to a method of determining the a cellular signaling pathway activity selected from ER, AR, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFBeta, JAK-STAT1/2 and NFkB and optionally one or more additional cellular signaling pathway activity or activities, preferably said one or more additional cellular signaling pathway activities are also selected from ER, AR, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFBeta, JAK-STAT1/2 and NFkB, by simultaneously determining the expression level of six or more genes in a sample, the method comprising simultaneously amplifying six or more gene products using a polymerase chain reaction to generate a plurality of amplification products, followed by the detection of the plurality of amplification products using a plurality of probes,

    • wherein the polymerase chain reaction uses, for each amplification product, a forward and a reverse primer which have the following characteristics:
    • the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;
    • the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;
    • the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;
    • wherein the amplification products have a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning,
    • wherein each of the probes used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:
    • the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;
    • the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;
    • the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;
    • the binding part of the probe does not have a G at the 5′ part,
    • wherein the expression levels are used in a method for determining the AR cellular signaling pathway and optionally one or more cellular signaling pathway activities selected from the group consisting of: WNT, HH, ER, PR, PR, TGFbeta, NFkB, STAT1/2, STAT3, PI3K-FOXO, Notch, MAPK-AP1, and
    • wherein the primers and probes amplify and detect of the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, and
    • wherein the primers and probes further amplify and detect the expression levels of three or more target genes for the AR cellular signaling pathway and optionally one or more cellular signaling pathways selected from the group consisting of: ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2, JAK-STAT3,
    • wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB_2, SGK1, and TMPRSS2;
    • wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;
    • the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;
    • wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;
    • wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;
    • wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;
    • wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;
    • wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;
    • wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;
    • wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;
    • wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;
    • wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1, wherein the primers and probes are able to amplify and detect the respective genes under the following reaction conditions:
    • 50 mM monovalent salt;
    • 400 nM forward primer
    • 400 nM reverse primer
    • 3.0 mM divalent salt, preferably the divalent salt being Mg2+;
    • 100 nM probe; and
    • 0.8 mM dNTP.


This application describes several preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the application is construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.


Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.


It shall be understood that the assemblies of primers and probes, the kit, the different uses, the method for designing primers and probes, and the method for determining AR activity have similar and/or identical preferred embodiments, in particular, as defined in the dependent claims.


In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality.


A single unit or device may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.


It shall be understood that a preferred embodiment of the present invention can also be any combination of the dependent claims or above embodiments with the respective independent claim.


These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts probe fluorescence of the ABCC4_2 assay (top panel) using different concentrations of target RNA. The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 2 depicts probe fluorescence of the ABCC4_2 assay (top panel) using different amounts of starting material (cell line derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 3 depicts probe fluorescence of the ABCC4_2 assay (top panel) using different amounts of starting material (PPFE sample derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units over time (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 4 depicts probe fluorescence of the GREB1_2 assay (top panel) using different concentrations of target RNA. The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 5 depicts probe fluorescence of the GREB1_2 assay (top panel) using different amounts of starting material (cell line derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 6 depicts probe fluorescence of the GREB1_2 assay (top panel) using different amounts of starting material (PPFE sample derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units over time (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 7 depicts probe fluorescence of the GADD45A_2 assay (top panel) using different concentrations of target RNA. The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 8 depicts probe fluorescence of the GADD45A_2 assay (top panel) using different amounts of starting material (cell line derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units overtime (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.



FIG. 9 depicts probe fluorescence of the GADD45A_2 assay (top panel) using different amounts of starting material (PPFE sample derived RNA). The vertical axis depicts relative fluorescence units (RFU), the horizontal axis depicts the cycle number of the qPCR protocol. The bottom panel depicts the melting curves for the same conditions. The vertical axis depicts the change of relative fluorescence units over time (−d(RFU)/dT), the horizontal axis depicts the temperature in degrees Celsius.





EXAMPLES
Example 1 Design of Forward and Reverse Primers and Probes

Primers and probes for target genes of the following cellular signaling pathways were designed as described herein:

    • ER, AR, PI3K-FOXO, AP1-MAPK, Notch, HH and TGFbeta.


The designed primers and probes are listed below in Tables 1 to 7. Further, the same principle was used to design primers and probes to detect the expression levels of several reference genes, which are listed below in Table 8. All primers and probes were validated using the following conditions:


Medium Conditions





    • 50 mM monovalent salt;

    • 400 nM forward primer

    • 400 nM reverse primer

    • 3.0 mM MgCl2;

    • 100 nM probe; and

    • 0.8 mM dNTP





Reaction Reaction Conditions:





    • a RT reaction at 500 Celsius for 30 minutes (using the reverse primer) in order to synthesize cDNA, followed by a 5 minute denaturation step at 950 Celsius, followed by 45 cycli of a 15 second denaturation step at 95° Celsius and a 30 second Elongation step at 60° Celsius.





All sets of primers and probes were found to amplify and detect the expression levels of the desired target genes at the indicated reaction conditions.


Example 2—Validation of Primers and Probes

All primers and probes were validated under the following conditions:


A RT reaction at 50° Celsius for 30 minutes (using the reverse primer) in order to synthesize cDNA, followed by a 5 minute denaturation step at 95° Celsius, followed by 45 cycli of a 15 second denaturation step at 95° Celsius and a 30 second Elongation step at 60° Celsius, the reaction was performed on a qPCR device with fluorescence readout.


Melt curves were determined in the range of 60° C. to 95° C.


Example 3—Representative Examples of Primer/Probe Pairs

Some exemplary data sets for validated genes are provided below, although it is noted that all genes described below were validated.


Additional information is provided for the following assays: ABCC4_2, GREB1_2 and GADD45A_2, which comprise primers and probes for the amplification and detection of the respective genes ABCC4, GREB1 and GADD45A. Assay ABCC4_2 results in an amplification product of 82 nucleotides spanning an 11594 nucleotide intron. Assay GREB1_2 results in an amplification product of 105 nucleotides spanning an 9696 nucleotide intron. Assay GADD45A_2 results in an amplification product of 82 nucleotides spanning an 1037 nucleotide intron.


Some general information on the assays is listed in Table 9 below.


In order to validate the assays, they are tested on a Bio-Rad CFX96 Touch Real-Time PCR Detection System. The assays were tested on in vitro RNA, cell culture isolate RNA and RNA isolated from a formalin fixed paraffin embedded (FFPE) sample, to test their suitability. For all tests the probes were tested on decreasing amounts of material (RNA) in order to test their efficiency.


Real-time probe fluorescence curves were generated for all tests performed, as well temperature melt curves over a range of 60 to 95 degrees Celsius. These data are depicting in FIGS. 1 to 9 for the three exemplary genes ABCC4, GREB1 and GADD45A. In each figure, the top panel depicts the probe fluoresce intensity and the bottom panel the melt curves.


Most probes and conditions resulted in a probe efficiency of over 90%, indicating the probes are suitable for quantitative measurements of target gene expression levels.









TABLE 1







Sets of primers and probes for determining the ER cellular signaling pathway


activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence















1
ER
AP1B1
AP1B1_1
Forward primer
AGGCTGTGCGTGCTATT





2
ER
AP1B1
AP1B1_1
Probe
CCATCAAGGTGGAGCAATCTGCGG





3
ER
AP1B1
AP1B1_1
Reverse primer
TTGACCTTGGTCTGGATGAG





4
ER
AP1B1
AP1B1_2
Forward primer
CATCAAGGTGGAGCAATCTG





5
ER
AP1B1
AP1B1_2
Probe
TGCTCGACCTCATCCAGACCAAGG





6
ER
AP1B1
AP1B1_2
Reverse Primer
CTCCTGGACCACATAGTTGA





7
ER
AP1B1
AP1B1_3
Forward Primer
GTGTTGGCAGAGCTGAAAG





8
ER
AP1B1
AP1B1_3
Probe
ACTTTGTACGGAAGGCTGTGCGTG





9
ER
AP1B1
AP1B1_3
Reverse Primer
CAGATTGCTCCACCTTGATG





10
ER
CA12
CA12_1
Forward Primer
GCATTCTTGGCATCTGTATT





11
ER
CA12
CA12_1
Probe
TGGTGGTGGTGTCCATTTGGCTTT





12
ER
CA12
CA12_1
Reverse Primer
GTGGCTGGCTTGTAAATG





13
ER
CA12
CA12_2
Probe
TGGTGGTGGTGTCCATTTGGCTTT





14
ER
CA12
CA12_2
Forward Primer
GGCATTCTTGGCATCTGTATT





15
ER
CA12
CA12_2
Reverse Primer
GCTTGTAAATGACTCCCTTGTT





16
ER
CA12
CA12_3
Forward Primer
TATTGTGGTGGTGGTGTC





17
ER
CA12
CA12_3
Probe
AAGGGAGTCATTTACAAGCCAGCCAC





18
ER
CA12
CA12_3
Reverse Primer
GCCTCAGTCTCCATCTTG





19
ER
CA12
CA12_4
Forward Primer
TGGCATTCTTGGCATCT





20
ER
CA12
CA12_4
Probe
TGGTGGTGGTGTCCATTTGGCTTT





21
ER
CA12
CA12_4
Reverse Primer
GACTCCCTTGTTATCACCTT





22
ER
CDH26
CDH26_1
Forward Primer
CACAATGCACAGACAACTC





23
ER
CDH26
CDH26_1
Probe
TGCCAATGTGCTGGAAGATGACCC





24
ER
CDH26
CDH26_1
Reverse Primer
TGTAGACGTGAGGTAGGT





25
ER
CDH26
CDH26_2
Forward Primer
CTTACCCAGATGCCACAA





26
ER
CDH26
CDH26_2
Probe
CGGTGGAAGGAAGGATGGCAGAGA





27
ER
CDH26
CDH26_2
Reverse Primer
GGTCATCTTCCAGCACAT





28
ER
CDH26
CDH26_3
Forward Primer
GGATGGCAGAGACATTGA





29
ER
CDH26
CDH26_3
Probe
TGCCAATGTGCTGGAAGATGACCC





30
ER
CDH26
CDH26_3
Reverse Primer
CCTTCCTCGCTGTAGAC





31
ER
CELSR2
CELSR2_1
Forward Primer
TGCTCTGACCACCAAGT





32
ER
CELSR2
CELSR2_1
Probe
ACCCTGACCTCGTCCTACAACTGC





33
ER
CELSR2
CELSR2_1
Reverse Primer
TCTCCGTAGGGCTGGTA





34
ER
CELSR2
CELSR2_2
Reverse primer
TCCGTAGGGCTGGTACA





35
ER
CELSR2
CELSR2_2
Forward primer
GGTCCGGAAAGCACTCAA





36
ER
CELSR2
CELSR2_2
Probe
TCCTACAACTGCCCCAGCCCCTA





37
ER
CELSR2
CELSR2_3
Forward Primer
CCTGACCCTGCTCTGAC





38
ER
CELSR2
CELSR2_3
Probe
ACCCTGACCTCGTCCTACAACTGC





39
ER
CELSR2
CELSR2_3
Reverse Primer
GTACAGCCGCCCATCTG





40
ER
CELSR2
CELSR2_4
Forward Primer
TCTGACCACCAAGTCCAC





41
ER
CELSR2
CELSR2_4
Probe
CCTGACCTCGTCCTACAACTGCCC





42
ER
CELSR2
CELSR2_4
Reverse Primer
TGGTGCTGTGCAGAGAG





43
ER
CTSD
CTSD_1
Forward Primer
CCTCGTTTGACATCCACTA





44
ER
CTSD
CTSD_1
Probe
ACACAGTGTCCTGGCTCAGGTACC





45
ER
CTSD
CTSD_1
Reverse Primer
TGCCTCTCCACTTTGAC





46
ER
CTSD
CTSD_2
Forward Primer
GGTACCTCGTTTGACATCC





47
ER
CTSD
CTSD_2
Probe
ACACAGTGTCCTGGCTCAGGTACC





48
ER
CTSD
CTSD_2
Reverse Primer
AAAGACCTGCCTCTCCA





49
ER
CTSD
CTSD_3
PCR primer
GTACCTCGTTTGACATCCACTAT






fwd






50
ER
CTSD
CTSD_3
probe
CGTCGTCAGCCTCTGCCCTG





51
ER
CTSD
CTSD_3
PCR primer
ACCTGCCTCTCCACTTTGAC






rev






52
ER
CTSD
CTSD_4
Probe
ACACTGTGTCGGTGCCCTGCCAG





53
ER
CTSD
CTSD_4
Reverse primer
AAGACCTGCCTCTCCACTTT





54
ER
CTSD
CTSD_4
Forward primer
GAATGGTACCTCGTTTGACATCC





55
ER
ERBB2
ERBB2_1
Forward Primer
GTCACCTACAACACAGACA





56
ER
ERBB2
ERBB2_1
Probe
CGTTTGAGTCCATGCCCAATCCCG





57
ER
ERBB2
ERBB2_1
Reverse Primer
CACGTCCGTAGAAAGGTAG





58
ER
ERBB2
ERBB2_2
Forward Primer
TGAGTCCATGCCCAATC





59
ER
ERBB2
ERBB2_2
Probe
ACACAGCTGGCGCCGAATGTATAC





60
ER
ERBB2
ERBB2_2
Reverse Primer
GTCCGTAGAAAGGTAGTTGT





61
ER
ERBB2
ERBB2_3
Forward primer
CGAGGGCCGGTATACATT





62
ER
ERBB2
ERBB2_3
Reverse primer
CACGTCCGTAGAAAGGTAGTT





63
ER
ERBB2
ERBB2_3
Probe
AGCTGTGTGACTGCCTGTCCCTA





64
ER
ERBB2
ERBB2_4
Forward Primer
GAGGGCCGGTATACATTC





65
ER
ERBB2
ERBB2_4
Probe
TTTCTACGGACGTGGGATCCTGCA





66
ER
ERBB2
ERBB2_4
Reverse Primer
CTGTCACCTCTTGGTTGT





67
ER
ESR1
ESR1_1
Forward Primer
CTTCGATGATGGGCTTACT





68
ER
ESR1
ESR1_1
Probe
CATGTGAACCAGCTCCCTGTCTGC





69
ER
ESR1
ESR1_1
Reverse Primer
GGAGGGTCAAATCCACAA





70
ER
ESR1
ESR1_2
Probe
CAACTGGGCGAAGAGGGTGCCA





71
ER
ESR1
ESR1_2
Forward primer
AGCTTCGATGATGGGCTTAC





72
ER
ESR1
ESR1_2
Reverse primer
CCTGATCATGGAGGGTCAAA





73
ER
ESR1
ESR1_3
Forward Primer
GGAGCTGGTTCACATGAT





74
ER
ESR1
ESR1_3
Probe
AGGGTCAAATCCACAAAGCCTGGC





75
ER
ESR1
ESR1_3
Reverse Primer
CTAGCCAGGCACATTCTA





76
ER
ESR1
ESR1_4
Forward Primer
GATGGGCTTACTGACCAA





77
ER
ESR1
ESR1_4
Probe
CATGTGAACCAGCTCCCTGTCTGC





78
ER
ESR1
ESR1_4
Reverse Primer
CTGATCATGGAGGGTCAAA





79
ER
GREB1
GREB1_1
Forward Primer
GAGGTTCTTGCCAGATGA





80
ER
GREB1
GREB1_1
Probe
TGTGTTGGCTGTGGAAAGAAAGGCT





81
ER
GREB1
GREB1_1
Reverse Primer
TTGGAGAATTCCGTGAAGTA





82
ER
GREB1
GREB1_2
Probe
TCTCTGGGAATTGTGTTGGCTGTGGA





83
ER
GREB1
GREB1_2
Reverse primer
GGAGAATTCCGTGAAGTAACAG





84
ER
GREB1
GREB1_2
Forward primer
AAGAGGTTCTTGCCAGATGA





85
ER
GREB1
GREB1_3
Forward Primer
GATGACAATGGCCACAATG





86
ER
GREB1
GREB1_3
Probe
TGTGTTGGCTGTGGAAAGAAAGGCT





87
ER
GREB1
GREB1_3
Reverse Primer
CTTCTTGGGTTGAGTGGT





88
ER
GREB1
GREB1_4
Forward Primer
CCGTTGACAAGAGGTTCT





89
ER
GREB1
GREB1_4
Probe
CCAGAGAAACCAAGAAGAGCATTGTGGC





90
ER
GREB1
GREB1_4
Reverse Primer
CCACAGCCAACACAATTC





91
ER
HSPB1
HSPB1_1
Reverse primer
GGTCAGTGTGCCCTCAG





92
ER
HSPB1
HSPB1_1
Forward primer
GGACGAGCATGGCTACAT





93
ER
HSPB1
HSPB1_1
Probe
ACCCAAGTTTCCTCCTCCCTGTCC





94
ER
HSPB1
HSPB1_2
Forward Primer
CTTCACGCGGAAATACAC





95
ER
HSPB1
HSPB1_2
Probe
ACCCAAGTTTCCTCCTCCCTGTCC





96
ER
HSPB1
HSPB1_2
Reverse Primer
GATGGTGATCTCGTTGGA





97
ER
HSPB1
HSPB1_3
Forward Primer
AGCATGGCTACATCTCC





98
ER
HSPB1
HSPB1_3
Probe
TGCTTCACGCGGAAATACACGCTG





99
ER
HSPB1
HSPB1_3
Reverse Primer
GAGGAGGAAACTTGGGT





100
ER
HSPB1
HSPB1_4
Forward Primer
GACGAGCATGGCTACAT





101
ER
HSPB1
HSPB1_4
Probe
TGCTTCACGCGGAAATACACGCTG





102
ER
HSPB1
HSPB1_4
Reverse Primer
ACAGGGAGGAGGAAACT





103
ER
IGFBP4
IGFBP4_1
Forward Primer
ACGAGGACCTCTACATCATC





104
ER
IGFBP4
IGFBP4_1
Probe
AAGCAGTGTCACCCAGCTCTGGAT





105
ER
IGFBP4
IGFBP4_1
Reverse Primer
CCACACACCAGCACTTG





106
ER
IGFBP4
IGFBP4_2
Forward Primer
CCAACTGCGACCGCAAC





107
ER
IGFBP4
IGFBP4_2
Reverse primer
GTCTTCCGGTCCACACAC





108
ER
IGFBP4
IGFBP4_2
Probe
CAAGCAGTGTCACCCAGCTCTGGA





109
ER
IGFBP4
IGFBP4_3
Forward Primer
CTGGCCGCTTCACAGAG





110
ER
IGFBP4
IGFBP4_3
Probe
TGATGTAGAGGTCCTCGTGGGTGC





111
ER
IGFBP4
IGFBP4_3
Reverse Primer
CAGAGCTGGGTGACACTG





112
ER
IGFBP4
IGFBP4_4
Forward Primer
GCAACGGCAACTTCCAC





113
ER
IGFBP4
IGFBP4_4
Probe
AAGCAGTGTCACCCAGCTCTGGAT





114
ER
IGFBP4
IGFBP4_4
Reverse Primer
GTCTTCCGGTCCACACA





115
ER
MYC
MYC_1
Forward Primer
TGCTTAGACGCTGGATTT





116
ER
MYC
MYC_1
Probe
CCCTCAACGTTAGCTTCACCAACAGG





117
ER
MYC
MYC_1
Reverse Primer
TCGTAGTCGAGGTCATAGT





118
ER
MYC
MYC_2
Forward Primer
TCTCTGAAAGGCTCTCCT





119
ER
MYC
MYC_2
Probe
TGCAGCTGCTTAGACGCTGGATTT





120
ER
MYC
MYC_2
Reverse Primer
TCCTGTTGGTGAAGCTAAC





121
ER
MYC
MYC_3
Forward Primer
GACCCGCTTCTCTGAAA





122
ER
MYC
MYC_3
Probe
TGCAGCTGCTTAGACGCTGGATTT





123
ER
MYC
MYC_3
Reverse Primer
AGGTCATAGTTCCTGTTGG





124
ER
NRIP1
NRIP1_1
Forward Primer
CCGGATGACATCAGAGCTA





125
ER
NRIP1
NRIP1_1
Probe
TCTCAGAAAGCAGAGGCTCAGAGCTT





126
ER
NRIP1
NRIP1_1
Reverse Primer
AATGCAAATATCAGTGTTCGTC





127
ER
NRIP1
NRIP1_2
Forward Primer
CTCAGAGCTTGGAGACAGAC





128
ER
NRIP1
NRIP1_2
Probe
AGGATTCTATCTGCTTACTGCTACAGACCT





129
ER
NRIP1
NRIP1_2
Reverse Primer
GCAAGGAGGAGGAGAAGAAT





130
ER
NRIP1
NRIP1_3
Probe
AAGCAGAGGCTCAGAGCTTGGAGA





131
ER
NRIP1
NRIP1_3
Forward primer
CAACAGCCTTCTCAATTTTCT





132
ER
NRIP1
NRIP1_3
Reverse primer
CCCATTAAATGCAAATATCAGTG





133
ER
NRIP1
NRIP1_4
Forward Primer
TCAGAGCTTGGAGACAGA





134
ER
NRIP1
NRIP1_4
Probe
AAGGATTCTATCTGCTTACTGCTACAGA





135
ER
NRIP1
NRIP1_4
Reverse Primer
GAGAAGAATTCCTTAACACATAGG





136
ER
PDZK1
PDZK1_2
Reverse primer
TGCTCAACATGACGCTTGTC





137
ER
PDZK1
PDZK1_2
Forward primer
GCCATGAGGAAGTGGTTGAAA





138
ER
PDZK1
PDZK1_2
Probe
AAGCCGTGTCATGTTCCTGCTGGT





139
ER
PGR
PGR_1
Forward Primer
GAGTTCCTCTGTATGAAAGTATTG





140
ER
PGR
PGR_1
Probe
TGGAAGGGCTACGAAGTCAAACCCA





141
ER
PGR
PGR_1
Reverse Primer
ATGTAGCTTGACCTCATCTC





142
ER
PGR
PGR_2
Forward primer
TGGCAGATCCCACAGGAGTT





143
ER
PGR
PGR_2
Probe
AGCTTCAAGTTAGCCAAGAAGAGTTCCTCT





144
ER
PGR
PGR_2
Reverse primer
AGCCCTTCCAAAGGAATTGTATTA





145
ER
PGR
PGR_3
Forward Primer
AGTTAGCCAAGAAGAGTTCC





146
ER
PGR
PGR_3
Probe
TGGAAGGGCTACGAAGTCAAACCCA





147
ER
PGR
PGR_3
Reverse Primer
AGCTCTCTAATGTAGCTTGAC





148
ER
PGR
PGR_4
Forward Primer
CCAAGAAGAGTTCCTCTGTAT





149
ER
PGR
PGR_4
Probe
TGGAAGGGCTACGAAGTCAAACCCA





150
ER
PGR
PGR_4
Reverse Primer
CTTGACCTCATCTCCTCAAA





151
ER
RARA
RARA_1
Forward Primer
CAGATCACCCTCCTCAA





152
ER
RARA
RARA_1
Probe
CCTGGACATCCTGATCCTGCGGA





153
ER
RARA
RARA_1
Reverse Primer
CGAGAAGGTCATGGTGT





154
ER
RARA
RARA_2
Forward Primer
TTCACCACCCTCACCAT





155
ER
RARA
RARA_2
Probe
AGCCTTGAGGAGGGTGATCTGGTC





156
ER
RARA
RARA_2
Reverse Primer
AGAAGGTCATGGTGTCCTG





157
ER
RARA
RARA_3
Reverse primer
GTGTACCGCGTGCAGAT





158
ER
RARA
RARA_3
Forward primer
CATTAAGACTGTGGAGTTCGC





159
ER
RARA
RARA_3
Probe
ACCAGATCACCCTCCTCAAGGCT





160
ER
RARA
RARA_4
Forward Primer
CTGCCTGCCTGGACATC





161
ER
RARA
RARA_4
Probe
CGAGAAGGTCATGGTGTCCTGCTC





162
ER
RARA
RARA_4
Reverse Primer
CATCTGGGTCCGGTTCAG





163
ER
SGK3
SGK3_1
Forward Primer
GCTATGGCCCTGAAGATT





164
ER
SGK3
SGK3_1
Probe
ACAAAGACGAGCAGGACTAAACGA





165
ER
SGK3
SGK3_1
Reverse Primer
ACCTAACTAGGTTCTGAATGAA





166
ER
SGK3
SGK3_2
Forward Primer
AAACAGTTTCCTGCTATGG





167
ER
SGK3
SGK3_2
Probe
CCCTGAAGATTCCTGCCAAGAGAA





168
ER
SGK3
SGK3_2
Reverse Primer
TAGTCCTGCTCGTCTTTG





169
ER
SGK3
SGK3_3
Forward Primer
AGATTCCTGCCAAGAGAATA





170
ER
SGK3
SGK3_3
Probe
ACAAAGACGAGCAGGACTAAACGA





171
ER
SGK3
SGK3_3
Reverse Primer
GGATACCTAACTAGGTTCTGA





172
ER
SGK3
SGK3_4
Probe
ACAAAGACGAGCAGGACTAAACGA





173
ER
SGK3
SGK3_4
Reverse Primer
TGGATACCTAACTAGGTTCTGAATG





174
ER
SGK3
SGK3_4
Forward Primer
CTGCCAAGAGAATATTTGGTGATAA





175
ER
SOD1
SOD1_1
Forward Primer
TGCAGGTCCTCACTTTAATC





176
ER
SOD1
SOD1_1
Probe
AAACACGGTGGGCCAAAGGATGAA





177
ER
SOD1
SOD1_1
Reverse Primer
CTTTGTCAGCAGTCACATTG





178
ER
SOD1
SOD1_2
Forward Primer
GGTCCTCACTTTAATCCTCTATC





179
ER
SOD1
SOD1_2
Probe
AAACACGGTGGGCCAAAGGATGAA





180
ER
SOD1
SOD1_2
Reverse Primer
ACCATCTTTGTCAGCAGTC





181
ER
SOD1
SOD1_3
Forward Primer
GTGCAGGTCCTCACTTT





182
ER
SOD1
SOD1_3
Probe
AAACACGGTGGGCCAAAGGATGAA





183
ER
SOD1
SOD1_3
Reverse Primer
GCCCAAGTCTCCAACAT





184
ER
TTF1
TTF1_1
Forward Primer
CCTCCCAGTGTGCAAATA





185
ER
TTF1
TTF1_1
Probe
ACGTCCCTCCAGAAGAGGAGTGTG





186
ER
TTF1
TTF1_1
Reverse Primer
CCCTGCAGAAGTGTCTAAA





187
ER
TTF1
TTF1_2
Forward Primer
CCCTGGTGCTTCTATCCTAA





188
ER
TTF1
TTF1_2
Reverse Primer
ATCCCTGCAGAAGTGTCTAA





189
ER
TTF1
TTF1_2
Probe
ACCATCGACGTCCCTCCAGAA





190
ER
TTF1
TTF1_3
Forward Primer
GGTGCTTCTATCCTAATACCA





191
ER
TTF1
TTF1_3
Probe
AGACACTTCTGCAGGGATCTGCCT





192
ER
TTF1
TTF1_3
Reverse Primer
TCTGGGACTAATCACCGT





193
ER
TTF1
TTF1_4
Forward Primer
CCTGGTGCTTCTATCCTAAT





194
ER
TTF1
TTF1_4
Probe
ACGTCCCTCCAGAAGAGGAGTGTG





195
ER
TTF1
TTF1_4
Reverse Primer
GATCCCTGCAGAAGTGT





196
ER
WISP2
WISP2_1
Forward Primer
GGACATGAGAGGCACAC





197
ER
WISP2
WISP2_1
Probe
TCTCCCTCCTCTGCCTCCTCTCAA





198
ER
WISP2
WISP2_1
Reverse Primer
GGCAGGTACATGGTGTC





199
ER
WISP2
WISP2_2
Forward Primer
TCCTCTGCCTCCTCTCAAA





200
ER
WISP2
WISP2_2
Probe
CAGCTGTGCCCGACACCATGTAC





201
ER
WISP2
WISP2_2
Reverse Primer
CAGCCATCCAGCACCAG





202
ER
WISP2
WISP2_3
Forward Primer
ACACCGAAGACCCACCT





203
ER
WISP2
WISP2_3
Probe
TCTCCCTCCTCTGCCTCCTCTCAA





204
ER
WISP2
WISP2_3
Reverse Primer
CATGGTGTCGGGCACAG





205
ER
WISP2
WISP2_4
Reverse primer
CATGGTGTCGGGCACAG





206
ER
WISP2
WISP2_4
Forward primer
GAGAGGCACACCGAAGAC





207
ER
WISP2
WISP2_4
Probe
TTCTCCCTCCTCTGCCTCCT





208
ER
XBP1
XBP1_1
Forward Primer
TGGATTCTGGCGGTATTG





209
ER
XBP1
XBP1_1
Probe
TTGGGCATTCTGGACAACTTGGACC





210
ER
XBP1
XBP1_1
Reverse Primer
GGAAGGGCATTTGAAGAAC





211
ER
XBP1
XBP1_2
Reverse primer
CATGACTGGGTCCAAGTTGTC





212
ER
XBP1
XBP1_2
Forward primer
GGATTCTGGCGGTATTGACT





213
ER
XBP1
XBP1_2
Probe
TCAGAGTCTGATATCCTGTTGGGCATTCTG





214
ER
XBP1
XBP1_3
Forward Primer
GCGGTATTGACTCTTCAGAT





215
ER
XBP1
XBP1_3
Probe
TCTGATATCCTGTTGGGCATTCTGGACA





216
ER
XBP1
XBP1_3
Reverse Primer
GAACATGACTGGGTCCAA





217
ER
XBP1
XBP1_4
Forward Primer
CTGGCGGTATTGACTCTT





218
ER
XBP1
XBP1_4
Probe
TTGGGCATTCTGGACAACTTGGACC





219
ER
XBP1
XBP1_4
Reverse Primer
GGCATTTGAAGAACATGACT
















TABLE 2







Sets of primers and probes for determining the AR cellular signaling


pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence





220
AR
ABCC4
ABCC4_1
Forward Primer
CCATTGAGAGGGTGTCAGA





221
AR
ABCC4
ABCC4_1
Reverse Primer
TGGATTCTTCGGATGCTGACGATTGC





222
AR
ABCC4
ABCC4_1
Probe
CGCTGTGATATCTCATCAAGTA





223
AR
ABCC4
ABCC4_2
Forward primer
GAGAGGGTGTCAGAGGCAAT





224
AR
ABCC4
ABCC4_2
Reverse primer
GCGCTGTGATATCTCATCAAGTAG





225
AR
ABCC4
ABCC4_2
Probe
CGTCAGCATCCGAAGAATCCAGACCT





226
AR
ABCC4
ABCC4_3
Forward Primer
GTGTCAGAGGCAATCGTC





227
AR
ABCC4
ABCC4_3
Reverse Primer
CGTCAGCTGCCGTCAGAT





228
AR
ABCC4
ABCC4_3
Probe
CAGACCTTTTTGCTACTTGATGAGATATCACAGC





229
AR
ABCC4
ABCC4_4
Forward Primer
GCCATTGAGAGGGTGTCAG





230
AR
ABCC4
ABCC4_4
Reverse Primer
TATCACAGCGCAACCGTC





231
AR
ABCC4
ABCC4_4
Probe
GCATCCGAAGAATCCAGACCTTTTTGCT





232
AR
AR
AR_1
Forward primer
CCTGATCTGTGGAGATGAAGC





233
AR
AR
AR_1
Reverse primer
GCGCACAGGTACTTCTGTT





234
AR
AR
AR_1
Probe
TGGAAGCTGCAAGGTCTTCTTC





235
AR
AR
AR_2
Forward Primer
GCTTCTGGGTGTCACTATG





236
AR
AR
AR_2
Reverse Primer
CGCACAGGTACTTCTGTTT





237
AR
AR
AR_2
Probe
TGTGGAAGCTGCAAGGTCTTCTTCA





238
AR
AR
AR_3
Forward Primer
CTGATCTGTGGAGATGAAGC





239
AR
AR
AR_3
Reverse Primer
GGTACTTCTGTTTCCCTTCAG





240
AR
AR
AR_3
Probe
TGTGGAAGCTGCAAGGTCTTCTTCA





241
AR
AR
AR_4
Forward Primer
GCTGAAGGGAAACAGAAGTA





242
AR
AR
AR_4
Reverse Primer
TGCGCCAGCAGAAATGATTGCAC





243
AR
AR
AR_4
Probe
GAAGACGACAAGATGGACAA





244
AR
CREB3L4
CREB3L4_1
Forward Primer
GCATTTATGGTGCCTGATTC





245
AR
CREB3L4
CREB3L4_1
Reverse Primer
CAGGAACAGGGTTTGACAG





246
AR
CREB3L4
CREB3L4_1
Probe
AGTGAGCTGCCCTTTGATGCTCA





247
AR
CREB3L4
CREB3L4_2
Forward Primer
TGATTCCTGCATGGTCAGT





248
AR
CREB3L4
CREB3L4_2
Reverse Primer
ACAACCCTGCTGCCCTGTCAAA





249
AR
CREB3L4
CREB3L4_2
Probe
CTCATCGGTCAGGAACAGG





250
AR
CREB3L4
CREB3L4_3
Forward primer
TGATGCTCATGCCCACATC





251
AR
CREB3L4
CREB3L4_3
Reverse Primer
GCAGACGCTTCTCCTCATC





252
AR
CREB3L4
CREB3L4_3
Probe
TGCTGCCCTGTCAAACCCTGTT





253
AR
CREB3L4
CREB3L4_4
Forward primer
CCAGAGCAGGCACCGTAG





254
AR
CREB3L4
CREB3L4_4
Reverse primer
AGCAGACGCTTCTCCTCATC





255
AR
CREB3L4
CREB3L4_4
Probe
CAACCCTGCTGCCCTGTCAAAC





256
AR
DHCR24
DHCR24_1
Forward primer
GAGGCAGCTGGAGAAGTTT





257
AR
DHCR24
DHCR24_1
Reverse primer
GCAGCTTGTGGTACAAGGAG





258
AR
DHCR24
DHCR24_1
Probe
TATGCCGACTGCTACATGAACCGG





259
AR
DHCR24
DHCR24_2
Forward Primer
TGGCTTCCAGATGCTGTAT





260
AR
DHCR24
DHCR24_2
Reverse Primer
TGGTACAAGGAGCCATCAA





261
AR
DHCR24
DHCR24_2
Probe
AACCGGGAGGAGTTCTGGGAGA





262
AR
DHCR24
DHCR24_3
Forward Primer
AGGCAGCTGGAGAAGTTTG





263
AR
DHCR24
DHCR24_3
Reverse Primer
GCAGCTTGTGGTACAAGGA





264
AR
DHCR24
DHCR24_3
Probe
AACCGGGAGGAGTTCTGGGAGA





265
AR
DHCR24
DHCR24_4
Forward Primer
AACACTTTGAAGCCAGGTC





266
AR
DHCR24
DHCR24_4
Reverse Primer
CAAACATCTCCCAGAACTCC





267
AR
DHCR24
DHCR24_4
Probe
TGCCGACTGCTACATGAACCGG





268
AR
ELL2
ELL2_1
Forward Primer
CAACATCACCGTACTGCAT





269
AR
ELL2
ELL2_1
ReversePrimer
GAGTCCTTGGAACTGGATTG





270
AR
ELL2
ELL2_1
Probe
TGAAGCTCACCGAGACGGCGAT





271
AR
ELL2
ELL2_2
Forward primer
CATGTGAAGCTCACCGAGAC





272
AR
ELL2
ELL2_2
Reverse primer
GGAACTGGATTGAAGGTCGAAA





273
AR
ELL2
ELL2_2
Probe
CTCGAGACTTACCAGAGCCACAA





274
AR
ELL2
ELL2_3
Forward Primer
AGAAGTTTGTCCGCAGC





275
AR
ELL2
ELL2_3
Reverse Primer
GAGTCCTTGGAACTGGATT





276
AR
ELL2
ELL2_3
Probe
TCGAGACTTACCAGAGCCACAAAATTTAATTC





277
AR
ELL2
ELL2_4
Forward Primer
CGTACTGCATGTGAAGCTC





278
AR
ELL2
ELL2_4
Reverse Primer
GAACTGGATTGAAGGTCGAAA





279
AR
ELL2
ELL2_4
Probe
TTTGTGGCTCTGGTAAGTCTCGAGC





280
AR
FKBP5
FKBP5_1
Forward Primer
AACGGAAAGGAGAGGGATA





281
AR
FKBP5
FKBP5_1
Reverse Primer
TTTGACTGCAGAGATGTGG





282
AR
FKBP5
FKBP5_1
Probe
AAATCCACCTGGAAGGCCGCT





283
AR
FKBP5
FKBP5_2
Forward Primer
TGAAGATGGAGGCATTATCC





284
AR
FKBP5
FKBP5_2
Reverse Primer
AACAGTAGAAATCCACCTGG





285
AR
FKBP5
FKBP5_2
Probe
GGAGAACCAAACGGAAAGGAGAGGG





286
AR
FKBP5
FKBP5_3
Forward primer
ACGGAAAGGAGAGGGATATTCA





287
AR
FKBP5
FKBP5_3
Reverse primer
GTCAAACATCCTTCCACCACAG





288
AR
FKBP5
FKBP5_3
Probe
ACAGTAGAAATCCACCTGGAAGGCCG





289
AR
FKBP5
FKBP5_4
Forward Primer
ACGGAAAGGAGAGGGATATT





290
AR
FKBP5
FKBP5_4
Reverse Primer
CCACAGTGAATGCATCCTT





291
AR
FKBP5
FKBP5_4
Probe
AAATCCACCTGGAAGGCCGCT





292
AR
GUCY1A3
GUCY1A3_1
Forward Primer
GGGATTACACAAAGAGAGTGATA





293
AR
GUCY1A3
GUCY1A3_1
Reverse Primer
TCATCTTCAGGGCCATCAGCGC





294
AR
GUCY1A3
GUCY1A3_1
Probe
GGGAGACATAACTTCATCAGAG





295
AR
GUCY1A3
GUCY1A3_2
Reverse primer
CCAGAGTGCAGTCCAATTC





296
AR
GUCY1A3
GUCY1A3_2
Forward primer
GGGATTACACAAAGAGAGTGATAC





297
AR
GUCY1A3
GUCY1A3_2
Probe
TGGCCCTGAAGATGATGGAGCTCT





298
AR
GUCY1A3
GUCY1A3_3
Forward Primer
GGCGATGCCTATTGTGTAG





299
AR
GUCY1A3
GUCY1A3_3
Reverse Primer
TCAGAGAGCTCCATCATCTT





300
AR
GUCY1A3
GUCY1A3_3
Probe
GGGCCATCAGCGCTATCTGAACA





301
AR
GUCY1A3
GUCY1A3_4
Forward Primer
GAGAGTGATACTCATGCTGTT





302
AR
GUCY1A3
GUCY1A3_4
Reverse Primer
CAATTCGCATCTTGATAGGTTC





303
AR
GUCY1A3
GUCY1A3_4
Probe
GCGCTGATGGCCCTGAAGATGA





304
AR
KLK2
KLK2_1
Forward Primer
TCGAACCAGAGGAGTTCTTGC





305
AR
KLK2
KLK2_1
Reverse Primer
AGCACACATGTCATTGGACAG





306
AR
KLK2
KLK2_1
Probe
CCCAGGAGTCTTCAGTGTGTGAGCC





307
AR
KLK2
KLK2_2
Forward Primer
AGGAGTCTTCAGTGTGTGA





308
AR
KLK2
KLK2_2
Reverse Primer
ACAACATGAACTCTGTCACC





309
AR
KLK2
KLK2_2
Probe
TGTCATTGGACAGGAGATGGAGGC





310
AR
KLK2
KLK2_3
Forward Primer
GTGTGTGAGCCTCCATCTC





311
AR
KLK2
KLK2_3
Reverse Primer
CCAGCACACAACATGAACTC





312
AR
KLK2
KLK2_3
Probe
CTGTCCAATGACATGTGTGCTAGAGCT





313
AR
KLK2
KLK2_4
Forward Primer
CATCGAACCAGAGGAGTTC





314
AR
KLK2
KLK2_4
Reverse Primer
GAACTCTGTCACCTTCTCAG





315
AR
KLK2
KLK2_4
Probe
TGTGAGCCTCCATCTCCTGTCCA





316
AR
KLK3
KLK3_1
Forward Primer
GAACCAGAGGAGTTCTTGAC





317
AR
KLK3
KLK3_1
Reverse Primer
TGAACTTGGTCACCTTCTG





318
AR
KLK3
KLK3_1
Probe
CCAATGACGTGTGTGCGCAAGTT





319
AR
KLK3
KLK3_2
Forward Primer
GTGTGGACCTCCATGTTATTT





320
AR
KLK3
KLK3_2
Reverse Primer
ACACAGCATGAACTTGGTC





321
AR
KLK3
KLK3_2
Probe
TGTGCGCAAGTTCACCCTCAGAA





322
AR
KLK3
KLK3_3
Forward Primer
GATGCTGTGAAGGTCATGG





323
AR
KLK3
KLK3_3
Reverse Primer
CACACACTGAAGTTTCTTTGG





324
AR
KLK3
KLK3_3
Probe
ACTCCTCTGGTTCAATGCTGCCC





325
AR
KLK3
KLK3_4
Forward primer
GCAGCATTGAACCAGAGGA





326
AR
KLK3
KLK3_4
Reverse primer
GCACACACGTCATTGGAAATAA





327
AR
KLK3
KLK3_4
Probe
CCCAAAGAAACTTCAGTGTGTGGACCT





328
AR
LRIG1
LRIG1_1
Forward Primer
GCCTATAAAGGAGCTCAACC





329
AR
LRIG1
LRIG1_1
Reverse Primer
CCGTGACAGACCATCAAAT





330
AR
LRIG1
LRIG1_1
Probe
TCGGATTGGCACCCTGGAGTTG





331
AR
LRIG1
LRIG1_2
Forward Primer
GAACAACATCACGGAAGTG





332
AR
LRIG1
LRIG1_2
Reverse Primer
CATCAAATGCTCCCAACTC





333
AR
LRIG1
LRIG1_2
Probe
ACACCTGCTTTCCACACGGACC





334
AR
LRIG1
LRIG1_3
Forward Primer
ACACGGACCGCCTATAAA





335
AR
LRIG1
LRIG1_3
Reverse Primer
CCATCAAATGCTCCCAACTC





336
AR
LRIG1
LRIG1_3
Probe
AGCTCAACCTGGCAGGCAATCG





337
AR
LRIG1
LRIG1_4
Forward Primer
CACACGGACCGCCTATAAA





338
AR
LRIG1
LRIG1_4
Reverse Primer
TTGCTCAGGCGAAGAGTTAG





339
AR
LRIG1
LRIG1_4
Probe
TCGGATTGGCACCCTGGAGTTG





340
AR
NDRG1
NDRG1_1
Forward primer
GCATTATTGGCATGGGAACAG





341
AR
NDRG1
NDRG1_1
Reverse primer
CCACCATCTCAGGGTTGTTTAG





342
AR
NDRG1
NDRG1_1
Probe
CGCCTACATCCTAACTCGATTTGCT





343
AR
NDRG1
NDRG1_2
Forward Primer
CATTATTGGCATGGGAACAG





344
AR
NDRG1
NDRG1_2
Reverse Primer
AGGGTTCACGTTGATAAGG





345
AR
NDRG1
NDRG1_2
Probe
AAACAACCCTGAGATGGTGGAGGG





346
AR
NDRG1
NDRG1_3
Forward Primer
TGAAATGCTTCCTGGAGTC





347
AR
NDRG1
NDRG1_3
Reverse Primer
CAGGGTTGTTTAGAGCAAATC





348
AR
NDRG1
NDRG1_3
Probe
TTGGCATGGGAACAGGAGCAGG





349
AR
NDRG1
NDRG1_4
Forward Primer
CTTCCTGGAGTCCTTCAAC





350
AR
NDRG1
NDRG1_4
Reverse Primer
ACCATCTCAGGGTTGTTTAG





351
AR
NDRG1
NDRG1_4
Probe
TTGGCATGGGAACAGGAGCAGG





352
AR
NKX3_1
NKX3_1_1
Reverse primer
CTTCTGCGGCTGCTTAGG





353
AR
NKX3_1
NKX3_1_1
Forward primer
CAGAGACCGAGCCAGAAAG





354
AR
NKX3_1
NKX3_1_1
Probe
AAACACTTCAGGCGCCCTTCCAA





355
AR
NKX3_1
NKX3_1_2
Forward Primer
CAGAGACCGAGCCAGAAAG





356
AR
NKX3_1
NKX3_1_2
Reverse Primer
CACCTGAGTGTGGGAGAAG





357
AR
NKX3_1
NKX3_1_2
Probe
AACACTTCAGGCGCCCTTCCAA





358
AR
NKX3_1
NKX3_1_3
Forward Primer
GAGCCAGAAAGGCACTTGG





359
AR
NKX3_1
NKX3_1_3
Reverse Primer
TCTCCAACTCGATCACCTGAG





360
AR
NKX3_1
NKX3_1_3
Probe
AACACTTCAGGCGCCCTTCCAA





361
AR
NKX3_1
NKX3_1_4
Forward Primer
GGTCTTATCTGTTGGACTCTG





362
AR
NKX3_1
NKX3_1_4
Reverse Primer
CTGAACTTCCTCTCCAACTC





363
AR
NKX3_1
NKX3_1_4
Probe
AACACTTCAGGCGCCCTTCCAA





364
AR
PLAU
PLAU_1
Forward Primer
TCGAACTGTGACTGTCTAAATG





365
AR
PLAU
PLAU_1
Reverse Primer
CTGCCCTCCGAATTTCTTT





366
AR
PLAU
PLAU_1
Probe
AACATTCACTGGTGCAACTGCCC





367
AR
PLAU
PLAU_2
Forward Primer
GTTCCATCGAACTGTGACT





368
AR
PLAU
PLAU_2
Reverse Primer
CGAATTTCTTTGGGCAGTTG





369
AR
PLAU
PLAU_2
Probe
TGGAGGAACATGTGTGTCCAACAAGT





370
AR
PLAU
PLAU_3
Forward Primer
GTGCAACTGCCCAAAGAAAT





371
AR
PLAU
PLAU_3
Reverse Primer
GACAGTGGCAGAGTTCCAG





372
AR
PLAU
PLAU_3
Probe
AGGAAAGGCCAGCACTGACACC





373
AR
PLAU
PLAU_4
Forward primer
ACTGCCCAAAGAAATTCGG





374
AR
PLAU
PLAU_4
Reverse primer
CTGGCCTTTCCTCGGTAAA





375
AR
PLAU
PLAU_4
Probe
CAGCACTGTGAAATAGATAAGTCAAAAACCT





376
AR
PMEPA1
PMEPA1_1
Forward Primer
TGGTGATGATGGTGATGGT





377
AR
PMEPA1
PMEPA1_1
Reverse Primer
CAGGGCATCTTCTCTCCTC





378
AR
PMEPA1
PMEPA1_1
Probe
ACAAGCTGTCTGCACGGTCCTT





379
AR
PMEPA1
PMEPA1_2
Forward primer
AGCCACTACAAGCTGTCTGC





380
AR
PMEPA1
PMEPA1_2
Reverse primer
TGACACTGTGCTCTCCGAG





381
AR
PMEPA1
PMEPA1_2
Probe
AGAGAAGATGCCCTGTCCTCAGAA





382
AR
PMEPA1
PMEPA1_3
Forward Primer
GTCTGCACGGTCCTTCATC





383
AR
PMEPA1
PMEPA1_3
Reverse Primer
GATTCCGTTGCCTGACACT





384
AR
PMEPA1
PMEPA1_3
Probe
AGAAGATGCCCTGTCCTCAGAAGGA





385
AR
PMEPA1
PMEPA1_4
Forward Primer
ATCATCGTGGTGGTGATGA





386
AR
PMEPA1
PMEPA1_4
Reverse Primer
CTGAGGACAGGGCATCTTC





387
AR
PMEPA1
PMEPA1_4
Probe
ACAAGCTGTCTGCACGGTCCTT





388
AR
PPAP2A
PPAP2A_1
Forward Primer
CAGCGATGGTTACATTGAATAC





389
AR
PPAP2A
PPAP2A_1
Reverse Primer
CGAAGAGTGGCCTGAATAG





390
AR
PPAP2A
PPAP2A_1
Probe
ACAACCTGCCTTCCTTAACTCTTTCTGC





391
AR
PPAP2A
PPAP2A_2
Forward Primer
GGCAGGTTGTCCTTCTATT





392
AR
PPAP2A
PPAP2A_2
Reverse Primer
TCATCCTGGCTTGAAGATAAA





393
AR
PPAP2A
PPAP2A_2
Probe
TGTACTGCATGCTGTTTGTGGCAC





394
AR
PPAP2A
PPAP2A_3
Forward Primer
ATGTCGAGGGAATGCAGAAAG





395
AR
PPAP2A
PPAP2A_3
Reverse Primer
CAGGTTGTCCTTCTATTCAGGCCA





396
AR
PPAP2A
PPAP2A_3
Probe
CAGGTTGTCCTTCTATTCAGGCCA





397
AR
PPAP2A
PPAP2A_4
Forward Primer
GAGGGAATGCAGAAAGAGTTA





398
AR
PPAP2A
PPAP2A_4
Reverse Primer
GAAGATAAAGTGCCACAAACAG





399
AR
PPAP2A
PPAP2A_4
Probe
AGGCAGGTTGTCCTTCTATTCAGGC





400
AR
PRKACB_2
PRKACB_2_1
Forward Primer
CTCTAAAGGTACTGCACATGA





401
AR
PRKACB_2
PRKACB_2_1
Reverse Primer
CTTTGGCTTTGGCTAGAAAC





402
AR
PRKACB_2
PRKACB_2_1
Probe
ACAGCCTTCATTTCTCTGAACATACTGCC





403
AR
PRKACB_2
PRKACB_2_2
Forward Primer
GCTAGCCGGTTATTTCATAGA





404
AR
PRKACB_2
PRKACB_2_2
Reverse Primer
CTTTCATTGATCTGTCCCATAAG





405
AR
PRKACB_2
PRKACB_2_2
Probe
TGACAGCCTTCATTTCTCTGAACATACTGCC





406
AR
PRKACB_2
PRKACB_2_3
Forward Primer
CCAGTATACAGGTACAACTACAG





407
AR
PRKACB_2
PRKACB_2_3
Reverse Primer
TAAGGCAGTATGTTCAGAGAAA





408
AR
PRKACB_2
PRKACB_2_3
Probe
TGCTAGCCGGTTATTTCATAGACACTCT





409
AR
PRKACB_2
PRKACB_2_4
Forward primer
ACTCTAAAGGTACTGCACATGATC





410
AR
PRKACB_2
PRKACB_2_4
Reverse primer
CTTTGGCTTTGGCTAGAAACTC





411
AR
PRKACB_2
PRKACB_2_4
Probe
AAAACAGCTCTGGAAAATGACAGCCTTCA





412
AR
SGK1
SGK1_1
Forward Primer
GGAGCCTGAGCTTATGAAT





413
AR
SGK1
SGK1_1
Reverse Primer
GAAGTGAAAGTCAGATGGTTTAG





414
AR
SGK1
SGK1_1
Probe
TTGGTGGAGGAGAAGGGTTGGC





415
AR
SGK1
SGK1_2
Forward Primer
TATGAATGCCAACCCTTCTC





416
AR
SGK1
SGK1_2
Reverse Primer
CCCTTTCCGATCACTTTCA





417
AR
SGK1
SGK1_2
Probe
AATCAACCTTGGCCCGTCGTCC





418
AR
SGK1
SGK1_3
Forward primer
CAGGAGCCTGAGCTTATGAA





419
AR
SGK1
SGK1_3
Reverse primer
GATGGTTTAGCATGAGGATTGG





420
AR
SGK1
SGK1_3
Probe
TCAGCAAATCAACCTTGGCCCGT





421
AR
SGK1
SGK1_4
Forward Primer
CTTGAAGATCTCCCAACCTC





422
AR
SGK1
SGK1_4
Reverse Primer
CAAGGTTGATTTGCTGAGAAG





423
AR
SGK1
SGK1_4
Probe
TTGGTGGAGGAGAAGGGTTGGC





424
AR
TMPRSS2
TMPRSS2_1
Forward Primer
ATGAAACTGAACACAAGTGC





425
AR
TMPRSS2
TMPRSS2_1
Reverse Primer
AGGCTATACAGCGTAAAGAAA





426
AR
TMPRSS2
TMPRSS2_1
Probe
CTGTACCACAGTGATGCCTGTTCTTCA





427
AR
TMPRSS2
TMPRSS2_2
Forward primer
CTGTTCTTCAAAAGCAGTGGTTT





428
AR
TMPRSS2
TMPRSS2_2
Reverse primer
TGGCGGCTTGAGTTCAA





429
AR
TMPRSS2
TMPRSS2_2
Probe
TTACGCTGTATAGCCTGCGGGGTCA





430
AR
TMPRSS2
TMPRSS2_3
Forward Primer
CGGATCCACCAGCTTTATG





431
AR
TMPRSS2
TMPRSS2_3
Reverse Primer
TTTGAAGAACAGGCATCACT





432
AR
TMPRSS2
TMPRSS2_3
Probe
ACACAAGTGCCGGCAATGTCGATA





433
AR
TMPRSS2
TMPRSS2_4
Forward Primer
CTTGAAGATCTCCCAACCTC





434
AR
TMPRSS2
TMPRSS2_4
Reverse Primer
CAAGGTTGATTTGCTGAGAAG





435
AR
TMPRSS2
TMPRSS2_4
Probe
TTGGTGGAGGAGAAGGGTTGGC
















TABLE 3







Sets of primers and probes for determining the PI3K-FOXO cellular


signaling pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence















436
PI3K-FOXO
AGRP
AGRP_1
Forward
CCCACTGAAGAAGACAACTG






Primer






437
PI3K-FOXO
AGRP
AGRP_1
Reverse
TGCAGGTCTAGTACCTCTG






Primer






438
PI3K-FOXO
AGRP
AGRP_1
Probe
ATCTGTTGCAGGAGGCTCAGGC





439
PI3K-FOXO
AGRP
AGRP_2
Forward
AACAGGCAGAAGAGGATCTG






Primer






440
PI3K-FOXO
AGRP
AGRP_2
Reverse
AGGACTCATGCAGCCTTAC






Primer






441
PI3K-FOXO
AGRP
AGRP_2
Probe
TACTAGACCTGCAGGACCGCGA





442
PI3K-FOXO
AGRP
AGRP_3
Forward
AGAAGAGGATCTGTTGCAGGA






Primer






443
PI3K-FOXO
AGRP
AGRP_3
Reverse
CACATGGGTCACAGCAAGG






Primer






444
PI3K-FOXO
AGRP
AGRP_3
Probe
TCGCTGCGTAAGGCTGCATGA





445
PI3K-FOXO
AGRP
AGRP_4
Forward
CCTTGGCAGAGGTACTAGA






Primer






446
PI3K-FOXO
AGRP
AGRP_4
Reverse
ATTGAAGAAGCGGCAGTAG






Primer






447
PI3K-FOXO
AGRP
AGRP_4
Probe
AGGTGCCTTGCTGTGACCCAT





448
PI3K-FOXO
BCL2L11
BCL2L11_1
Forward
CCTTTCTTGGCCCTTGTT






primer






449
PI3K-FOXO
BCL2L11
BCL2L11_1
Reverse
AAGGTTGCTTTGCCATTTG






primer






450
PI3K-FOXO
BCL2L11
BCL2L11_1
Probe
TGACTCTCGGACTGAGAAACGCAA





451
PI3K-FOXO
BCL2L11
BCL2L11_2
Forward
ATCGCATCATCGCGGTATT






Primer






452
PI3K-FOXO
BCL2L11
BCL2L11_2
Reverse
GAGTCAGAGTCAGACATTTGGG






Primer






453
PI3K-FOXO
BCL2L11
BCL2L11_2
Probe
CGCCCTTTCTTGGCCCTTGTTC





454
PI3K-FOXO
BCL6
BCL6_1
Forward
GGCCTGTTCTATAGCATCTT






Primer






455
PI3K-FOXO
BCL6
BCL6_1
Reverse
GTGTACATGAAGTCCAGGAG






Primer






456
PI3K-FOXO
BCL6
BCL6_1
Probe
TCCTGAGATCAACCCTGAGGGATTCT





457
PI3K-FOXO
BCL6
BCL6_2
Forward
GAGCCGTGAGCAGTTTAG






primer






458
PI3K-FOXO
BCL6
BCL6_2
Reverse
GATCACACTAAGGTTGCATTTC






primer






459
PI3K-FOXO
BCL6
BCL6_2
Probe
AAACGGTCCTCATGGCCTGCA





460
PI3K-FOXO
BCL6
BCL6_3
Forward
GTCGAGACATCTTGACTGATG






Primer






461
PI3K-FOXO
BCL6
BCL6_3
Reverse
GCTATAGAACAGGCCACTG






Primer






462
PI3K-FOXO
BCL6
BCL6_3
Probe
TCATTGTTGTGAGCCGTGAGCAGT





463
PI3K-FOXO
BCL6
BCL6_4
Forward
GTGATGTTCTTCTCAACCTTAATC






Primer






464
PI3K-FOXO
BCL6
BCL6_4
Reverse
TTATGGGCTCTAAACTGCTC






Primer






465
PI3K-FOXO
BCL6
BCL6_4
Probe
ACTGATGTTGTCATTGTTGTGAGCCGT





466
PI3K-FOXO
BNIP3
BNIP3_1
Forward
ATGAGTCTGGACGGAGTAG






Primer






467
PI3K-FOXO
BNIP3
BNIP3_1
Reverse
CTCTCCAATGCTATGGGTATC






Primer






468
PI3K-FOXO
BNIP3
BNIP3_1
Probe
TCGCTCGCAGACACCACAAGAT





469
PI3K-FOXO
BNIP3
BNIP3_2
Forward
CCCATAGCATTGGAGAGAAA






Primer






470
PI3K-FOXO
BNIP3
BNIP3_2
Reverse
ACTTGACCAATCCCATATCC






Primer






471
PI3K-FOXO
BNIP3
BNIP3_2
Probe
ACAGCTCACAGTCTGAGGAAGATGA





472
PI3K-FOXO
BNIP3
BNIP3_3
Forward
CACAAGATACCAACAGAGCTTC






primer






473
PI3K-FOXO
BNIP3
BNIP3_3
Reverse
GCTTTCAACTTCTTTCCTTCTTTC






primer






474
PI3K-FOXO
BNIP3
BNIP3_3
Probe
ACAGCTCACAGTCTGAGGAAGATGA





475
PI3K-FOXO
BNIP3
BNIP3_3
Forward
AGAGCTTCTGAAACAGATACC






Primer






476
PI3K-FOXO
BNIP3
BNIP3_3
Reverse
GCTTTCAACTTCTTTCCTTCTT






Primer






477
PI3K-FOXO
BNIP3
BNIP3_3
Probe
ACAGCTCACAGTCTGAGGAAGATGA





478
PI3K-FOXO
BTG1
BTG1_1
Forward
TCCTTCATCTCCAAGTTTCTC






Primer






479
PI3K-FOXO
BTG1
BTG1_1
Reverse
TGGGAACCAGTGATGTTTAT






Primer






480
PI3K-FOXO
BTG1
BTG1_1
Probe
AGCGACAGCTGCAGACCTTCAG





481
PI3K-FOXO
BTG1
BTG1_2
Forward
CGACAGCTGCAGACCTT






primer






482
PI3K-FOXO
BTG1
BTG1_2
Reverse
GTTGATGCGAATACAACGG






primer






483
PI3K-FOXO
BTG1
BTG1_2
Probe
CAGGAGCTGCTGGCAGAACATTA





484
PI3K-FOXO
BTG1
BTG1_3
Forward
ACATCACTGGTTCCCAGAA






Primer






485
PI3K-FOXO
BTG1
BTG1_3
Reverse
GCCTGTCCAATCAGAGGAT






Primer






486
PI3K-FOXO
BTG1
BTG1_3
Probe
ACAACGGTAACCCGATCCCTTGC





487
PI3K-FOXO
BTG1
BTG1_4
Forward
ATCGGGTTACCGTTGTATTC






Primer






488
PI3K-FOXO
BTG1
BTG1_4
Reverse
CTGACTGCTCAGTCCAATC






Primer






489
PI3K-FOXO
BTG1
BTG1_4
Probe
CCTCTGATTGGACAGGCAGCACA





490
PI3K-FOXO
CAT
CAT_1
Forward
GAGAAGTGCGGAGATTCAA






Primer






491
PI3K-FOXO
CAT
CAT_1
Reverse
TTCTCACACAGACGTTTCC






Primer






492
PI3K-FOXO
CAT
CAT_1
Probe
ACGTTACTCAGGTGCGGGCATT





493
PI3K-FOXO
CAT
CAT_2
Forward
GTGCTGAATGAGGAACAGA






Primer






494
PI3K-FOXO
CAT
CAT_2
Reverse
AGTTCTTGACCGCTTTCTT






Primer






495
PI3K-FOXO
CAT
CAT_2
Probe
ACGTCTGTGTGAGAACATTGCCGG





496
PI3K-FOXO
CAT
CAT_3
Forward
CTCCGGAACAACAGCCTTC






Primer






497
PI3K-FOXO
CAT
CAT_3
Reverse
CATCATTGGCAGTGTTGAATCTC






Primer






498
PI3K-FOXO
CAT
CAT_3
Probe
TATTGGATGCTGTGCTCCAGGGC





499
PI3K-FOXO
CAT
CAT_4
Forward
AACACTGCCAATGATGATAAC






primer






500
PI3K-FOXO
CAT
CAT_4
Reverse
ACAGACGTTTCCTCTGTTC






primer






501
PI3K-FOXO
CAT
CAT_4
Probe
CGGGCATTCTATGTGAACGTGCT





502
PI3K-FOXO
CAV1
CAV1_1
Forward
CGATGACGTGGTCAAGAT






primer






503
PI3K-FOXO
CAV1
CAV1_1
Reverse
CTTCCAAATGCCGTCAAA






primer






504
PI3K-FOXO
CAV1
CAV1_1
Probe
TTGCAGAACCAGAAGGGACACACA





505
PI3K-FOXO
CAV1
CAV1_2
Forward
CCAGAAGGGACACACAGTTT






Primer






506
PI3K-FOXO
CAV1
CAV1_2
Reverse
AAAGAGGGCAGACAGCAAG






Primer






507
PI3K-FOXO
CAV1
CAV1_2
Probe
AAGGCCAGCTTCACCACCTTCA





508
PI3K-FOXO
CAV1
CAV1_3
Forward
GCACACCAAGGAGATCGAC






Primer






509
PI3K-FOXO
CAV1
CAV1_3
Reverse
CCCTTCTGGTTCTGCAATCA






Primer






510
PI3K-FOXO
CAV1
CAV1_3
Probe
TGGTCAACCGCGACCCTAAACAC





511
PI3K-FOXO
CAV1
CAV1_4
Forward
CGATGACGTGGTCAAGATT






Primer






512
PI3K-FOXO
CAV1
CAV1_4
Reverse
AACTGTGTGTCCCTTCTGGTTCTGC






Primer






634
PI3K-FOXO
CCND1
CCND1_1
Forward
CCTCGGTGTCCTACTTCAAA






Primer






635
PI3K-FOXO
CCND1
CCND1_1
Reverse
ACTTCTGTTCCTCGCAGAC






Primer






636
PI3K-FOXO
CCND1
CCND1_1
Probe
AAGATCGTCGCCACCTGGATGC





637
PI3K-FOXO
CCND1
CCND1_2
Forward
CTTCAAATGTGTGCAGAAGGAG






Primer






638
PI3K-FOXO
CCND1
CCND1_2
Reverse
GAAGCGGTCCAGGTAGTTC






Primer






639
PI3K-FOXO
CCND1
CCND1_2
Probe
TGCGAGGAACAGAAGTGCGAGG





640
PI3K-FOXO
CCND1
CCND1_3
Forward
CATGCGGAAGATCGTCGC






Primer






641
PI3K-FOXO
CCND1
CCND1_3
Reverse
GACCTCCTCCTCGCACT






Primer






642
PI3K-FOXO
CCND1
CCND1_3
Probe
CTGGATGCTGGAGGTCTGCGAGGAA





643
PI3K-FOXO
CCND1
CCND1_4
Forward
GTGTCCTACTTCAAATGTGTGC






Primer






644
PI3K-FOXO
CCND1
CCND1_4
Reverse
CCTCCTCGCACTTCTGTTC






Primer






645
PI3K-FOXO
CCND1
CCND1_4
Probe
AAGATCGTCGCCACCTGGATGC





513
PI3K-FOXO
CAV1
CAV1_4
Probe
CACAGTGAAGGTGGTGAAG





514
PI3K-FOXO
CCNG2
CCNG2_1
Forward
ACAGGTTCTTGGCTCTTATG






Primer






515
PI3K-FOXO
CCNG2
CCNG2_1
Reverse
TGCAGTCTTCTTCAACTATTCT






Primer






516
PI3K-FOXO
CCNG2
CCNG2_1
Probe
CCTAAACATTTGTCTTGCATTGGAGTCTGT





517
PI3K-FOXO
CCNG2
CCNG2_2
Forward
TTGCTGGCTGCTAGAATAG






Primer






518
PI3K-FOXO
CCNG2
CCNG2_2
Reverse
GTCAGAAGCAGTACATTTACAC






Primer






519
PI3K-FOXO
CCNG2
CCNG2_2
Probe
TCCATCCACTCATGATGTGATCCGGA





520
PI3K-FOXO
CCNG2
CCNG2_3
Forward
ACAGGTTCTTGGCTCTTATG






primer






521
PI3K-FOXO
CCNG2
CCNG2_3
Reverse
TGCAGTCTTCTTCAACTATTCT






primer






522
PI3K-FOXO
CCNG2
CCNG2_3
Probe
ACATTTGTCTTGCATTGGAGTCTGT





523
PI3K-FOXO
CCNG2
CCNG2_4
Forward
TGGATCTTGCACTGAAACT






Primer






524
PI3K-FOXO
CCNG2
CCNG2_4
Reverse
CTCCAATGCAAGACAAATGTT






Primer






525
PI3K-FOXO
CCNG2
CCNG2_4
Probe
CACCTTCATAAGAGCCAAGAACCTGTCC





1066
PI3K-FOXO
CDKN1A
CDKN1A_1
Reverse
CTGTGGGCGGATTAGGGCT






primer






1067
PI3K-FOXO
CDKN1A
CDKN1A_1
Forward
GAGACTCTCAGGGTCGAAA






primer






1068
PI3K-FOXO
CDKN1A
CDKN1A_1
Probe
ATTTCTACCACTCCAAACGCCGGC





1069
PI3K-FOXO
CDKN1A
CDKN1A_2
Forward
GAGACTCTCAGGGTCGAAA






Primer






1070
PI3K-FOXO
CDKN1A
CDKN1A_2
Probe
AATCTGTCATGCTGGTCTGCCGC





1071
PI3K-FOXO
CDKN1A
CDKN1A_2
Reverse
TTCCTGTGGGCGGATTA






Primer






1072
PI3K-FOXO
CDKN1A
CDKN1A_3
Forward
AGGTGGACCTGGAGACT






Primer






1073
PI3K-FOXO
CDKN1A
CDKN1A_3
Probe
AATCTGTCATGCTGGTCTGCCGC





1074
PI3K-FOXO
CDKN1A
CDKN1A_3
Reverse
GGCTTCCTCTTGGAGAAGAT






Primer






1075
PI3K-FOXO
CDKN1A
CDKN1A_4
Forward
GGACCTGTCACTGTCTTGTA






Primer






1076
PI3K-FOXO
CDKN1A
CDKN1A_4
Probe
AAACGGCGGCAGACCAGCAT





1077
PI3K-FOXO
CDKN1A
CDKN1A_4
Reverse
GCGTTTGGAGTGGTAGAAATC






Primer






526
PI3K-FOXO
CDKN1B
CDKN1B_1
Forward
AGAGCCAACAGAACAGAAG






Primer






527
PI3K-FOXO
CDKN1B
CDKN1B_1
Reverse
TCGAGCTGTTTACGTTTGA






Primer






528
PI3K-FOXO
CDKN1B
CDKN1B_1
Probe
AAATGCCGGTTCTGTGGAGCAGA





529
PI3K-FOXO
CDKN1B
CDKN1B_2
Forward
CAAACGTAAACAGCTCGAATTA






Primer






530
PI3K-FOXO
CDKN1B
CDKN1B_2
Reverse
TCCATGAAGTCAGCGATATG






Primer






531
PI3K-FOXO
CDKN1B
CDKN1B_2
Probe
ACATCACTGCTTGATGAAGCAAGGAAGA





532
PI3K-FOXO
CDKN1B
CDKN1B_3
Forward
AAGAAGCCTGGCCTCAGAA






Primer






533
PI3K-FOXO
CDKN1B
CDKN1B_3
Reverse
TCATGTATATCTTCCTTGCTTCATC






Primer






534
PI3K-FOXO
CDKN1B
CDKN1B_3
Probe
TCTTAATTCGAGCTGTTTACGTTTGACGTC





535
PI3K-FOXO
CDKN1B
CDKN1B_4
Forward
CGGTTCTGTGGAGCAGACG






Primer






536
PI3K-FOXO
CDKN1B
CDKN1B_4
Reverse
CTTCATCAAGCAGTGATGTATCTG






Primer






537
PI3K-FOXO
CDKN1B
CDKN1B_4
Probe
CCTGGCCTCAGAAGACGTCAAAC





67
PI3K-FOXO
ESR1
ESR1_1
Forward
CTTCGATGATGGGCTTACT






Primer






68
PI3K-FOXO
ESR1
ESR1_1
Probe
CATGTGAACCAGCTCCCTGTCTGC





69
PI3K-FOXO
ESR1
ESR1_1
Reverse
GGAGGGTCAAATCCACAA






Primer






70
PI3K-FOXO
ESR1
ESR1_2
Probe
CAACTGGGCGAAGAGGGTGCCA





71
PI3K-FOXO
ESR1
ESR1_2
Forward
AGCTTCGATGATGGGCTTAC






primer






72
PI3K-FOXO
ESR1
ESR1_2
Reverse
CCTGATCATGGAGGGTCAAA






primer






73
PI3K-FOXO
ESR1
ESR1_3
Forward
GGAGCTGGTTCACATGAT






Primer






74
PI3K-FOXO
ESR1
ESR1_3
Probe
AGGGTCAAATCCACAAAGCCTGGC





75
PI3K-FOXO
ESR1
ESR1_3
Reverse
CTAGCCAGGCACATTCTA






Primer






76
PI3K-FOXO
ESR1
ESR1_4
Forward
GATGGGCTTACTGACCAA






Primer






77
PI3K-FOXO
ESR1
ESR1_4
Probe
CATGTGAACCAGCTCCCTGTCTGC





78
PI3K-FOXO
ESR1
ESR1_4
Reverse
CTGATCATGGAGGGTCAAA






Primer






538
PI3K-FOXO
FBXO32
FBXO32_1
Forward
GCTGCTGTGGAAGAAACT






primer






539
PI3K-FOXO
FBXO32
FBXO32_1
Reverse
GCCCTTTGTCTGACAGAATTA






primer






540
PI3K-FOXO
FBXO32
FBXO32_1
Probe
TGCCAGTACCACTTCTCCGAGC





541
PI3K-FOXO
FBXO32
FBXO32_2
Forward
ATCCGCAAACGATTAATTCTG






Primer






542
PI3K-FOXO
FBXO32
FBXO32_2
Reverse
TCCATACTGCTCTTTCCTTG






Primer






543
PI3K-FOXO
FBXO32
FBXO32_2
Probe
ACAAAGGGCAGCTGGATTGGAAGA





544
PI3K-FOXO
FBXO32
FBXO32_3
Forward
AAGAAACTCTGCCAGTACC






Primer






545
PI3K-FOXO
FBXO32
FBXO32_3
Reverse
ACATCGGACAAGTTTGAAATAC






Primer






546
PI3K-FOXO
FBXO32
FBXO32_3
Probe
AGCGGCAGATCCGCAAACGATTA





547
PI3K-FOXO
FBXO32
FBXO32_4
Forward
CTGCTGTGGAAGAAACTCT






Primer






548
PI3K-FOXO
FBXO32
FBXO32_4
Reverse
CTTGGGTAACATCGGACAA






Primer






549
PI3K-FOXO
FBXO32
FBXO32_4
Probe
AGCGGCAGATCCGCAAACGATTA





550
PI3K-FOXO
FOXO3_2
FOX03_1
Forward
GTGCCCTACTTCAAGGATAAG






Primer






551
PI3K-FOXO
FOXO3_2
FOXO3_1
Reverse
CTTGCCAGTTCCCTCATTC






Primer






552
PI3K-FOXO
FOXO3_2
FOXO3_1
Probe
AACTCCATCCGGCACAACCTGT





553
PI3K-FOXO
FOXO3_2
FOXO3_2
Forward
CAACCTGTCACTGCATAGT






Primer






554
PI3K-FOXO
FOXO3_2
FOXO3_2
Reverse
TTGATGATCCACCAAGAGC






Primer






555
PI3K-FOXO
FOXO3_2
FOXO3_2
Probe
TGCGGGTCCAGAATGAGGGAAC





556
PI3K-FOXO
FOXO3_2
FOXO3_3
Forward
ACAAACGGCTCACTCTGTC






Primer






557
PI3K-FOXO
FOXO3_2
FOXO3_3
Reverse
TGTTGCTGTCGCCCTTATC






Primer






558
PI3K-FOXO
FOXO3_2
FOXO3_3
Probe
TACGAGTGGATGGTGCGTTGCG





559
PI3K-FOXO
FOXO3_2
FOXO3_4
Forward
CGTGCCCTACTTCAAGGATAA






Primer






560
PI3K-FOXO
FOXO3_2
FOXO3_4
Reverse
TCATTCTGGACCCGCATG






Primer






561
PI3K-FOXO
FOXO3_2
FOXO3_4
Probe
CGGCTGGAAGAACTCCATCCGGCA





562
PI3K-FOXO
GADD45A
GADD45A_1
Forward
GGTGACGAATCCACATTCA






Primer






563
PI3K-FOXO
GADD45A
GADD45A_1
Reverse
TCACCGTTCAGGGAGATTA






Primer






564
PI3K-FOXO
GADD45A
GADD45A_1
Probe
TGCCGGGAAAGTCGCTACATGG





565
PI3K-FOXO
GADD45A
GADD45A_2
Forward
ACGAATCCACATTCATCTCAAT






primer






566
PI3K-FOXO
GADD45A
GADD45A_2
Reverse
GATCCATGTAGCGACTTTCC






primer






567
PI3K-FOXO
GADD45A
GADD45A_2
Probe
AAGGATCCTGCCTTAAGTCAACTTATTTG





568
PI3K-FOXO
GADD45A
GADD45A_3
Forward
CCTGCCTTAAGTCAACTTATTT






Primer






569
PI3K-FOXO
GADD45A
GADD45A_3
Reverse
TCATTCAGATGCCATCACC






Primer






570
PI3K-FOXO
GADD45A
GADD45A_3
Probe
TGCCGGGAAAGTCGCTACATGG





571
PI3K-FOXO
GADD45A
GADD45A_4
Forward
CACATTCATCTCAATGGAAGG






Primer






572
PI3K-FOXO
GADD45A
GADD45A_4
Reverse
CAGGGAGATTAATCACTGGAA






Primer






573
PI3K-FOXO
GADD45A
GADD45A_4
Probe
TGCCGGGAAAGTCGCTACATGG





574
PI3K-FOXO
INSR
INSR_1
Forward
GACCCAGTATGCCATCTTT






Primer






575
PI3K-FOXO
INSR
INSR_1
Reverse
GGCATCTGTCTGGACATAAA






Primer






576
PI3K-FOXO
INSR
INSR_1
Probe
TTTCGGATGAACGCCGGACCT





577
PI3K-FOXO
INSR
INSR_2
Forward
CTGGATCCAATCTCAGTGTC






Primer






578
PI3K-FOXO
INSR
INSR_2
Reverse
CAGGTAGTGGGTGATGTTG






Primer






579
PI3K-FOXO
INSR
INSR_2
Probe
AAGTGGAAACCACCCTCCGACC





580
PI3K-FOXO
INSR
INSR_3
Forward
GGCCAAGAGTGACATCATTTAT






primer






581
PI3K-FOXO
INSR
INSR_3
Reverse
GGTGGTTTCCACTTCAGAATAAT






primer






582
PI3K-FOXO
INSR
INSR_3
Probe
AACCCCTCTGTGCCCCT





583
PI3K-FOXO
INSR
INSR_4
Forward
CCATCTTTGTGAAGACCCT






Primer






584
PI3K-FOXO
INSR
INSR_4
Reverse
AATCTGGGATGATGAGTTAGAC






Primer






585
PI3K-FOXO
INSR
INSR_4
Probe
TCCAGACAGATGCCACCAACCC





586
PI3K-FOXO
MXI1
MXI1_1
Forward
CATCTGCGCCTTTGTTTAG






Primer






587
PI3K-FOXO
MXI1
MXI1_1
Reverse
GTGCTTTGGCTTTGTTGAG






Primer






588
PI3K-FOXO
MXI1
MXI1_1
Probe
CCCGGCACACAACACTTGGTTTG





589
PI3K-FOXO
MXI1
MXI1_2
Forward
GCACACAACACTTGGTTT






primer






590
PI3K-FOXO
MXI1
MXI1_2
Reverse
CTGTTCTCGTTCCAAATTCTC






primer






591
PI3K-FOXO
MXI1
MXI1_2
Probe
AGCACACATCAAGAAACTTGAAGAAGCTGA





592
PI3K-FOXO
MXI1
MXI1_3
Forward
CCAAAGCACACATCAAGAAA






Primer






593
PI3K-FOXO
MXI1
MXI1_3
Reverse
TTCGTATTCGTTCCATCTCC






Primer






594
PI3K-FOXO
MXI1
MXI1_3
Probe
AAAGCCAGCACCAGCTCGAGAA





595
PI3K-FOXO
MXI1
MXI1_4
Forward
TGATTCCACTAGGACCAGA






Primer






596
PI3K-FOXO
MXI1
MXI1_4
Reverse
TCTTTCAGCTTCTTCAAGTTTC






Primer






597
PI3K-FOXO
MXI1
MXI1_4
Probe
CCCGGCACACAACACTTGGTTTG





598
PI3K-FOXO
SOD2
SOD2_1
Forward
AGCGGCTTCAGCAGATC






primer






599
PI3K-FOXO
SOD2
SOD2_1
Reverse
GCCTGGAGCCCAGATAC






primer






600
PI3K-FOXO
SOD2
SOD2_1
Probe
ACTAGCAGCATGTTGAGCCGGG





601
PI3K-FOXO
SOD2
SOD2_2
Forward
GCACTAGCAGCATGTTGAG






Primer






602
PI3K-FOXO
SOD2
SOD2_2
Reverse
CGTTGATGTGAGGTTCCAG






Primer






603
PI3K-FOXO
SOD2
SOD2_2
Probe
TCCAGGCAGAAGCACAGCCT





604
PI3K-FOXO
SOD2
SOD2_3
Forward
CGACCTGCCCTACGACTAC






Primer






605
PI3K-FOXO
SOD2
SOD2_3
Reverse
GGTGACGTTCAGGTTGTTCAC






Primer






606
PI3K-FOXO
SOD2
SOD2_3
Probe
TGGAACCTCACATCAACGCGCA





607
PI3K-FOXO
SOD2
SOD2_4
Forward
CCTGGAACCTCACATCAAC






Primer






608
PI3K-FOXO
SOD2
SOD2_4
Reverse
CCTCCTGGTACTTCTCCTC






Primer






609
PI3K-FOXO
SOD2
SOD2_4
Probe
TCAGGTTGTTCACGTAGGCCGC





610
PI3K-FOXO
TNFSF10
TNFSF10_1
Forward
CTCTCTGTGTGGCTGTAAC






Primer






611
PI3K-FOXO
TNFSF10
TNFSF10_1
Reverse
GGGCTGTTCATACTCTCTTC






Primer






612
PI3K-FOXO
TNFSF10
TNFSF10_1
Probe
ACCAACGAGCTGAAGCAGATGCA





613
PI3K-FOXO
TNFSF10
TNFSF10_2
Forward
GGCTGTAACTTACGTGTACTT






Primer






614
PI3K-FOXO
TNFSF10
TNFSF10_2
Reverse
GGGTCCCAATAACTGTCATC






Primer






615
PI3K-FOXO
TNFSF10
TNFSF10_2
Probe
ACCAACGAGCTGAAGCAGATGCA





616
PI3K-FOXO
TNFSF10
TNFSF10_3
Forward
CCTGCAGTCTCTCTGTGT






primer






617
PI3K-FOXO
TNFSF10
TNFSF10_3
Reverse
GCCACTTTTGGAGTACTTGT






primer






618
PI3K-FOXO
TNFSF10
TNFSF10_3
Probe
TACCAACGAGCTGAAGCAGATGCA





619
PI3K-FOXO
TNFSF10
TNFSF10_3
Forward
GCTGATCGTGATCTTCACA






Primer






620
PI3K-FOXO
TNFSF10
TNFSF10_3
Reverse
GAGTACTTGTCCTGCATCTG






Primer






621
PI3K-FOXO
TNFSF10
TNFSF10_3
Probe
TGCAGTCTCTCTGTGTGGCTGT
















TABLE 4







Sets of primers and probes for determining the AP1-MAPK cellular signaling


pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence





448
AP1-MAPK
BCL2L11
BCL2L11_1
Forward
CCTTTCTTGGCCCTTGTT






primer






449
AP1-MAPK
BCL2L11
BCL2L11_1
Reverse
AAGGTTGCTTTGCCATTTG






primer






450
AP1-MAPK
BCL2L11
BCL2L11_1
Probe
TGACTCTCGGACTGAGAAACGCAA





451
AP1-MAPK
BCL2L11
BCL2L11_2
Forward
ATCGCATCATCGCGGTATT






Primer






452
AP1-MAPK
BCL2L11
BCL2L11_2
Reverse
GAGTCAGAGTCAGACATTTGGG






Primer






453
AP1-MAPK
BCL2L11
BCL2L11_2
Probe
CGCCCTTTCTTGGCCCTTGTTC





622
AP1-MAPK
DDIT3
DDIT3_1
Forward
TCCAGTACAACTTTACCTACAA






Primer






623
AP1-MAPK
DDIT3
DDIT3_1
Reverse
AGCACATCTGCAGGATAAT






Primer






624
AP1-MAPK
DDIT3
DDIT3_1
Probe
CAGGCATCAGACCAGCTTGCCA





625
AP1-MAPK
DDIT3
DDIT3_2
Forward
TGCTACATGGAGCTTGTTC






Primer






626
AP1-MAPK
DDIT3
DDIT3_2
Reverse
CGAAGGAGAAAGGCAATGA






Primer






627
AP1-MAPK
DDIT3
DDIT3_2
Probe
CCAACTGCAGAGATGGCAGCTGA





628
AP1-MAPK
DDIT3
DDIT3_3
Forward
GGCTGTATTCCAGTACAACTT






Primer






629
AP1-MAPK
DDIT3
DDIT3_3
Reverse
CAGTTGGATCAGTCTGGAAA






Primer






630
AP1-MAPK
DDIT3
DDIT3_3
Probe
CAGGCATCAGACCAGCTTGCCA





631
AP1-MAPK
DDIT3
DDIT3_4
Forward
CACCAAAGCAGCCATAAAC






Primer






632
AP1-MAPK
DDIT3
DDIT3_4
Reverse
CTCCATGTAGCAAACAGTCTA






Primer






633
AP1-MAPK
DDIT3
DDIT3_4
Probe
CAGGCATCAGACCAGCTTGCCA





634
AP1-MAPK
CCND1
CCND1_1
Forward
CCTCGGTGTCCTACTTCAAA






Primer






635
AP1-MAPK
CCND1
CCND1_1
Reverse
ACTTCTGTTCCTCGCAGAC






Primer






636
AP1-MAPK
CCND1
CCND1_1
Probe
AAGATCGTCGCCACCTGGATGC





637
AP1-MAPK
CCND1
CCND1_2
Forward
CTTCAAATGTGTGCAGAAGGAG






Primer






638
AP1-MAPK
CCND1
CCND1_2
Reverse
GAAGCGGTCCAGGTAGTTC






Primer






639
AP1-MAPK
CCND1
CCND1_2
Probe
TGCGAGGAACAGAAGTGCGAGG





640
AP1-MAPK
CCND1
CCND1_3
Forward
CATGCGGAAGATCGTCGC






Primer






641
AP1-MAPK
CCND1
CCND1_3
Reverse
GACCTCCTCCTCGCACT






Primer






642
AP1-MAPK
CCND1
CCND1_3
Probe
CTGGATGCTGGAGGTCTGCGAGGAA





643
AP1-MAPK
CCND1
CCND1_4
Forward
GTGTCCTACTTCAAATGTGTGC






Primer






644
AP1-MAPK
CCND1
CCND1_4
Reverse
CCTCCTCGCACTTCTGTTC






Primer






645
AP1-MAPK
CCND1
CCND1_4
Probe
AAGATCGTCGCCACCTGGATGC





646
AP1-MAPK
EGFR
EGFR_1
Forward
TACCAGATGGATGTGAACCC






primer






647
AP1-MAPK
EGFR
EGFR_1
Reverse
CCGTGATCTGTCACCACATA






primer






648
AP1-MAPK
EGFR
EGFR_1
Probe
TGCCACCTGCGTGAAGAAGTGT





649
AP1-MAPK
ENPP2
ENPP2_1
Forward
GATGCATTCCTTGTAACCAATA






primer






650
AP1-MAPK
ENPP2
ENPP2_1
Reverse
ATTTCTTCACCAATACCCTTTG






primer






651
AP1-MAPK
ENPP2
ENPP2_1
Probe
TCCTGCTTTCAAACGGGTCTGGA





652
AP1-MAPK
EZR
EZR_1
Forward
GAGTGAAATCAGGAACATCTC






primer






653
AP1-MAPK
EZR
EZR_1
Reverse
CTTGTTGATTCTCAGACGTG






primer






654
AP1-MAPK
EZR
EZR_1
Probe
ATCGACAAGAAGGCACCTGACTTTG





655
AP1-MAPK
GLRX
GLRX_1
Forward
CAGTCAATTGCCCATCAAACA






primer






656
AP1-MAPK
GLRX
GLRX_1
Reverse
GTGAGCTGTTGCAAATAATCTT






primer






657
AP1-MAPK
GLRX
GLRX_1
Probe
CACAGCCACCAACCACACTAACGA





658
AP1-MAPK
MMP1
MMP1_1
Forward
GTGTGACAGTAAGCTAACCTTTG






primer






659
AP1-MAPK
MMP1
MMP1_1
Reverse
GCTCAACTTCCGGGTAGAA






primer






660
AP1-MAPK
MMP1
MMP1_1
Probe
AGACAGATTCTACATGCGCACAAATCCC





661
AP1-MAPK
MMP3
MMP3_1
Forward
CGATGCAGCCATTTCTGATA






primer






662
AP1-MAPK
MMP3
MMP3_1
Reverse
GGAAAGTCTTCAGCTATTTGCT






primer






663
AP1-MAPK
MMP3
MMP3_1
Probe
CTGGAGATTTGATGAGAAGAGAAATTCCAT





664
AP1-MAPK
MMP3
MMP3_2
Forward
CATCCACACCCTAGGTTTC






Primer






665
AP1-MAPK
MMP3
MMP3_2
Reverse
CTCCAGTATTTGTCCTCTACAA






Primer






666
AP1-MAPK
MMP3
MMP3_2
Probe
TCGATGCAGCCATTTCTGATAAGGA





667
AP1-MAPK
MMP3
MMP3_3
Forward
CCCTAGGTTTCCCTCCAAC






Primer






668
AP1-MAPK
MMP3
MMP3_3
Reverse
GCTCCATGGAATTTCTCTTCTC






Primer






669
AP1-MAPK
MMP3
MMP3_3
Probe
TCGATGCAGCCATTTCTGATAAGGA





670
AP1-MAPK
MMP3
MMP3_4
Forward
GTAGAGGACAAATACTGGAGAT






Primer






671
AP1-MAPK
MMP3
MMP3_4
Reverse
GAGTCAATCCCTGGAAAGT






Primer






672
AP1-MAPK
MMP3
MMP3_4
Probe
CCATGGAGCCAGGCTTTCCCAA





673
AP1-MAPK
MMP9
MMP9_1_1
Forward
TGGAGACCTGAGAACCAATC






Primer






674
AP1-MAPK
MMP9
MMP9_1
Reverse
ACCCGAGTGTAACCATAGC






Primer






675
AP1-MAPK
MMP9
MMP9_1
Probe
AGGCAGCTGGCAGAGGAATACCT





676
AP1-MAPK
MMP9
MMP9_2
Forward
GGAGACCTGAGAACCAATC






primer






677
AP1-MAPK
MMP9
MMP9_2
Reverse
GACTCTCCACGCATCTCTG






primer






678
AP1-MAPK
MMP9
MMP9_2
Probe
AGGCAGCTGGCAGAGGAATACCT





679
AP1-MAPK
MMP9
MMP9_3
Forward
AGAACCAATCTCACCGACAG






Primer






680
AP1-MAPK
MMP9
MMP9_3
Reverse
CCAGAGATTTCGACTCTCCAC






Primer






681
AP1-MAPK
MMP9
MMP9_3
Probe
TGGTTACACTCGGGTGGCAGAGA





682
AP1-MAPK
MMP9
MMP9_4
Forward
TCCACCCTTGTGCTCTT






Primer






683
AP1-MAPK
MMP9
MMP9_4
Reverse
ACTCTCCACGCATCTCTG






Primer






684
AP1-MAPK
MMP9
MMP9_4
Probe
AACCAATCTCACCGACAGGCAGC





364
AP1-MAPK
PLAU
PLAU_1
Forward
TCGAACTGTGACTGTCTAAATG






Primer






365
AP1-MAPK
PLAU
PLAU_1
Reverse
CTGCCCTCCGAATTTCTTT






Primer






366
AP1-MAPK
PLAU
PLAU_1
Probe
AACATTCACTGGTGCAACTGCCC





367
AP1-MAPK
PLAU
PLAU_2
Forward
GTTCCATCGAACTGTGACT






Primer






368
AP1-MAPK
PLAU
PLAU_2
Reverse
CGAATTTCTTTGGGCAGTTG






Primer






369
AP1-MAPK
PLAU
PLAU_2
Probe
TGGAGGAACATGTGTGTCCAACAAGT





370
AP1-MAPK
PLAU
PLAU_3
Forward
GTGCAACTGCCCAAAGAAAT






Primer






371
AP1-MAPK
PLAU
PLAU_3
Reverse
GACAGTGGCAGAGTTCCAG






Primer






372
AP1-MAPK
PLAU
PLAU_3
Probe
AGGAAAGGCCAGCACTGACACC





373
AP1-MAPK
PLAU
PLAU_4
Forward
ACTGCCCAAAGAAATTCGG






primer






374
AP1-MAPK
PLAU
PLAU_4
Reverse
CTGGCCTTTCCTCGGTAAA






primer






375
AP1-MAPK
PLAU
PLAU_4
Probe
CAGCACTGTGAAATAGATAAGTCAAAAACCT





685
AP1-MAPK
PLAUR
PLAUR_1
Forward
TGTGTGGGTTAGACTTGTG






primer






686
AP1-MAPK
PLAUR
PLAUR_1
Reverse
GTAACGGCTTCGGGAATAG






primer






687
AP1-MAPK
PLAUR
PLAUR_1
Probe
AACCAGGGCAACTCTGGCCG





688
AP1-MAPK
PLAUR
PLAUR_2
Forward
TGTGTGGGTTAGACTTGTG






Primer






689
AP1-MAPK
PLAUR
PLAUR_2
Reverse
CACAGCTCATGTCTGATGA






Primer






690
AP1-MAPK
PLAUR
PLAUR_2
Probe
CCGAAGCCGTTACCTCGAATGCA





691
AP1-MAPK
PLAUR
PLAUR_3
Forward
CTCAGAGAAGACCAACAGG






Primer






692
AP1-MAPK
PLAUR
PLAUR_3
Reverse
CTTCGGGAATAGGTGACAG






Primer






693
AP1-MAPK
PLAUR
PLAUR_3
Probe
ACTTGTGCAACCAGGGCAACTCT





694
AP1-MAPK
PLAUR
PLAUR_4
Forward
GAGGTTGTGTGTGGGTTAG






Primer






695
AP1-MAPK
PLAUR
PLAUR_4
Reverse
TGATGAGCCACAGGAAATG






Primer






696
AP1-MAPK
PLAUR
PLAUR_4
Probe
ACTTGTGCAACCAGGGCAACTCT





697
AP1-MAPK
PTGS2
PTGS2_1
Forward
TTGACAGTCCACCAACTTAC






Primer






698
AP1-MAPK
PTGS2
PTGS2_1
Reverse
GGAGGAAGGGCTCTAGTATAA






Primer






699
AP1-MAPK
PTGS2
PTGS2_1
Probe
AAGCTGGGAAGCCTTCTCTAACCTCT





700
AP1-MAPK
PTGS2
PTGS2_2
Forward
GTGAATAACATTCCCTTCCTTC






Primer






701
AP1-MAPK
PTGS2
PTGS2_2
Reverse
TAGCCATAGTCAGCATTGTAA






Primer






702
AP1-MAPK
PTGS2
PTGS2_2
Probe
CCAGATCACATTTGATTGACAGTCCACCA





703
AP1-MAPK
PTGS2
PTGS2_3
Forward
TGTGTTGACATCCAGATCAC






primer






704
AP1-MAPK
PTGS2
PTGS2_3
Reverse
TAGGAGAGGTTAGAGAAGGC






primer






705
AP1-MAPK
PTGS2
PTGS2_3
Probe
CCACCAACTTACAATGCTGACTATGGCT





706
AP1-MAPK
PTGS2
PTGS2_4
Forward
CCAACTTACAATGCTGACTATG






Primer






707
AP1-MAPK
PTGS2
PTGS2_4
Reverse
CAATCATCAGGCACAGGAG






Primer






708
AP1-MAPK
PTGS2
PTGS2_4
Probe
AAGCTGGGAAGCCTTCTCTAACCTCT





709
AP1-MAPK
SERPINE1
SERPINE1_1
Forward
TGTCTCTGTGCCCATGAT






Primer






710
AP1-MAPK
SERPINE1
SERPINE1_1
Reverse
CAGTTCCAGGATGTCGTAGT






Primer






711
AP1-MAPK
SERPINE1
SERPINE1_1
Probe
ACTGAGTTCACCACGCCCGATG





712
AP1-MAPK
SERPINE1
SERPINE1_2
Forward
CGCCTCTTCCACAAATCAG






Primer






713
AP1-MAPK
SERPINE1
SERPINE1_2
Reverse
TCCAGGATGTCGTAGTAATGG






Primer






714
AP1-MAPK
SERPINE1
SERPINE1_2
Probe
ATGGGCACAGAGACAGTGCTGC





715
AP1-MAPK
SERPINE1
SERPINE1_3
Forward
TGGCTCAGACCAACAAGT






Primer






716
AP1-MAPK
SERPINE1
SERPINE1_3
Reverse
CAGCAATGAACATGCTGAGG






Primer






717
AP1-MAPK
SERPINE1
SERPINE1_3
Probe
ACTACGACATCCTGGAACTGCCCT





718
AP1-MAPK
SERPINE1
SERPINE1_4
Forward
CCACAAATCAGACGGCAGCA






primer






719
AP1-MAPK
SERPINE1
SERPINE1_4
Reverse
GTCGTAGTAATGGCCATCGG






primer






720
AP1-MAPK
SERPINE1
SERPINE1_4
Probe
CCCATGATGGCTCAGACCAACAAGT





721
AP1-MAPK
TIMP1
TIMP1_1
Forward
CCAGAGAGACACCAGAGAA






Primer






722
AP1-MAPK
TIMP1
TIMP1_1
Reverse
GAGGTCGGAATTGCAGAAG






Primer






723
AP1-MAPK
TIMP1
TIMP1_1
Probe
TCTGGCATCCTGTTGTTGCTGTGG





724
AP1-MAPK
TIMP1
TIMP1_2
Forward
CCCAGAGAGACACCAGAGAA






primer






725
AP1-MAPK
TIMP1
TIMP1_2
Reverse
GCTATCAGCCACAGCAACA






primer






726
AP1-MAPK
TIMP1
TIMP1_2
Probe
CCTGGCTTCTGGCATCCTGT





727
AP1-MAPK
TIMP1
TIMP1_3
Forward
AGAGACACCAGAGAACCCA






Primer






728
AP1-MAPK
TIMP1
TIMP1_3
Reverse
GTGGGACACAGGTGCAG






Primer






729
AP1-MAPK
TIMP1
TIMP1_3
Probe
TCTGGCATCCTGTTGTTGCTGTGG





730
AP1-MAPK
TIMP1
TIMP1_4
Forward
CATCGCCGCAGATCCAG






Primer






731
AP1-MAPK
TIMP1
TIMP1_4
Reverse
TCAGCCACAGCAACAACA






Primer






732
AP1-MAPK
TIMP1
TIMP1_4
Probe
CCCAGAGAGACACCAGAGAACCCA





733
AP1-MAPK
TP53
TP53_1
Forward
AAACTCATGTTCAAGACAGAAG






Primer






734
AP1-MAPK
TP53
TP53_1
Reverse
CAAGCAAGGGTTCAAAGAC






Primer






735
AP1-MAPK
TP53
TP53_1
Probe
TGGAGAATGTCAGTCTGAGTCAGGCC





736
AP1-MAPK
TP53
TP53_2
Forward
GTCTACCTCCCGCCATAAA






Primer






737
AP1-MAPK
TP53
TP53_2
Reverse
GGGAACAAGAAGTGGAGAATG






Primer






738
AP1-MAPK
TP53
TP53_2
Probe
TGTTCAAGACAGAAGGGCCTGACTCA





739
AP1-MAPK
TP53
TP53_3
Forward
CAAGACAGAAGGGCCTGAC






Primer






740
AP1-MAPK
TP53
TP53_3
Reverse
CACACCTATTGCAAGCAAGG






Primer






741
AP1-MAPK
TP53
TP53_3
Probe
TCAGACTGACATTCTCCACTTCTTGTTCCC





742
AP1-MAPK
TP53
TP53_4
Forward
CAGCCACCTGAAGTCCAAA






Primer






743
AP1-MAPK
TP53
TP53_4
Reverse
GTGGAGAATGTCAGTCTGAGTC






Primer






744
AP1-MAPK
TP53
TP53_4
Probe
TTATGGCGGGAGGTAGACTGACCC





745
AP1-MAPK
VEGFD
VEGFD_1
Forward
GCCAGAAGCACAAGCTATTTC






primer






746
AP1-MAPK
VEGFD
VEGFD_1
Reverse
TGCTTTGCACATGCTGTTT






primer






747
AP1-MAPK
VEGFD
VEGFD_1
Probe
ACCAGACCATGTGCAAGTGGCA





748
AP1-MAPK
VEGFD
VEGFD_2
Forward
CCTTTCATACCAGACCATGT






Primer






749
AP1-MAPK
VEGFD
VEGFD_2
Reverse
CGCTGAATCAAGGATTCTTTC






Primer






750
AP1-MAPK
VEGFD
VEGFD_2
Probe
TGCAAAGCATTGCCGCTTTCCA





751
AP1-MAPK
VEGFD
VEGFD_3
Forward
CTATTTCACCCAGACACCTG






Primer






752
AP1-MAPK
VEGFD
VEGFD_3
Reverse
AAGGATTCTTTCGGCTGTG






Primer






753
AP1-MAPK
VEGFD
VEGFD_3
Probe
ACCAGACCATGTGCAAGTGGCA





754
AP1-MAPK
VEGFD
VEGFD_4
Forward
TTTGAGTGCAAAGAAAGTCTG






Primer






755
AP1-MAPK
VEGFD
VEGFD_4
Reverse
ACATGGTCTGGTATGAAAGG






Primer






756
AP1-MAPK
VEGFD
VEGFD_4
Probe
AGACCTGCTGCCAGAAGCACAA





757
AP1-MAPK
VIM
VIM_1
Forward
GACAGGATGTTGACAATGC






Primer






758
AP1-MAPK
VIM
VIM_1
Reverse
CCTCTTCGTGGAGTTTCTT






Primer






759
AP1-MAPK
VIM
VIM_1
Probe
TGCGTTCAAGGTCAAGACGTGCC





760
AP1-MAPK
VIM
VIM_2
Forward
CAATCTTTCAGACAGGATGTTG






Primer






761
AP1-MAPK
VIM
VIM_2
Reverse
GCTCCTGGATTTCCTCTTC






Primer






762
AP1-MAPK
VIM
VIM_2
Probe
ACAATGCGTCTCTGGCACGTCTT





763
AP1-MAPK
VIM
VIM_3
Forward
CCTCCGGGAGAAATTGCAG






Primer






764
AP1-MAPK
VIM
VIM_3
Reverse
GTCAAGACGTGCCAGAGAC






Primer






765
AP1-MAPK
VIM
VIM 3
Probe
AGATGCTTCAGAGAGAGGAAGCCGAA





766
AP1-MAPK
VIM
VIM_4
Forward
GGAGGAGATGCTTCAGAGA






primer






767
AP1-MAPK
VIM
VIM_4
Reverse
ATTCCACTTTGCGTTCAAG






primer






768
AP1-MAPK
VIM
VIM_4
Probe
TCTTTCAGACAGGATGTTGACAATGCG
















TABLE 5







Sets of primers and probes for determining the Notch cellular signaling


pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence





769
Notch
CD44
CD44_1
Forward
TGTAACACCTACACCATTATCT






Primer






770
Notch
CD44
CD44_1
Reverse
TCGCAATGAAACAATCAGTAG






Primer






771
Notch
CD44
CD44_1
Probe
ACCATTACAGGGAGCTGGGACACT





772
Notch
CD44
CD44_2
Forward
ACTCCAGACCAGTTTATGAC






Primer






773
Notch
CD44
CD44_2
Reverse
CCAACGGTTGTTTCTTTCC






Primer






774
Notch
CD44
CD44_2
Probe
AGCTGATGAGACAAGGAACCTGCA





775
Notch
CD44
CD44_3
Forward
GCATTTGGTGAACAAGGAG






Primer






776
Notch
CD44
CD44_3
Reverse
CCAATCTTCATGTCCACATTC






Primer






777
Notch
CD44
CD44_3
Probe
AGCTGATGAGACAAGGAACCTGCA





778
Notch
CD44
CD44_4
Forward
TGACAGCTGATGAGACAAG






Primer






779
Notch
CD44
CD44_4
Reverse
AGCTCCCTGTAATGGTTATG






Primer






780
Notch
CD44
CD44_4
Probe
CCTGCAGAATGTGGACATGAAGATTGGG





781
Notch
EPHB3
EPHB3_1
Forward
TCACTGAGTTCATGGAAAACTG






primer






782
Notch
EPHB3
EPHB3_1
Reverse
GTTCATCTCGGACAGGTACTT






primer






783
Notch
EPHB3
EPHB3_1
Probe
CCTTCCTCCGGCTCAACGATGGG





784
Notch
FABP7
FABP7_1
Forward
CTGTTCGCCACTATGAGAA






Primer






785
Notch
FABP7
FABP7_1
Reverse
GGATAGCACTGAGACTTGAG






Primer






786
Notch
FABP7
FABP7_2
Probe
AAACTGAAGAGCTCTTCCAAGCCC





787
Notch
FABP7
FABP7_2
Forward
TGTAAGAGAAATTAAGGATGGC






Primer






788
Notch
FABP7
FABP7_2
Reverse
CTGAGACTTGAGGAAACAGA






Primer






789
Notch
FABP7
FABP7_2
Probe
TGATGTGGTTGCTGTTCGCCACT





790
Notch
FABP7
FABP7_3
Forward
TTTCTGTTTCCTCAAGTCTCA






Primer






791
Notch
FABP7
FABP7_3
Reverse
ACACCAAGGATAACCTTCTAAT






Primer






792
Notch
FABP7
FABP7_3
Probe
TGATCAGCCATGTTGTAATAGGATAGCAC





793
Notch
FABP7
FABP7_4
Forward
GCCACTATGAGAAGGCATAA






Primer






794
Notch
FABP7
FABP7_4
Reverse
CCTCCACACCAAGGATAAC






Primer






795
Notch
FABP7
FABP7_4
Probe
TCTGTTTCCTCAAGTCTCAGTGCTATCCT





796
Notch
HES1
HES1_1
Forward
GTCTACCTCTCTCCTTGGT






primer






797
Notch
HES1
HES1_1
Reverse
CAAGTGCTGAGGGTTTATTAT






primer






798
Notch
HES1
HES1_1
Probe
TGGAACAGCGCTACTGATCACCAA





799
Notch
HES4
HES4_1
Forward
AGAGCTCCCGCCACTC






primer






800
Notch
HES4
HES4_1
Reverse
AGGTGTCTCACGGTCATCTC






primer






801
Notch
HES4
HES4_1
Probe
AGGATGTCCGCCTTCTCCAGCTTC





802
Notch
HES5
HES5_1
Forward
TGGGTGCCTCCACTATGAT






Primer






803
Notch
HES5
HES5_1
Reverse
CTTCCACGTGACTGAGAGTT






Primer






804
Notch
HES5
HES5_1
Probe
TCTGTGTGGGTGGATGCGTGTG





805
Notch
HES5
HES5_2
Forward
GCCTCCACTATGATCCTTAAA






primer






806
Notch
HES5
HES5_2
Reverse
CGTGACTGAGAGTTCAATTTC






primer






807
Notch
HES5
HES5_2
Probe
ATGCGTGTGGGCACGACTTTGTAC





808
Notch
HEY1
HEY1_1
Forward
TTTGAGAAGCAGGGATCTG






Primer






809
Notch
HEY1
HEY1_1
Reverse
CCAAACTCCGATAGTCCATAG






Primer






810
Notch
HEY1
HEY1_1
Probe
TTACTTTGACGCGCACGCCCTT





811
Notch
HEY1
HEY1_2
Forward
GACCGTGGATCACCTGAAA






primer






812
Notch
HEY1
HEY1_2
Reverse
CCAAACTCCGATAGTCCATAG






primer






813
Notch
HEY1
HEY1_2
Probe
TTACTTTGACGCGCACGCCCTT





814
Notch
HEY1
HEY1_3
Forward
GCCCTTGCTATGGACTATC






Primer






815
Notch
HEY1
HEY1_3
Reverse
TCTAGTCCTTCAATGATGCTC






Primer






816
Notch
HEY1
HEY1_3
Probe
CCTGGCAGAAGTTGCGCGTTATCT





817
Notch
HEY1
HEY1_4
Forward
CAGGAGGGAAAGGTTACTT






Primer






818
Notch
HEY1
HEY1_4
Reverse
CCTTCAATGATGCTCAGATAAC






Primer






819
Notch
HEY1
HEY1_4
Probe
ACGCCCTTGCTATGGACTATCGGA





820
Notch
HEY2
HEY2_1
Forward
ATGACAGTGGATCATTTGAAGA






primer






821
Notch
HEY2
HEY2_1
Reverse
CGGAATCCTATGCTCATGAA






primer






822
Notch
HEY2
HEY2_1
Probe
ACTTTGACGCACACGCTCTTGCCA





823
Notch
HEY2
HEY2_2
Forward
AAGATGCTTCAGGCAACAG






Primer






824
Notch
HEY2
HEY2_2
Reverse
CAACTTCTGTTAGGCACTCTC






Primer






825
Notch
HEY2
HEY2_2
Probe
AAGGCTACTTTGACGCACACGCT





826
Notch
HEY2
HEY2_3
Forward
GACTTGTGCCAACTGCTTT






Primer






827
Notch
HEY2
HEY2_3
Reverse
GCGTCAAAGTAGCCTTTACC






Primer






828
Notch
HEY2
HEY2_3
Probe
TCATTTGAAGATGCTTCAGGCAACAGGG





829
Notch
HEY2
HEY2_4
Forward
ACAAGGATCTGCAAAGTTAGA






Primer






830
Notch
HEY2
HEY2_4
Reverse
ATGAAGTCCATGGCAAGAG






Primer






831
Notch
HEY2
HEY2_4
Probe
CGTGTGCGTCAAAGTAGCCTTTACCC





832
Notch
MYC
MYC_1
Forward
TGCTTAGACGCTGGATTT






Primer






833
Notch
MYC
MYC_1
Reverse
TCGTAGTCGAGGTCATAGT






Primer






834
Notch
MYC
MYC_1
Probe
CCCTCAACGTTAGCTTCACCAACAGG





835
Notch
MYC
MYC_2
Forward
TCTCTGAAAGGCTCTCCT






Primer






836
Notch
MYC
MYC_2
Reverse
TCCTGTTGGTGAAGCTAAC






Primer






837
Notch
MYC
MYC_2
Probe
TGCAGCTGCTTAGACGCTGGATTT





838
Notch
MYC
MYC_3
Forward
GACCCGCTTCTCTGAAA






Primer






839
Notch
MYC
MYC_3
Reverse
AGGTCATAGTTCCTGTTGG






Primer






840
Notch
MYC
MYC_3
Probe
TGCAGCTGCTTAGACGCTGGATTT





841
Notch
MYC
MYC_4
Forward
TTCGGGTAGTGGAAAACCA






primer






842
Notch
MYC
MYC_4
Reverse
CATAGTTCCTGTTGGTGAAGC






primer






843
Notch
MYC
MYC_4
Probe
CTCCCGCGACGATGCCCCTCAA





844
Notch
NOX1
NOX1_1
Forward
CTGTTCGCCACTATGAGAA






Primer






845
Notch
NOX1
NOX1_1
Reverse
GGATAGCACTGAGACTTGAG






Primer






846
Notch
NOX1
NOX1_1
Probe
AAACTGAAGAGCTCTTCCAAGCCC





847
Notch
NOX1
NOX1_2
Forward
TGTAAGAGAAATTAAGGATGGC






Primer






848
Notch
NOX1
NOX1_2
Reverse
CTGAGACTTGAGGAAACAGA






Primer






849
Notch
NOX1
NOX1_2
Probe
TGATGTGGTTGCTGTTCGCCACT





850
Notch
NOX1
NOX1_3
Forward
TTTCTGTTTCCTCAAGTCTCA






Primer






851
Notch
NOX1
NOX1_3
Reverse
ACACCAAGGATAACCTTCTAAT






Primer






852
Notch
NOX1
NOX1_3
Probe
TGATCAGCCATGTTGTAATAGGATAGCAC





853
Notch
NOX1
NOX1_4
Forward
GCCACTATGAGAAGGCATAA






Primer






854
Notch
NOX1
NOX1_4
Reverse
CCTCCACACCAAGGATAAC






Primer






855
Notch
NOX1
NOX1_4
Probe
TCTGTTTCCTCAAGTCTCAGTGCTATCCT





856
Notch
NRARP
NRARP_1
Forward
GTTGCTGGTGTTCTAAACTATT






Primer






857
Notch
NRARP
NRARP_1
Reverse
CCCATAACCACATTGACCA






Primer






858
Notch
NRARP
NRARP_1
Probe
TTTGTGGGTGGAGTTTGTGCGC





859
Notch
NRARP
NRARP_2
Forward
TGTGTGTACATTTGTGGGT






Primer






860
Notch
NRARP
NRARP_2
Reverse
CAAGAAATGGTAGACTCAAGTT






Primer






861
Notch
NRARP
NRARP_2
Probe
ACTGCGTGGTCAATGTGGTTATGGG





862
Notch
NRARP
NRARP_3
Forward
CATTTGTGGGTGGAGTTTG






primer






863
Notch
NRARP
NRARP_3
Reverse
GCAACCAAGAAATGGTAGAC






primer






864
Notch
NRARP
NRARP_3
Probe
ACTGCGTGGTCAATGTGGTTATGGG





865
Notch
NRARP
NRARP_4
Forward
CGCTGTTGCTGGTGTTCTA






Primer






866
Notch
NRARP
NRARP_4
Reverse
CATTGACCACGCAGTGTTT






Primer






867
Notch
NRARP
NRARP_4
Probe
TTTGTGGGTGGAGTTTGTGCGC





868
Notch
PIN1
PIN1_1
Forward
ACAGTTCAGCGACTGCAG






primer






869
Notch
PIN1
PIN1_1
Reverse
AACGAGGCGTCTTCAAATG






primer






870
Notch
PIN1
PIN1_1
Probe
TCAGCAGAGGTCAGATGCAGAAGC





871
Notch
PIN1
PIN1_2
Forward
GCTGATCAACGGCTACATC






Primer






872
Notch
PIN1
PIN1_2
Reverse
GCGTCTTCAAATGGCTTCT






Primer






873
Notch
PIN1
PIN1_2
Probe
TGCAGTCGCTGAACTGTGAGGC





874
Notch
PIN1
PIN1_3
Forward
GCAGAGGTCAGATGCAGAAG






Primer






875
Notch
PIN1
PIN1_3
Reverse
GCGGAGGATGATGTGGATG






Primer






876
Notch
PIN1
PIN1_3
Probe
TTGAAGACGCCTCGTTTGCGCT





877
Notch
PIN1
PIN1_4
Forward
AGAGGAGGACTTTGAGTCT






Primer






878
Notch
PIN1
PIN1_4
Reverse
CAAATGGCTTCTGCATCTG






Primer






879
Notch
PIN1
PIN1_4
Probe
TGCAGTCGCTGAACTGTGAGGC





880
Notch
PLXND1
PLXND1_1
Forward
CCTGTTCGTCTTCTGTACC






Primer






881
Notch
PLXND1
PLXND1_1
Reverse
GATTCCATCTCCTCCATCTG






Primer






882
Notch
PLXND1
PLXND1_1
Probe
ACGTGCTGAGCGTTACTGGCAG





883
Notch
PLXND1
PLXND1_2
Forward
CATCGTGTCCATCGTCATC






primer






884
Notch
PLXND1
PLXND1_2
Reverse
AGTAACGCTCAGCACGTC






primer






885
Notch
PLXND1
PLXND1_2
Probe
TGGTGGCCCTGTTCGTCTTCTGTA





886
Notch
PLXND1
PLXND1_3
Forward
CATCGTGTCCATCGTCATC






Primer






887
Notch
PLXND1
PLXND1_3
Reverse
CTCGGATCTGAGATTCCATC






Primer






888
Notch
PLXND1
PLXND1_3
Probe
ACGTGCTGAGCGTTACTGGCAG





889
Notch
PLXND1
PLXND1_4
Forward
CACAATCCAGGTAGGGAAC






Primer






890
Notch
PLXND1
PLXND1_4
Reverse
CTTGGTACAGAAGACGAACA






Primer






891
Notch
PLXND1
PLXND1_4
Probe
AACCAGACCATCGCCACACTGC





892
Notch
SOX9
SOX9_1
Forward
CCTGTTCGTCTTCTGTACC






Primer






893
Notch
SOX9
SOX9_1
Reverse
GATTCCATCTCCTCCATCTG






Primer






894
Notch
SOX9
SOX9_1
Probe
ACGTGCTGAGCGTTACTGGCAG





895
Notch
SOX9
SOX9_2
Forward
CACAATCCAGGTAGGGAAC






Primer






896
Notch
SOX9
SOX9_2
Reverse
CTTGGTACAGAAGACGAACA






Primer






897
Notch
SOX9
SOX9_2
Probe
AACCAGACCATCGCCACACTGC





898
Notch
SOX9
SOX9_3
Forward
GACCAGTACCCGCACTT






primer






899
Notch
SOX9
SOX9_3
Reverse
CGCTTCTCGCTCTCGTT






primer






900
Notch
SOX9
SOX9_3
Probe
CGCTGGGCAAGCTCTGGAGACT





901
Notch
SOX9
SOX9_4
Forward
CATCGTGTCCATCGTCATC






Primer






902
Notch
SOX9
SOX9_4
Reverse
CTCGGATCTGAGATTCCATC






Primer






903
Notch
SOX9
SOX9_4
Probe
ACGTGCTGAGCGTTACTGGCAG
















TABLE 6







Sets of primers and probes for determining the HH cellular signaling


pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence















904
HH
CFLAR
CFLAR_1
Forward primer
GGTGAGGATTTGGATAAATCTGATG





905
HH
CFLAR
CFLAR_1
Probe
ACATGGGCCGAGGCAAGATAAGCAA





906
HH
CFLAR
CFLAR_1
Reverse primer
TCAACCACAAGGTCCAAGAAAC





907
HH
CFLAR
CFLAR_2
Forward Primer
GCAGAGATTGGTGAGGATT





908
HH
CFLAR
CFLAR_2
Probe
TGGGCCGAGGCAAGATAAGCAA





909
HH
CFLAR
CFLAR_2
Reverse Primer
TCCAACTCAACCACAAGG





910
HH
CFLAR
CFLAR_3
Forward Primer
GAGGCAAGATAAGCAAGGA





911
HH
CFLAR
CFLAR_3
Probe
TCTTGGACCTTGTGGTTGAGTTGGAGA





912
HH
CFLAR
CFLAR_3
Reverse Primer
GTGGATGTTCTTTAGGCATTT





913
HH
CFLAR
CFLAR_4
Forward Primer
ATGGCAGAGATTGGTGAG





914
HH
CFLAR
CFLAR_4
Probe
TGGGCCGAGGCAAGATAAGCAA





915
HH
CFLAR
CFLAR_4
Reverse Primer
ACCACAAGGTCCAAGAAA





916
HH
FOXM1
FOXM1_1
Forward Primer
GGACCACTTTCCCTACTTTA





917
HH
FOXM1
FOXM1_1
Probe
ATCCGCCACAACCTTTCCCTGC





918
HH
FOXM1
FOXM1_1
Reverse Primer
GTCTCCCGGACAAACAT





919
HH
FOXM1
FOXM1_2
Forward Primer
TGGATTGAGGACCACTTTC





920
HH
FOXM1
FOXM1_2
Probe
ATCCGCCACAACCTTTCCCTGC





921
HH
FOXM1
FOXM1_2
Reverse Primer
GAAGGAGACCTTGCCATT





922
HH
FOXM1
FOXM1_3
Forward Primer
CAACAGCACTGAGAGGAA





923
HH
FOXM1
FOXM1_3
Probe
ACATTGCCAAGCCAGGCTGGAA





924
HH
FOXM1
FOXM1_3
Reverse Primer
ATGTCGTGCAGGGAAAG





925
HH
FYN
FYN_1
Forward Primer
GTGTGAACTCTTCGTCTCA





926
HH
FYN
FYN_1
Probe
ACGAGAGGAGGAACAGGAGTGACA





927
HH
FYN
FYN_1
Reverse Primer
CTGTCCGTGCTTCATAGT





928
HH
FYN
FYN_2
Forward Primer
AAGGACTCACCGTCTTTG





929
HH
FYN
FYN_2
Probe
ACGAGAGGAGGAACAGGAGTGACA





930
HH
FYN
FYN_2
Reverse Primer
GTCCGTGCTTCATAGTCATA





931
HH
FYN
FYN_3
Forward Primer
CTTTGGAGGTGTGAACTCT





932
HH
FYN
FYN_3
Probe
ACGAGAGGAGGAACAGGAGTGACA





933
HH
FYN
FYN_3
Reverse Primer
ATCTTCTGTCCGTGCTTC





934
HH
FYN
FYN_4
Forward primer
CGTCTTTGGAGGTGTGAACT





935
HH
FYN
FYN_4
Probe
CGAGAGGAGGAACAGGAGTGACACTCTTTGT





936
HH
FYN
FYN_4
Reverse primer
TCCGTGCTTCATAGTCATAAAGG





937
HH
GLI1
GLI1_1
Forward Primer
CCTTCAAAGCCCAGTACA





938
HH
GLI1
GLI1_1
Probe
ACGTTTGAAGGGTGCCGGAAGT





939
HH
GLI1
GLI1_1
Reverse Primer
TTTCGAGGCGTGAGTATG





940
HH
GLI1
GLI1_2
Forward primer
CAGTACATGCTGGTGGTTCAC





941
HH
GLI1
GLI1_2
Probe
ACTGGCGAGAAGCCACACAAGTGC





942
HH
GLI1
GLI1_2
Reverse primer
TTCGAGGCGTGAGTATGACTT





943
HH
GLI1
GLI1_3
Forward Primer
CAAAGCCCAGTACATGCT





944
HH
GLI1
GLI1_3
Probe
ACGTTTGAAGGGTGCCGGAAGT





945
HH
GLI1
GLI1_4
Forward Primer
GTACATGCTGGTGGTTCA





946
HH
GLI1
GLI1_4
Probe
CACACTGGCGAGAAGCCACACAA





947
HH
GLI1
GLI1_4
Reverse Primer
GAGGCGTGAGTATGACTTC





948
HH
GLI1
GLI1_X3
Reverse Primer
GGTGCGTCTTCAGGTTT





949
HH
HHIP
HHIP_1
Forward Primer
GAGGACCAGCATCTAACTAC





950
HH
HHIP
HHIP_1
Probe
TCAGCAGAAAGCACAAACACAACTGC





951
HH
HHIP
HHIP_1
Reverse Primer
ACTCACAACCTCCTGAATAC





952
HH
HHIP
HHIP_2
Forward Primer
CAGCAGAAAGCACAAACACAAC





953
HH
HHIP
HHIP_2
Probe
ATTCAGGAGGTTGTGAGTGGGCT





954
HH
HHIP
HHIP_2
Reverse primer
CACTATGCAGGGCACCAAC





955
HH
HHIP
HHIP_3
Forward
CTTGGACCAGATGGAAGAA






Primer






956
HH
HHIP
HHIP_3
Probe
TCAGCAGAAAGCACAAACACAACTGC





957
HH
HHIP
HHIP_3
Reverse Primer
CCACTCACAACCTCCTG





958
HH
HHIP
HHIP_4
Forward Primer
TCAGAGGACCAGCATCTA





959
HH
HHIP
HHIP_4
Probe
TGGAAGAGATCAGCAGAAAGCACAAACAC





960
HH
HHIP
HHIP_4
Reverse Primer
TCCTGAATACAGAAGCAGTT





961
HH
MYCN
MYCN_1
Forward Primer
AAGGCCCTCAGTACCTC





962
HH
MYCN
MYCN_1
Probe
TGAATCGCTCAGGGTGTCCTCTCC





963
HH
MYCN
MYCN_1
Reverse Primer
GTGACCACGTCGATTTCTT





964
HH
MYCN
MYCN_2
Forward Primer
CCACAAGGCCCTCAGTA





965
HH
MYCN
MYCN_2
Probe
TGAATCGCTCAGGGTGTCCTCTCC





966
HH
MYCN
MYCN_2
Reverse Primer
CACGTCGATTTCTTCCTCTTC





967
HH
MYCN
MYCN_3
Forward primer
GACACCCTGAGCGATTC





968
HH
MYCN
MYCN_3
Probe
TGAAGATGATGAAGAGGAAGATGAAGAGG





969
HH
MYCN
MYCN_3
Reverse primer
GAATGTGGTGACAGCCTTG





970
HH
MYCN
MYCN_4
Forward Primer
GACACCCTGAGCGATTC





971
HH
MYCN
MYCN_4
Probe
AGAGGAAGATGAAGAGGAAGAAATCGACGT





972
HH
MYCN
MYCN_4
Reverse Primer
GCTTCTCCACAGTGACC





973
HH
NKX2-2
NKX2-2_1
Forward Primer
CCCTTCTACGACAGCAG





974
HH
NKX2-2
NKX2-2_1
Probe
AGGGCCTTCAGTACTCCCTGCA





975
HH
NKX2-2
NKX2-2_1
Reverse Primer
GGGACTTGGAGCTTGAG





976
HH
NKX2-2
NKX2-2_2
Forward primer
GTGGCAGATTCCACCCA





977
HH
NKX2-2
NKX2-2_2
Probe
TCTGCCCATGCCTCTCCTTCTGAA





978
HH
NKX2-2
NKX2-2_2
Reverse primer
CGTAGAGTTCAGCCCTCTC





979
HH
NKX2-2
NKX2-2_3
Forward Primer
AGCGACAACCCGTACAC





980
HH
NKX2-2
NKX2-2_3
Probe
AGGGCCTTCAGTACTCCCTGCA





981
HH
NKX2-2
NKX2-2_3
Reverse Primer
CATTGTCCGGTGACTCGT





982
HH
NKX2-2
NKX2-2_4
Forward Primer
TACGACAGCAGCGACAA





983
HH
NKX2-2
NKX2-2_4
Probe
AGGGCCTTCAGTACTCCCTGCA





984
HH
NKX2-2
NKX2-2_4
Reverse Primer
TTGGAGCTTGAGTCCTGAG





985
HH
PTCH1
PTCH1_1
Forward primer
CTTCTTCATGGCCGCGTTAAT





986
HH
PTCH1
PTCH1_1
Probe
TCCAGGCAGCGGTAGTAGTGGTGT





987
HH
PTCH1
PTCH1_1
Reverse primer
AATGAGCAGAACCATGGCAAA





988
HH
PTCH1
PTCH1_2
Forward Primer
ACGTCCATCAGCAATGT





989
HH
PTCH1
PTCH1_2
Probe
CCGCGTTAATCCCAATTCCCGCT





990
HH
PTCH1
PTCH1_2
Reverse Primer
TTGAACACCACTACTACCG





991
HH
PTCH1
PTCH1_3
Forward Primer
TTCATGGCCGCGTTAAT





992
HH
PTCH1
PTCH1_3
Probe
TCCAGGCAGCGGTAGTAGTGGT





993
HH
PTCH1
PTCH1_3
Reverse Primer
AGCAGAACCATGGCAAA





994
HH
PTCH1
PTCH1_4
Forward Primer
CGCGTTAATCCCAATTCC





995
HH
PTCH1
PTCH1_4
Probe
TCCAGGCAGCGGTAGTAGTGGT





996
HH
PTCH1
PTCH1_4
Reverse Primer
GTCCTCGCGTCGATATAAA





997
HH
PTCH2
PTCH2_1
Forward Primer
CTGCTACAAGTCAGGAGTTC





998
HH
PTCH2
PTCH2_1
Probe
TGGAATGATTGAGCGGATGATTGAGAAGC





999
HH
PTCH2
PTCH2_1
Reverse Primer
GATCACGCACGGAAACA





1000
HH
PTCH2
PTCH2_2
Forward Primer
AAATCTGCTACAAGTCAGGA





1001
HH
PTCH2
PTCH2_2
Probe
AAGCTGTTTCCGTGCGTGATCCT





1002
HH
PTCH2
PTCH2_2
Reverse Primer
TCCCAGAAGCAGTCGAG





1003
HH
PTCH2
PTCH2_3
Forward Primer
TGATTGAGCGGATGATTGAG





1004
HH
PTCH2
PTCH2_3
Probe
AAGCTGTTTCCGTGCGTGATCCT





1005
HH
PTCH2
PTCH2_3
Reverse Primer
CTCCCTCCCAGAAGCAG





1006
HH
PTCH2
PTCH2_4
Forward Primer
TGAGCGGATGATTGAGAAGC





1007
HH
PTCH2
PTCH2_4
Probe
TGTTTCCGTGCGTGATCCTCACC





1008
HH
PTCH2
PTCH2_4
Reverse Primer
TTGGCTCCCTCCCAGAA





1009
HH
RAB34
RAB34_1
Forward Primer
GGCAGGAGAGGTTCAAAT





1010
HH
RAB34
RAB34_1
Probe
TCAACCTGAATGATGTGGCATCTCTGGA





1011
HH
RAB34
RAB34_1
Reverse Primer
AGCCACTGCTTGGTATG





1012
HH
RAB34
RAB34_2
Forward Primer
GCATTGCATCAACCTACTAT





1013
HH
RAB34
RAB34_2
Probe
ACATACCAAGCAGTGGCTGGCC





1014
HH
RAB34
RAB34_2
Reverse Primer
ATTCTCCTTCAGGGCATC





1015
HH
RAB34
RAB34_3
Forward Primer
CTGGGCAGGAGAGGTTC





1016
HH
RAB34
RAB34_3
Probe
AGAGGAGCTCAAGCCATCATCATTGTCT





1017
HH
RAB34
RAB34_3
Reverse Primer
CCAGAGATGCCACATCATTC





1018
HH
RAB34
RAB34_4
Forward primer
GGGCAGGAGAGGTTCAAATG





1019
HH
RAB34
RAB34_4
Probe
TCTTCAACCTGAATGATGTGGCATCTCTGG





1020
HH
RAB34
RAB34_4
Reverse primer
CAGCCACTGCTTGGTATGTT





1021
HH
SPP1
SPP1_1
Forward Primer
CCAGTTGCAGCCTTCTC





1022
HH
SPP1
SPP1_1
Probe
AGCCAAACGCCGACCAAGGAAA





1023
HH
SPP1
SPP1_1
Reverse Primer
GGTATGGCACAGGTGATG





1024
HH
SPP1
SPP1_2
Forward primer
AGCCTTCTCAGCCAAAC





1025
HH
SPP1
SPP1_2
Probe
TAGGCATCACCTGTGCCATACCAGT





1026
HH
SPP1
SPP1_2
Reverse primer
CCTCAGAACTTCCAGAATCA





1027
HH
SPP1
SPP1_3
Forward Primer
GAGGGCTTGGTTGTCAG





1028
HH
SPP1
SPP1_3
Probe
AGCCAAACGCCGACCAAGGAAA





1029
HH
SPP1
SPP1_3
Reverse Primer
TCACTGCAATTCTCATGGT





1030
HH
SPP1
SPP1_4
Probe
AGCCAAACGCCGACCAAGGAAA





1031
HH
SPP1
SPP1_4
Reverse Primer
AGCAAATCACTGCAATTCTC





1032
HH
SPP1
SPP1_X4
Forward Primer
GGACCAGACTCGTCTCA





1033
HH
TCEA2
TCEA2_1
Forward Primer
TCGGATGAGGAGGTCATT





1034
HH
TCEA2
TCEA2_1
Probe
ACTGGCCAAGTCTCTCATCAAGTCCT





1035
HH
TCEA2
TCEA2_1
Reverse Primer
TTTGGCATCGGAAGCAT





1036
HH
TCEA2
TCEA2_2
Forward Primer
ATTGCACTGGCCAAGTCT





1037
HH
TCEA2
TCEA2_2
Probe
TCCTGGAAGAAGCTCCTGGATGCT





1038
HH
TCEA2
TCEA2_2
Reverse Primer
TCCCTGGCTTTGGCATC





1039
HH
TCEA2
TCEA2_3
Forward Primer
AGCTCGGATGAGGAGGT





1040
HH
TCEA2
TCEA2_3
Probe
ACTGGCCAAGTCTCTCATCAAGTCCT





1041
HH
TCEA2
TCEA2_3
Reverse Primer
TGGCTTTGGCATCGGAA





1042
HH
TSC22D1
TSC22D1_1
Forward Primer
CTGGTCCACAGAGTATTCC





1043
HH
TSC22D1
TSC22D1_1
Probe
ACCACAGAGTATTTCTCAGTCACAGATCTC





1044
HH
TSC22D1
TSC22D1_1
Reverse Primer
AGATAGCTCAGTTCTTGAGAC





1045
HH
TSC22D1
TSC22D1_2
Forward Primer
CAGAGTATTCCAGCAGTTAGT





1046
HH
TSC22D1
TSC22D1_2
Probe
ACCACAGAGTATTTCTCAGTCACAGATCTC





1047
HH
TSC22D1
TSC22D1_2
Forward Primer
TCATGGTAAGATAGCTCAGTTC





1048
HH
TSC22D1
TSC22D1_3
Reverse Primer
CACAGAGTATTCCAGCAGT





1049
HH
TSC22D1
TSC22D1_3
Probe
ACCACAGAGTATTTCTCAGTCACAGATCTC





1050
HH
TSC22D1
TSC22D1_3
Forward Primer
ACCTTCATGGTAAGATAGCTC





1051
HH
TSC22D1
TSC22D1_4
Reverse Primer
CTCAGTCACAGATCTCACAA





1052
HH
TSC22D1
TSC22D1_4
Probe
AGAACTGAGCTATCTTACCATGAAGGTTGT





1053
HH
TSC22D1
TSC22D1_4
Reverse Primer
ACCTAAATAGTAGTTACAGTCCTC
















TABLE 7







Sets of primers and probes for determining the TGFbeta cellular signaling


pathway activity.












SEQ







ID







NO
Pathway
Gene
Assay
Oligo
Sequence





1054
TGFb
ANGPTL4
ANGPTL4_1
Forward Primer
CACCGACCTCCCGTTAG





1055
TGFb
ANGPTL4
ANGPTL4_1
Probe
ACCCTGAGGTCCTTCACAGCCT





1056
TGFb
ANGPTL4
ANGPTL4_1
Reverse Primer
GTTCTGAGCCTTGAGTTGTG





1057
TGFb
ANGPTL4
ANGPTL4_2
Forward Primer
CAGCCTGCAGACACAACT





1058
TGFb
ANGPTL4
ANGPTL4_2
Reverse primer
GCTTTGCAGATGCTGAATTCG





1059
TGFb
ANGPTL4
ANGPTL4_2
Probe
AGCAACTCTTCCACAAGGTGGCC





1060
TGFb
ANGPTL4
ANGPTL4_3
Forward Primer
GAGGTCCTTCACAGCCT





1061
TGFb
ANGPTL4
ANGPTL4_3
Probe
ACAACTCAAGGCTCAGAACAGCAGG





1062
TGFb
ANGPTL4
ANGPTL4_3
Reverse Primer
CACCTTGTGGAAGAGTTGC





1063
TGFb
ANGPTL4
ANGPTL4_4
Forward Primer
GACCCTGAGGTCCTTCAC





1064
TGFb
ANGPTL4
ANGPTL4_4
Probe
AGCCTTGAGTTGTGTCTGCAGGC





1065
TGFb
ANGPTL4
ANGPTL4_4
Reverse Primer
TGTGGAAGAGTTGCTGGA





1066
TGFb
CDKN1A
CDKN1A_1
Reverse primer
CTGTGGGCGGATTAGGGCT





1067
TGFb
CDKN1A
CDKN1A_1
Forward primer
GAGACTCTCAGGGTCGAAA





1068
TGFb
CDKN1A
CDKN1A_1
Probe
ATTTCTACCACTCCAAACGCCGGC





1069
TGFb
CDKN1A
CDKN1A_2
Forward Primer
GAGACTCTCAGGGTCGAAA





1070
TGFb
CDKN1A
CDKN1A_2
Probe
AATCTGTCATGCTGGTCTGCCGC





1071
TGFb
CDKN1A
CDKN1A_2
Reverse Primer
TTCCTGTGGGCGGATTA





1072
TGFb
CDKN1A
CDKN1A_3
Forward Primer
AGGTGGACCTGGAGACT





1073
TGFb
CDKN1A
CDKN1A_3
Probe
AATCTGTCATGCTGGTCTGCCGC





1074
TGFb
CDKN1A
CDKN1A_3
Reverse Primer
GGCTTCCTCTTGGAGAAGAT





1075
TGFb
CDKN1A
CDKN1A_4
Forward Primer
GGACCTGTCACTGTCTTGTA





1076
TGFb
CDKN1A
CDKN1A_4
Probe
AAACGGCGGCAGACCAGCAT





1077
TGFb
CDKN1A
CDKN1A_4
Reverse Primer
GCGTTTGGAGTGGTAGAAATC





1078
TGFb
CTGF
CTGF_1
Forward Primer
GAAGCTGACCTGGAAGAGA





1079
TGFb
CTGF
CTGF_1
Probe
AGTTTGAGCTTTCTGGCTGCACCA





1080
TGFb
CTGF
CTGF_1
Reverse Primer
CCACAGAATTTAGCTCGGTATG





1081
TGFb
CTGF
CTGF_2
Forward Primer
GCAGGCTAGAGAAGCAGAG





1082
TGFb
CTGF
CTGF_2
Probe
TTCCAGGTCAGCTTCGCAAGGC





1083
TGFb
CTGF
CTGF_2
Reverse Primer
GGGAGTACGGATGCACTTT





1084
TGFb
CTGF
CTGF_3
Forward Primer
GCTGACCTGGAAGAGAACAT





1085
TGFb
CTGF
CTGF_3
Probe
TCAAGTTTGAGCTTTCTGGCTGCACC





1086
TGFb
CTGF
CTGF_3
Reverse Primer
GCTCGGTATGTCTTCATGCT





1087
TGFb
CTGF
CTGF_4
Probe
CCTATCAAGTTTGAGCTTTCTGGCTG





1088
TGFb
CTGF
CTGF_4
Forward primer
GAAGCTGACCTGGAAGAGAA





1089
TGFb
CTGF
CTGF_4
Reverse primer
CCACAGAATTTAGCTCGGTATG





1090
TGFb
GADD45A
GADD45A_1
Forward Primer
GCGAGAACGACATCAACATC





1091
TGFb
GADD45A
GADD45A_1
Probe
AGCTCCTGCTCTTGGAGACCGA





1092
TGFb
GADD45A
GADD45A_1
Reverse Primer
TGGATTCGTCACCAGCA





1093
TGFb
GADD45A
GADD45A_2
Probe
AAGGATCCTGCCTTAAGTCAACTTATTTG





1094
TGFb
GADD45A
GADD45A_2
Reverse primer
GATCCATGTAGCGACTTTCC





1095
TGFb
GADD45A
GADD45A_2
Forward Primer
ACGAATCCACATTCATCTCAAT





1096
TGFb
GADD45A
GADD45A_3
Forward Primer
CGGAGCTCCTGCTCTTG





1097
TGFb
GADD45A
GADD45A_3
Probe
TGTGGATTCGTCACCAGCACGC





1098
TGFb
GADD45A
GADD45A_3
Reverse Primer
AGGATCCTTCCATTGAGATGAA





1099
TGFb
GADD45A
GADD45A_4
Forward Primer
GCTCCTGCTCTTGGAGAC





1100
TGFb
GADD45A
GADD45A_4
Probe
TGTGGATTCGTCACCAGCACGC





1101
TGFb
GADD45A
GADD45A_4
Reverse Primer
GCAGGATCCTTCCATTGAGA





1102
TGFb
GADD45B
GADD45B_1
Forward Primer
GTCGGCCAAGTTGATGAATG





1103
TGFb
GADD45B
GADD45B_1
Probe
ACAGCGTGGTCCTCTGCCTCTT





1104
TGFb
GADD45B
GADD45B_1
Reverse Primer
GATGAGCGTGAAGTGGATTTG





1105
TGFb
GADD45B
GADD45B_2
Forward Primer
CGAGTCGGCCAAGTTGAT





1106
TGFb
GADD45B
GADD45B_2
Probe
ACAGCGTGGTCCTCTGCCTCTT





1107
TGFb
GADD45B
GADD45B_2
Reverse Primer
ACTGGATGAGCGTGAAGTG





1108
TGFb
GADD45B
GADD45B_3
Forward Primer
TGTACGAGTCGGCCAAG





1109
TGFb
GADD45B
GADD45B_3
Probe
ACAGCGTGGTCCTCTGCCTCTT





1110
TGFb
GADD45B
GADD45B_3
Reverse Primer
GATTTGCAGGGCGATGTC





1111
TGFb
GADD45B
GADD45B_4
Forward Primer
CAGGATCGCCTCACAGT





1112
TGFb
GADD45B
GADD45B_4
Probe
ACAGCGTGGTCCTCTGCCTCTT





1113
TGFb
GADD45B
GADD45B_4
Reverse Primer
CTCCTCCTCCTCGTCAATG





1114
TGFb
ID1
ID1_1
Forward Primer
CCTCAACGGCGAGATCA





1115
TGFb
ID1
ID1_1
Probe
TCGCATCTTGTGTCGCTGAAGCG





1116
TGFb
ID1
ID1_1
Reverse Primer
ACCCACAGAGCACGTAAT





1117
TGFb
ID1
ID1_2
Forward Primer
GAATCCGAAGTTGGAACCC





1118
TGFb
ID1
ID1_2
Probe
AGCACCCTCAACGGCGAGATCA





1119
TGFb
ID1
ID1_2
Reverse Primer
GCTTCAGCGACACAAGAT





1120
TGFb
ID1
ID1_3
Forward Primer
TTGGAGCTGAACTCGGAATC





1121
TGFb
ID1
ID1_3
Probe
AGCACCCTCAACGGCGAGATCA





1122
TGFb
ID1
ID1_3
Reverse Primer
AGCGACACAAGATGCGAT





1123
TGFb
ID1
ID1_4
Forward Primer
CGCTCAGCACCCTCAAC





1124
TGFb
ID1
ID1_4
Probe
TCGCATCTTGTGTCGCTGAAGCG





1125
TGFb
ID1
ID1_4
Reverse Primer
AGCACGTAATTCCTCTTGCC





1126
TGFb
IL-11
IL-11_1
Forward Primer
AGTACCCGTATGGGACAAA





1127
TGFb
IL-11
IL-11_1
Reverse primer
CCAGTTTGCTATGGTGAACA





1128
TGFb
IL-11
IL-11_1
Probe
TGCAAGGTCAAGATGGTTCATTATGGCTG





1129
TGFb
IL-11
IL-11_2
Forward Primer
GGGACCACAACCTGGATTC





1130
TGFb
IL-11
IL-11_2
Probe
AGCTCTACAGCTCCCAGGTGTG





1131
TGFb
IL-11
IL-11_2
Reverse Primer
GCTCGCAGCCTTGTCAG





1132
TGFb
IL-11
IL-11_3
Forward Primer
GGGCACTGGGAGCTCTA





1133
TGFb
IL-11
IL-11_3
Probe
ACCTACTGTCCTACCTGCGGCA





1134
TGFb
IL-11
IL-11_3
Reverse Primer
GGGCTCCAGGGTCTTCA





1135
TGFb
IL-11
IL-11_4
Forward Primer
GGACAAATTCCCAGCTGAC





1136
TGFb
IL-11
IL-11_4
Probe
TCCCAGGTGTGCTGACAAGGCT





1137
TGFb
IL-11
IL-11_4
Reverse Primer
CCGCAGGTAGGACAGTAG





1138
TGFb
JUNB
JUNB_1
Forward Primer
CTACCACGACGACTCATACA





1139
TGFb
JUNB
JUNB_1
Probe
TGGTGGCCTCTCTCTACACGACT





1140
TGFb
JUNB
JUNB_1
Reverse Primer
GCTCGGTTTCAGGAGTTTG





1141
TGFb
JUNB
JUNB_2
Forward Primer
ATGGAACAGCCCTTCTACC





1142
TGFb
JUNB
JUNB_2
Probe
TCATACACAGCTACGGGATACGGCC





1143
TGFb
JUNB
JUNB_2
Reverse Primer
TCAGGAGTTTGTAGTCGTGTAG





1144
TGFb
JUNB
JUNB_3
Forward Primer
CCCGGATGTGCACTAAA





1145
TGFb
JUNB
JUNB_3
Reverse primer
GCTCGGTTTCAGGAGTTTGTA





1146
TGFb
JUNB
JUNB_3
Probe
TCATACACAGCTACGGGATACGG





1147
TGFb
JUNB
JUNB_4
Forward Primer
CGACGACTCATACACAGCTA





1148
TGFb
JUNB
JUNB_4
Probe
AAACTCCTGAAACCGAGCCTGGC





1149
TGFb
JUNB
JUNB_4
Reverse Primer
CTTTGAGACTCCGGTAGGG





1150
TGFb
MMP2
MMP2_1
Forward Primer
GTGGCCAACTACAACTTCTTC





1151
TGFb
MMP2
MMP2_1
Probe
CGCAAGCCCAAGTGGGACAAGA





1152
TGFb
MMP2
MMP2_1
Reverse Primer
GGCATCATCCACTGTCTCT





1153
TGFb
MMP2
MMP2_2
Forward Primer
TGGGACAAGAACCAGATCAC





1154
TGFb
MMP2
MMP2_2
Probe
ACCCAGAGACAGTGGATGATGCCT





1155
TGFb
MMP2
MMP2_2
Reverse Primer
GTCACATCGCTCCAGACTT





1156
TGFb
MMP2
MMP2_3
Forward Primer
GGACAAGAACCAGATCACATAC





1157
TGFb
MMP2
MMP2_3
Probe
TGGGTCCAGATCAGGTGTGTAGCC





1158
TGFb
MMP2
MMP2_3
Reverse Primer
CACGAGCAAAGGCATCAT





1159
TGFb
MMP2
MMP2_4
Probe
CACATACAGGATCATTGGCTACACACC





1160
TGFb
MMP2
MMP2_4
Reverse primer
GTCACATCGCTCCAGACTT





1161
TGFb
MMP2
MMP2_4
Forward Primer
AAGTGGGACAAGAACCAGAT





1162
TGFb
MMP9
MMP9_1
Forward Primer
GGAGACCTGAGAACCAATC





1163
TGFb
MMP9
MMP9_1
Reverse primer
GACTCTCCACGCATCTCTG





1164
TGFb
MMP9
MMP9_1
Probe
AGGCAGCTGGCAGAGGAATACCT





1165
TGFb
MMP9
MMP9_2
Forward Primer
TCCACCCTTGTGCTCTT





1166
TGFb
MMP9
MMP9_2
Probe
AACCAATCTCACCGACAGGCAGC





1167
TGFb
MMP9
MMP9_2
Reverse Primer
ACTCTCCACGCATCTCTG





1168
TGFb
MMP9
MMP9_3
Forward Primer
AGAACCAATCTCACCGACAG





1169
TGFb
MMP9
MMP9_3
Probe
TGGTTACACTCGGGTGGCAGAGA





1170
TGFb
MMP9
MMP9_3
Reverse Primer
CCAGAGATTTCGACTCTCCAC





1171
TGFb
MMP9
MMP9_4
Forward Primer
TGGAGACCTGAGAACCAATC





1172
TGFb
MMP9
MMP9_4
Probe
AGGCAGCTGGCAGAGGAATACCT





1173
TGFb
MMP9
MMP9_4
Reverse Primer
ACCCGAGTGTAACCATAGC





1174
TGFb
PDGFB
PDGFB_1
Forward Primer
CATTCCCGAGGAGCTTTATG





1175
TGFb
PDGFB
PDGFB_1
Probe
TGACCACTCGATCCGCTCCTTTGA





1176
TGFb
PDGFB
PDGFB_1
Reverse Primer
GTCATGTTCAGGTCCAACTC





1177
TGFb
PDGFB
PDGFB_2
Forward Primer
CCCGAGGAGCTTTATGAGAT





1178
TGFb
PDGFB
PDGFB_2
Probe
TGACCACTCGATCCGCTCCTTTGA





1179
TGFb
PDGFB
PDGFB_2
Reverse Primer
GGGTCATGTTCAGGTCCA





1180
TGFb
PDGFB
PDGFB_3
Forward Primer
TCGATCCGCTCCTTTGAT





1181
TGFb
PDGFB
PDGFB_3
Probe
TGAACATGACCCGCTCCCACTCT





1182
TGFb
PDGFB
PDGFB_3
Reverse Primer
CCAGGCTCCTTCTTCCA





1183
TGFb
PDGFB
PDGFB_4
Forward Primer
ATCCGCTCCTTTGATGATCT





1184
TGFb
PDGFB
PDGFB_4
Probe
TGAACATGACCCGCTCCCACTCT





1185
TGFb
PDGFB
PDGFB_4
Reverse Primer
CCTTCTTCCACGAGCCA





1186
TGFb
SERPINE1
SERPINE1_1
Forward Primer
TGTCTCTGTGCCCATGAT





1187
TGFb
SERPINE1
SERPINE1_1
Reverse Primer
CAGTTCCAGGATGTCGTAGT





1188
TGFb
SERPINE1
SERPINE1_2
Forward Primer
CGCCTCTTCCACAAATCAG





1189
TGFb
SERPINE1
SERPINE1_2
Probe
ATGGGCACAGAGACAGTGCTGC





1190
TGFb
SERPINE1
SERPINE1_2
Reverse Primer
TCCAGGATGTCGTAGTAATGG





1191
TGFb
SERPINE1
SERPINE1_3
Forward Primer
TGGCTCAGACCAACAAGT





1192
TGFb
SERPINE1
SERPINE1_3
Probe
ACTACGACATCCTGGAACTGCCCT





1193
TGFb
SERPINE1
SERPINE1_3
Reverse Primer
CAGCAATGAACATGCTGAGG





1194
TGFb
Serpine1
Serpine1_4
Reverse primer
GTCGTAGTAATGGCCATCGG





1195
TGFb
Serpine1
Serpine1_4
Forward Primer
CCACAAATCAGACGGCAGCA





1196
TGFb
Serpine1
Serpine1_4
Probe
CCCATGATGGCTCAGACCAACAAGT





1197
TGFb
SERPINE1
SERPINE1_X1
Probe
ACTGAGTTCACCACGCCCGATG





1198
TGFb
SGK1
SGK1_1
Forward Primer
GGAGCCTGAGCTTATGAAT





1199
TGFb
SGK1
SGK1_1
Reverse Primer
GAAGTGAAAGTCAGATGGTTTAG





1200
TGFb
SGK1
SGK1_1
Probe
TTGGTGGAGGAGAAGGGTTGGC





1201
TGFb
SGK1
SGK1_2
Forward Primer
TATGAATGCCAACCCTTCTC





1202
TGFb
SGK1
SGK1_2
Reverse Primer
CCCTTTCCGATCACTTTCA





1203
TGFb
SGK1
SGK1_2
Probe
AATCAACCTTGGCCCGTCGTCC





1204
TGFb
SGK1
SGK1_3
Forward Primer
CAGGAGCCTGAGCTTATGAA





1205
TGFb
SGK1
SGK1_3
Reverse primer
GATGGTTTAGCATGAGGATTGG





1206
TGFb
SGK1
SGK1_3
Probe
TCAGCAAATCAACCTTGGCCCGT





1207
TGFb
SGK1
SGK1_4
Forward Primer
CTTGAAGATCTCCCAACCTC





1208
TGFb
SGK1
SGK1_4
Reverse Primer
CAAGGTTGATTTGCTGAGAAG





1209
TGFb
SGK1
SGK1_4
Probe
TTGGTGGAGGAGAAGGGTTGGC





1210
TGFb
SKIL
SKIL_1
Forward Primer
GCATGAGAAGTGGAAAGAGAAAT





1211
TGFb
SKIL
SKIL_1
Probe
CCAAGACAGATGCACCATCAGGAATGG





1212
TGFb
SKIL
SKIL_1
Reverse Primer
TGGTCACCTTCCTGCTTTAT





1213
TGFb
SKIL
SKIL_2
Probe
ACAGATGCACCATCAGGAATGGAATTACA





1214
TGFb
SKIL
SKIL_2
Reverse primer
CTGAGAAACATGGTCACCT





1215
TGFb
SKIL
SKIL_2
Forward Primer
CATGAGAAGTGGAAAGAGAAATC





1216
TGFb
SKIL
SKIL_3
Forward Primer
GGAGAAGTTTAGCATGAGAAGTG





1217
TGFb
SKIL
SKIL_3
Probe
CCAAGACAGATGCACCATCAGGAATGG





1218
TGFb
SKIL
SKIL_3
Reverse Primer
TCTGAGAAACATGGTCACCT





1219
TGFb
SKIL
SKIL_4
Forward Primer
GTTTAGCATGAGAAGTGGAAAGA





1220
TGFb
SKIL
SKIL_4
Probe
CCAAGACAGATGCACCATCAGGAATGG





1221
TGFb
SKIL
SKIL_4
Reverse Primer
GAAACATGGTCACCTTCCTG





1222
TGFb
SMAD4
SMAD4_1
Forward Primer
ACAAATGGAGCTCATCCTAGT





1223
TGFb
SMAD4
SMAD4_1
Probe
TCAGGTGGCTGGTCGGAAAGGA





1224
TGFb
SMAD4
SMAD4_1
Reverse Primer
GGGCATAGATCACATGAGGA





1225
TGFb
SMAD4
SMAD4_2
Forward Primer
CAAATGGAGCTCATCCTAGTAAAT





1226
TGFb
SMAD4
SMAD4_2
Probe
TCAGGTGGCTGGTCGGAAAGGA





1227
TGFb
SMAD4
SMAD4_2
Reverse Primer
AGAGACGGGCATAGATCAC





1228
TGFb
SMAD4
SMAD4_3
Forward Primer
GGAGCTCATCCTAGTAAATGTGT





1229
TGFb
SMAD4
SMAD4_3
Probe
TCAGGTGGCTGGTCGGAAAGGA





1230
TGFb
SMAD4
SMAD4_3
Reverse Primer
TCCAGAGACGGGCATAGA





1231
TGFb
SMAD4
SMAD4_4
Forward Primer
GCTCATCCTAGTAAATGTGTTACC





1232
TGFb
SMAD4
SMAD4_4
Probe
TTTCCGACCAGCCACCTGAAGC





1233
TGFb
SMAD4
SMAD4_4
Reverse Primer
GGCATAGATCACATGAGGAAATC





1234
TGFb 
SMAD7
SMAD7_1
Forward Primer
AGATGCTGTGCCTTCCT





1235
TGFb
SMAD7
SMAD7_1
Probe
AGATTCCCAACTTCTTCTGGAGCCTGG





1236
TGFb
SMAD7
SMAD7_1
Reverse Primer
ACCAGTGTGACCGATCC





1237
TGFb
SMAD7
SMAD7_2
Forward Primer
CCTTCCTCCGCTGAAACA





1238
TGFb
SMAD7
SMAD7_2
Probe
ACACTGGTGCGTGGTGGCATAC





1239
TGFb
SMAD7
SMAD7_2
Reverse Primer
TCTCGTCTTCTCCTCCCA





1240
TGFb
SMAD7
SMAD7_3
Forward Primer
GTCCAGATGCTGTGCCT





1241
TGFb
SMAD7
SMAD7_3
Probe
TCCCAACTTCTTCTGGAGCCTGGG





1242
TGFb
SMAD7
SMAD7_3
Reverse Primer
CTCCCAGTATGCCACCAC





1243
TGFb
SMAD7
SMAD7_4
Reverse primer
ACCACGCACCAGTGTGAC





1244
TGFb
SMAD7
SMAD7_4
Forward Primer
TGCCTTCCTCCGCTGAAAC





1245
TGFb
SMAD7
SMAD7_4
Probe
TCCCAACTTCTTCTGGAGCCTGGG





1246
TGFb
SNAI1
SNAI1_1
Forward Primer
CCCACACTGGCGAGAAG





1247
TGFb
SNAI1
SNAI1_1
Probe
TTCGCTGACCGCTCCAACCT





1248
TGFb
SNAI1
SNAI1_1
Reverse Primer
TTGACATCTGAGTGGGTCTG





1249
TGFb
SNAI1
SNAI1_2
Forward Primer
CATGTCCGGACCCACAC





1250
TGFb
SNAI1
SNAI1_2
Probe
TGGCGAGAAGCCCTTCTCCTGT





1251
TGFb
SNAI1
SNAI1_2
Reverse Primer
GGCACTGGTACTTCTTGACA





1252
TGFb
SNAI1
SNAI1_3
Forward Primer
TTCTCTAGGCCCTGGCT





1253
TGFb
SNAI1
SNAI1_3
Probe
TACAAGGCCATGTCCGGACCCA





1254
TGFb
SNAI1
SNAI1_3
Reverse Primer
GGTACTTCTTGACATCTGAGTGG





1255
TGFb
SNAI1
SNAI1_4
Forward Primer
GCCCTGGCTGCTACAAG





1256
TGFb
SNAI1
SNAI1_4
Probe
ACTGGCGAGAAGCCCTTCTCCT





1257
TGFb
SNAI1
SNAI1_4
Reverse Primer
CTGAGTGGGTCTGGAGGT





1258
TGFb
SNAI1
TIMP1_1
Forward Primer
CCCAGAGAGACACCAGAGAA





1259
TGFb
SNAI1
TIMP1_1
Reverse Primer
GCTATCAGCCACAGCAACA





1260
TGFb
SNAI1
TIMP1_1
Probe
CCTGGCTTCTGGCATCCTGT





1261
TGFb
SNAI1
TIMP1_2
Forward Primer
CATCGCCGCAGATCCAG





1262
TGFb
SNAI1
TIMP1_2
Probe
CCCAGAGAGACACCAGAGAACCCA





1263
TGFb
SNAI1
TIMP1_2
Reverse Primer
TCAGCCACAGCAACAACA





1264
TGFb
SNAI1
TIMP1_3
Forward Primer
AGAGACACCAGAGAACCCA





1265
TGFb
SNAI1
TIMP1_3
Probe
TCTGGCATCCTGTTGTTGCTGTGG





1266
TGFb
SNAI1
TIMP1_3
Reverse Primer
GTGGGACACAGGTGCAG





1267
TGFb
SNAI1
TIMP1_4
Forward Primer
CCAGAGAGACACCAGAGAA





1268
TGFb
SNAI1
TIMP1_4
Probe
TCTGGCATCCTGTTGTTGCTGTGG





1269
TGFb
SNAI1
TIMP1_4
Reverse Primer
GAGGTCGGAATTGCAGAAG





1270
TGFb
VEGFA
VEGFA_1
Forward Primer
GAGGAGGGCAGAATCATCA





1271
TGFb
VEGFA
VEGFA_1
Probe
TGCGCTGATAGACATCCATGAACTTCAC





1272
TGFb
VEGFA
VEGFA_1
Reverse Primer
TCTCGATTGGATGGCAGTAG





1273
TGFb
VEGFA
VEGFA_2
Forward Primer
GGGCAGAATCATCACGAAG





1274
TGFb
VEGFA
VEGFA_2
Reverse Primer
GTCTCGATTGGATGGCAGTA





1275
TGFb
VEGFA
VEGFA_2
Probe
AGTTCATGGATGTCTATCAGCGCAGC





1276
TGFb
VEGFA
VEGFA_3
Forward Primer
ACCCATGGCAGAAGGAG





1277
TGFb
VEGFA
VEGFA_3
Probe
AGGGCAGAATCATCACGAAGTGGT





1278
TGFb
VEGFA
VEGFA_3
Reverse Primer
CAGTAGCTGCGCTGATAGA





1279
TGFb
VEGFA
VEGFA_4
Forward Primer
GAAGGAGGAGGGCAGAAT





1280
TGFb
VEGFA
VEGFA_4
Probe
CAGCGCAGCTACTGCCATCCAA





1281
TGFb
VEGFA
VEGFA_4
Reverse Primer
TACTCCTGGAAGATGTCCAC
















TABLE 8







Sets of primers and probes for determining the expression levels of reference genes.












NO







SEQ







ID
Pathway
Gene
Assay
Oligo
Sequence





1282
REF
ACTB
ACTB_1
Forward primer
CCAACCGCGAGAAGATGA





1283
REF
ACTB
ACTB_1
Probe
CCATGTACGTTGCTATCCAGGCT





1284
REF
ACTB
ACTB_1
Reverse primer
CCAGAGGCGTACAGGGATAG





1285
REF
ACTB
ACTB_2
Forward primer
CCCAGATCATGTTTGAGACCTTC





1286
REF
ACTB
ACTB_2
Probe
ACGTTGCTATCCAGGCTGTGCT





1287
REF
ACTB
ACTB_2
Reverse primer
GTCCATCACGATGCCAGTG





1288
REF
ACTB
ACTB_3
Forward primer
CCAACCGCGAGAAGATGAC





1289
REF
ACTB
ACTB_3
Probe
CCAGATCATGTTTGAGACCTTCAACACCC





1290
REF
ACTB
ACTB_3
Reverse primer
GGATAGCACAGCCTGGATAG





1291
REF
ACTB
ACTB_4
Forward primer
GATGACCCAGATCATGTTTGA





1292
REF
ACTB
ACTB_4
Probe
CCATGTACGTTGCTATCCAGGCTGT





1293
REF
ACTB
ACTB_4
Reverse primer
CAGAGGCGTACAGGGATAG





1294
REF
ALAS1
ALAS1_1
Forward primer
ATGAGACAGATGCTAATGGATG





1295
REF
ALAS1
ALAS1_1
Probe
TTTAGCAGCATCTGCAACCCGC





1296
REF
ALAS1
ALAS1_1
Reverse primer
TTGCTTGCACGTAGATGTTA





1297
REF
ALAS1
ALAS1_2
Forward primer
CAAACTCATGAGACAGATGCTA





1298
REF
ALAS1
ALAS1_2
Probe
TTTAGCAGCATCTGCAACCCGC





1299
REF
ALAS1
ALAS1_2
Reverse primer
GCTCATTAGTTCATCACAGACT





1300
REF
ALAS1
ALAS1_3
Forward primer
CAGCCACATCATCCCTGTG





1301
REF
ALAS1
ALAS1_3
Probe
AGCAGACATAACATCTACGTGCAAGCA





1302
REF
ALAS1
ALAS1_3
Reverse primer
GGCACCGTAGGGTAATTGAT





1303
REF
ALAS1
ALAS1_4
Forward primer
AGCCACATCATCCCTGT





1304
REF
ALAS1
ALAS1_4
Probe
TTTAGCAGCATCTGCAACCCGC





1305
REF
ALAS1
ALAS1_4
Reverse primer
CGTAGATGTTATGTCTGCTCAT





1306
REF
B2M
B2M_1
Forward primer
GTCACAGCCCAAGATAGTTAAG





1307
REF
B2M
B2M_1
Probe
TCATGGAGGTTTGAAGATGCCGCA





1308
REF
B2M
B2M_1
Reverse primer
GCAAGCAAGCAGAATTTGG





1309
REF
B2M
B2M_2
Forward primer
CGTGTGAACCATGTGACTT





1310
REF
B2M
B2M_2
Probe
CACAGCCCAAGATAGTTAAGTGGGATCG





1311
REF
B2M
B2M_2
Reverse primer
CCTCCATGATGCTGCTTAC





1312
REF
B2M
B2M_3
Forward primer
CTTTGTCACAGCCCAAGAT





1313
REF
B2M
B2M_3
Probe
TGGGATCGAGACATGTAAGCAGCA





1314
REF
B2M
B2M_3
Reverse primer
TGGAATTCATCCAATCCAAATG





1315
REF
B2M
B2M_4
Forward primer
GTATGCCTGCCGTGTGAAC





1316
REF
B2M
B2M_4
Probe
AAGTGGGATCGAGACATGTAAGCAGC





1317
REF
B2M
B2M_4
Reverse primer
GGCATCTTCAAACCTCCATGAT





1318
REF
EEF1A1
EEF1A1_1
Forward primer
CAAAGCAGTGGACAAGAAG





1319
REF
EEF1A1
EEF1A1_1
Probe
TGGGCAGACTTGGTGACCTTGC





1320
REF
EEF1A1
EEF1A1_1
Reverse primer
GTGGCAGGTATTAGGGATAA





1321
REF
EEF1A1
EEF1A1_2
Forward primer
CTTTGCTGTTCGTGATATGAG





1322
REF
EEF1A1
EEF1A1_2
Probe
TGCGGTGGGTGTCATCAAAGCA





1323
REF
EEF1A1
EEF1A1_2
Reverse primer
CATTTAGCCTTCTGAGCTTTC





1324
REF
EEF1A1
EEF1A1_3
Forward primer
GAAAGCTCAGAAGGCTAAATG





1325
REF
EEF1A1
EEF1A1_3
Probe
TCAGTGGTGGAAGAACGGTCTCAGAA





1326
REF
EEF1A1
EEF1A1_3
Reverse primer
TGGCCAATTGAAACAAACA





1327
REF
EEF1A1
EEF1A1_4
Forward primer
GTTCGTGATATGAGACAGACA





1328
REF
EEF1A1
EEF1A1_4
Probe
TGCGGTGGGTGTCATCAAAGCA





1329
REF
EEF1A1
EEF1A1_4
Reverse primer
GGGATAATATTCATTTAGCCTTCTG





1330
REF
POLR2A
POLR2A_1
Forward primer
CAAGTACATCATCCGAGACAA





1331
REF
POLR2A
POLR2A_1
Probe
TCGCATTGACTTGCGTTTCCACC





1332
REF
POLR2A
POLR2A_1
Reverse primer
GTGCCGTTCCACCTTATAG





1333
REF
POLR2A
POLR2A_2
Forward primer
ATGGTGATCGCATTGACTT





1334
REF
POLR2A
POLR2A_2
Probe
ACCGGCTATAAGGTGGAACGGC





1335
REF
POLR2A
POLR2A_2
Reverse primer
CTGCCGGTTGAAGATAACA





1336
REF
POLR2A
POLR2A_3
Forward primer
TCGCATTGACTTGCGTTTC





1337
REF
POLR2A
POLR2A_3
Probe
CCAAGCCCAGTGACCTTCACCT





1338
REF
POLR2A
POLR2A_3
Reverse primer
CATCACACATGTGCCGTTC





1339
REF
POLR2A
POLR2A_4
Forward primer
CATTGACTTGCGTTTCCAC





1340
REF
POLR2A
POLR2A_4
Probe
TTCACCTGCAGACCGGCTATAAGGT





1341
REF
POLR2A
POLR2A_4
Reverse primer
TAACAATGTCCCCATCACACAT





1342
REF
PUM1
PUM1_1
Forward primer
GCTTGTCTTCAATGAAATCCTC





1343
REF
PUM1
PUM1_1
Probe
TCCACCATGAGTTGGTAGGCAGC





1344
REF
PUM1
PUM1_1
Reverse primer
CTGTTCAAGACTGCCAAATTC





1345
REF
PUM1
PUM1_2
Forward primer
CCAACTCATGGTGGATGTG





1346
REF
PUM1
PUM1_2
Probe
AATCCGTTCTGCCAAAGCCAGC





1347
REF
PUM1
PUM1_2
Reverse primer
CATACATCTGTAGTGCCAATGA





1348
REF
PUM1
PUM1_3
Forward primer
GCCAGCTTGTCTTCAATGAAAT





1349
REF
PUM1
PUM1_3
Probe
ATCCACCATGAGTTGGTAGGCAGC





1350
REF
PUM1
PUM1_3
Reverse primer
CAAAGCCAGCTTCTGTTCAAG





1351
REF
PUM1
PUM1_4
Forward primer
CATGGTGGATGTGTTTGGTAAT





1352
REF
PUM1
PUM1_4
Probe
TTGGCAGTCTTGAACAGAAGCTGG





1353
REF
PUM1
PUM1_4
Reverse primer
CGAATCCGTTCTGCCAAAG





1354
REF
RPLP0
RPLP0_1
Forward primer
CAACCCTGAAGTGCTTGATA





1355
REF
RPLP0
RPLP0_1
Probe
TGCATTCTCGCTTCCTGGAGGG





1356
REF
RPLP0
RPLP0_1
Reverse primer
GTTTGTACCCGTTGATGATAGA





1357
REF
RPLP0
RPLP0_2
Forward primer
CACAGAGGAAACTCTGCATTC





1358
REF
RPLP0
RPLP0_2
Probe
AGGGTGTCCGCAATGTTGCCAGT





1359
REF
RPLP0
RPLP0_2
Reverse primer
GATGCAACAGTTGGGTAGC





1360
REF
RPLP0
RPLP0_3
Forward primer
GACAATGGCAGCATCTACA





1361
REF
RPLP0
RPLP0_3
Probe
TGCATTCTCGCTTCCTGGAGGG





1362
REF
RPLP0
RPLP0_3
Reverse primer
CCAATCTGCAGACAGACAC





1363
REF
RPLP0
RPLP0_4
Forward primer
CAGCATCTACAACCCTGAAG





1364
REF
RPLP0
RPLP0_4
Probe
TGCATTCTCGCTTCCTGGAGGG


1365
REF
RPLP0
RPLP0_4
Reverse primer
GACAGACACTGGCAACATT





1366
REF
TBP
TBP_1
Forward primer
AAGGGATTCAGGAAGACGA





1367
REF
TBP
TBP_1
Probe
AATGGCTCTCATGTACCCTTGCCT





1368
REF
TBP
TBP_1
Reverse primer
TTCTCACAACACCACCATTTA





1369
REF
TBP
TBP_2
Forward primer
CCCTATTCTAAAGGGATTCAGG





1370
REF
TBP
TBP_2
Probe
AATGGCTCTCATGTACCCTTGCCT





1371
REF
TBP
TBP_2
Reverse primer
ACTCAACATCCATCTTCTCAC





1372
REF
TBP
TBP_3
Forward primer
GATTCAGGAAGACGACGTAATG





1373
REF
TBP
TBP_3
Probe
CTCTCATGTACCCTTGCCTCCC





1374
REF
TBP
TBP_3
Reverse primer
ACCACCATTTAAAGGTACCAAA





1375
REF
TBP
TBP_4
Forward primer
CGTAATGGCTCTCATGTACC





1376
REF
TBP
TBP_4
Probe
TGGTACCTTTAAATGGTGGTGTTGTGAGA





1377
REF
TBP
TBP_4
Reverse primer
CCTGCAACTCAACATCCAT





1378
REF
TPT1
TPT1_1
Forward primer
GAACAGAGACCAGAAAGAGTAAA





1379
REF
TPT1
TPT1_1
Probe
TGTGCTTGATTTGTTCTGCAGCCC





1380
REF
TPT1
TPT1_1
Reverse primer
TCCTCACGGTAGTCCAATAG





1381
REF
TPT1
TPT1_2
Forward primer
GGGAAACTTGAAGAACAGAGAC





1382
REF
TPT1
TPT1_2
Probe
TGTGCTTGATTTGTTCTGCAGCCC





1383
REF
TPT1
TPT1_2
Reverse primer
CAACCATGCCATCTGGATTC





1384
REF
TPT1
TPT1_3
Forward primer
CAAGCACATCCTTGCTAATTTC





1385
REF
TPT1
TPT1_3
Probe
TGAATCCAGATGGCATGGTTGCTCT





1386
REF
TPT1
TPT1_3
Reverse primer
CACACCATCCTCACGGTAG





1387
REF
TPT1
TPT1_4
Forward primer
GCCTACAAGAAGTACATCAAAGA





1388
REF
TPT1
TPT1_4
Probe
AGGGAAACTTGAAGAACAGAGACCAGA





1389
REF
TPT1
TPT1_4
Reverse primer
GCAAGGATGTGCTTGATTTG





1390
REF
TUBA1B
TUBA1B_1
Forward primer
TGACTCCTTCAACACCTTCTTC





1391
REF
TUBA1B
TUBA1B_1
Probe
CCGGGCTGTGTTTGTAGACTTGGA





1392
REF
TUBA1B
TUBA1B_1
Reverse primer
CCAGTGCGAACTTCATCAAT





1393
REF
TUBA1B
TUBA1B_2
Forward primer
GACTCCTTCAACACCTTCTTC





1394
REF
TUBA1B
TUBA1B_2
Probe
CCGGGCTGTGTTTGTAGACTTGGA





1395
REF
TUBA1B
TUBA1B_2
Reverse primer
CCAGTGCGAACTTCATCAAT





1396
REF
TUBA1B 
TUBA1B_3
Forward primer
GGAGGAGATGACTCCTTCAA





1397
REF
TUBA1B 
TUBA1B_3
Probe
CTTCTTCAGTGAGACGGGCGCT





1398
REF
TUBA1B 
TUBA1B_3
Reverse primer
CATCAATGACTGTGGGTTCC





1399
REF
TUBA1B 
TUBA1B_4
Forward primer
CAGATGCCAAGTGACAAGA





1400
REF
TUBA1B 
TUBA1B_4
Probe
CTTCTTCAGTGAGACGGGCGCT





1401
REF
TUBA1B 
TUBA1B_4
Reverse primer
GGGTTCCAAGTCTACAAACA
















TABLE 9







Validation of selected representative primers and probes













SEQ



GC




ID NO:
Assay
Oligo
Strand
content
Length
Tm*
















223
ABCC4_2
Forward
Sense
55.0%
20
64.4




primer






224
ABCC4_2
Reverse
Anti-
45.8%
24
63.6




Primer
sense





225
ABCC4 2
Probe
Sense
53.8%
26
69.8


84
GREB1 2
Forward
Sense
  45%
20
61




primer






83
GREB1 2
Reverse
Anti-
  46%
22
69




Primer
sense





82
GREB1 2
Probe
Sense
  50%
26
61


565
GADD45A_2
Forward
Sense
  36%
22
52.2




primer






566
GADD45A_2
Reverse
Anti-
  50%
20
53




Primer
sense





567
GADD45A 2
Probe
Sense
  38%
29
57.1
















TABLE 10







Sets of primers and probes for determining the JAK-STAT1/2 cellular signaling


pathway activity.












NO







SEQ







ID
Pathway
Gene
Assay
Oligo
Sequence





1402
STAT1/2
APOL1
APOL1_1
Forward primer
GAGCACACAGAATCTGCTA





1403
STAT1/2
APOL1
APOL1_1
Reverse Primer
AGGTTGTCCAGAGCTTTAC





1404
STAT1/2
APOL1
APOL1_1
Probe
CGGATTCGTGGCTGCTGCTGAA





1405
STAT1/2
APOL1
APOL1_2
Forward primer
ACACAGAATCTGCTACTCC





1406 
STAT1/2
APOL1
APOL1_2
Probe
CAGTTCAGCAGCAGCCACGAATCC





1407
STAT1/2
APOL1
APOL1_2
Reverse Primer
AGCTCATCTGCCTCATTC





1408
STAT1/2
APOL1
APOL1_3
Forward Primer
AGGCCTGGAACGGATTC





1409
STAT1/2
APOL1
APOL1_3
Probe
AGCTCCGTAAAGCTCTGGACAACCT





1410
STAT1/2
APOL1
APOL1_3
Reverse Primer
GTCTTTCATGATCATTTGTCTTGC





1411
STAT1/2
APOL1
APOL1_4
Forward Primer
ACTCCTGCTGACTGATAATG





1412
STAT1/2
APOL1
APOL1_4
Probe
CTCATTCCTGGGCAGTTCAGCAGC





1413
STAT1/2
APOL1
APOL1_4
Reverse Primer
AGGTTGTCCAGAGCTTTAC





1414
STAT1/2
BID
BID_1
Forward Primer
CAGAACCTACGCACCTAC





1415
STAT1/2
BID
BID_1
Probe
CCGTTCAGTCCATCCCATTTCTGGC





1416
STAT1/2
BID
BID_1
Reverse Primer
TGACCACATCGAGCTTTAG





1417
STAT1/2
BID
BID_2
Forward Primer
CGTGATGTCTTTCACACAAC





1418
STAT1/2
BID
BID_2
Probe
CCGTTCAGTCCATCCCATTTCTGGC





1419
STAT1/2
BID
BID_2
Reverse Primer
TTAGCCAGTCACACTTCTG





1420
STAT1/2
BID
BID_3
PForward rimer
ACCTACGTGAGGAGCTTA





1421
STAT1/2
BID
BID_3
Probe
CCGTTCAGTCCATCCCATTTCTGGC





1422
STAT1/2
BID
BID_3
Reverse Primer
GCTATACAGCTGTGACCA





1423
STAT1/2
BID
BID_4
Forward Primer
CGTCCTTGCTCCGTGAT





1424
STAT1/2
BID
BID_4
Probe
AACCAGAACCTACGCACCTACGTGA





1425
STAT1/2
BID
BID_4
Reverse Primer
AACTGTCCGTTCAGTCCA





1426
STAT1/2
CXCL9
CXCL9_1
Forward Primer
CATCTTGCTGGTTCTGATTG





1427
STAT1/2
CXCL9
CXCL9_1
Probe
TTCCTGCATCAGCACCAACCAAGG





1428
STAT1/2
CXCL9
CXCL9_1
Reverse Primer
CAAGGATTGTAGGTGGATAGT





1429
STAT1/2
CXCL9
CXCL9_2
Forward Primer
TCTGATTGGAGTGCAAGG





1430
STAT1/2
CXCL9
CXCL9_2
Probe
TTCCTGCATCAGCACCAACCAAGG





1431
STAT1/2
CXCL9
CXCL9_2
Reverse Primer
AGGTCTTTCAAGGATTGTAGG





1432
STAT1/2
CXCL9
CXCL9_3
Forward primer
AGGGACTATCCACCTACAA





1433
STAT1/2
CXCL9
CXCL9_3
Reverse primer
GACATGTTTGAACTCCATTCT





1434
STAT1/2
CXCL9
CXCL9_3
Probe
CCCAAGCCCTTCCTGCGAGAAA





1435
STAT1/2
CXCL9
CXCL9_4
Forward Primer
GAAAGACCTTAAACAATTTGCC





1436
STAT1/2
CXCL9
CXCL9_4
Probe
CCAAGCCCTTCCTGCGAGAAA





1437
STAT1/2
CXCL9
CXCL9_4
Reverse Primer
TCAGTTCCTTCACATCTGC





1438
STAT1/2
GBP1
GBP1_1
Forward Primer
GTTCAGAAGCTACAAGACCT





1439
STAT1/2
GBP1
GBP1_1
Probe
TCTGCAGAATCTCTTCAGCCTGTATCCC





1440
STAT1/2
GBP1
GBP1_1
Reverse Primer
AGTCATAGACTCCTTGGATTTC





1441
STAT1/2
GBP1
GBP1_2
Forward Primer
GGCGGGAATTTATTCGAAAC





1442
STAT1/2
GBP1
GBP1_2
Probe
TGTAGCTTCTGAACAAAGAGACGATAGCCC





1443
STAT1/2
GBP1
GBP1_2
Reverse Primer
CCTTGGATTTCAAGTATGTCTG





1444
STAT1/2
GBP1
GBP1_3
Forward Primer
AGCTACAAGACCTGAAGAAA





1445
STAT1/2
GBP1
GBP1_3
Probe
AAGTACTATGAGGAACCGAGGAAGGG





1446
STAT1/2
GBP1
GBP1_3
Reverse Primer
AGAATCTCTTCAGCCTGTATC





1447
STAT1/2
GBP1
GBP1_4
Forward primer
ACTATGAGGAACCGAGGA





1448
STAT1/2
GBP1
GBP1_4
Reverse primer
GGAGAATTGCATCAGTCATAG





1449
STAT1/2
GBP1
GBP1_4
Probe
ATACAGGCTGAAGAGATTCTGCAGACAT





1450
STAT1/2
GNAZ
GNAZ_1
Forward primer
GAGGTGAAGGGCTGGAT





1451
STAT1/2
GNAZ
GNAZ_1
Probe
TCCAACCCTCCAGCCACTCA





1452
STAT1/2
GNAZ
GNAZ_1
Reverse Primer
GTTGCTGTGGCGATGTT





1453
STAT1/2
GNAZ
GNAZ_2
Forward primer
GCAGATGCTCTGTGCTG





1454
STAT1/2
GNAZ
GNAZ_2
Probe
ACTGTGCATCCAGCCCTTCACC





1455
STAT1/2
GNAZ
GNAZ_2
Reverse Primer
GGCGATGTTGCTGAGTG





1456
STAT1/2
GNAZ
GNAZ_3
Forward primer
CTGGATGCACAGTGGGA





1457
STAT1/2
GNAZ
GNAZ_3
Probe
TCCAGCCACTCAGCAACATCGC





1458
STAT1/2
GNAZ
GNAZ_3
Reverse Primer
GGTTGCTGGTTGCTGTG





1459
STAT1/2
GNAZ
GNAZ_4
Forward primer
CAACCCTCCAGCCACTC





1460
STAT1/2
GNAZ
GNAZ_4
Probe
ACAGCAACCAGCAACCAGACGG





1461
STAT1/2
GNAZ
GNAZ_4
Reverse Primer
CCGTCCGCTTGTGTTTG





1462
STAT1/2
IFI6
IFI6_1
Forward primer
CTAGCCTCAAGTGATCCTC





1463
STAT1/2
IF16
IFI6_1
Probe
ATCGTCGGCGCATGCTTGTAATCC





1464
STAT1/2
IFI6
IFI6_1
Reverse Primer
GGGAGAGTGATAGACAAAGT





1465
STAT1/2
IFI6
IFI6_2
Forward primer
CTAGAGTGCAGTGGCTATT





1466
STAT1/2
IFI6
IFI6_2
Reverse primer
GGCGCATGCTTGTAATC





1467
STAT1/2
IFI6
IFI6_2
Probe
TGCAGCCTCCAACTCCTAGCCT





1468
STAT1/2
IFI6
IFI6_3
Forward primer
CCTCCCAAGTAGGATTACAAG





1469
STAT1/2
IFI6
IFI6_3
Probe
CCGACGATGCCCAGAATCCAGAAC





1470
STAT1/2
IFI6
IFI6_3
Reverse Primer
CTGGGTGAAGTTTATTCTGTTT





1471
STAT1/2
IFI6
IFI6_4
Forward primer
CACTATATTGTCCAGGCTAGAG





1472
STAT1/2
IFI6
IFI6_4
Probe
AGTACACTGCAGCCTCCAACTCCT





1473
STAT1/2
IFI6
IFI6_4
Reverse Primer
GTTGAGACAGGAGGATCAC





1474
STAT1/2
IFIT2
IFIT2_1
Forward primer
GAGTGCAGCTGCCTGAA





1475
STAT1/2
IFIT2
IFIT2_1
Reverse primer
GGCTGCTCTCCAAGGAAT





1476
STAT1/2
IFIT2
IFIT2_1
Probe
AATTCTCAGCTGTTCGGCAGGGC





1477
STAT1/2
IFIT2
IFIT2_2
Forward primer
AGAGGAAGATTTCTGAAGAGTG





1478
STAT1/2
IFIT2
IFIT2_2
Probe
TGCCGAACAGCTGAGAATTGCACT





1479
STAT1/2
IFIT2
IFIT2_2
Reverse Primer
CTCCAAGGAATTCTTATTGTTCTC





1480
STAT1/2
IFIT2
IFIT2_3
Forward primer
AACCATGAGTGAGAACAATAAG





1481
STAT1/2
IFIT2
IFIT2_3
Probe
TGGAGAGCAGCCTACGGCAACTAA





1482
STAT1/2
IFIT2
IFIT2_3
Reverse Primer
CACGATTCTGAAACTCAGTC





1483
STAT1/2
IFIT2
IFIT2_4
Forward primer
GCCGAACAGCTGAGAAT





1484
STAT1/2
IFIT2
IFIT2_4
Probe
TGGAGAGCAGCCTACGGCAACTAA





1485
STAT1/2
IFIT2
IFIT2_4
Reverse Primer
CATCAAGTTCCAGGTGAAATG





1486
STAT1/2
IFITM1
IFITM1_1
Forward primer
TTCATAGCATTCGCCTACTC





1487
STAT1/2
IFITM1
IFITM1_1
Probe
TAGGGACAGGAAGATGGTTGGCGA





1488
STAT1/2
IFITM1
IFITM1_1
Reverse Primer
AGATGTTCAGGCACTTGG





1489
STAT1/2
IFITM1
IFITM1_2
Forward primer
ACACCCTCTTCTTGAACTG





1490
STAT1/2
IFITM1
IFITM1_2
Probe
AGCATTCGCCTACTCCGTGAAGTCT





1491
STAT1/2
IFITM1
IFITM1_2
Reverse Primer
GCCAACCATCTTCCTGT





1492
STAT1/2
IFITM1
IFITM1_3
Forward primer
CTTCTTGAACTGGTGCTGTC





1493
STAT1/2
IFITM1
IFITM1_3
Probe
TAGGGACAGGAAGATGGTTGGCGA





1494
STAT1/2
IFITM1
IFITM1_3
Reverse Primer
AGGGCCCAGATGTTCAG





1495
STAT1/2
IFITM1
IFITM1_4
Forward primer
CCTGTTCAACACCCTCTT





1496
STAT1/2
IFITM1
IFITM1_4
Reverse primer
CTGTCCCTAGACTTCACG





1497
STAT1/2
IFITM1
IFITM1_4
Probe
TCTGGGCTTCATAGCATTCGCCTACT





1498
STAT1/2
IRF1
IRF1_1
Forward primer
TAAGAGCAAGGCCAAGAG





1499
STAT1/2
IRF1
IRF1_1
Probe
TGATGGACTCAGCAGCTCCACTCT





1500
STAT1/2
IRF1
IRF1_1
Reverse Primer
GTAGCCTGGAACTGTGTAG





1501
STAT1/2
IRF1
IRF1_2
Forward primer
CCACCTCTCACCAAGAAC





1502
STAT1/2
IRF1
IRF1_2
Reverse primer
GGTATCAGGGCTGGAATC





1503
STAT1/2
IRF1
IRF1_2
Probe
AGTCGAAGTCCAGCCGAGATGCT





1504
STAT1/2
IRF1
IRF1_3
Forward primer
ATGCTTCCACCTCTCAC





1505
STAT1/2
IRF1
IRF1_3
Probe
AAGTCGAAGTCCAGCCGAGATGCT





1506
STAT1/2
IRF1
IRF1_3
Reverse Primer
CCCACATGACTTCCTCTT





1507
STAT1/2
IRF1
IRF1_4
Forward primer
AAAGACCAGAGCAGGAAC





1508
STAT1/2
IRF1
IRF1_4
Probe
TGCTTCCACCTCTCACCAAGAACCA





1509
STAT1/2
IRF1
IRF1_4
Reverse Primer
GCTGGACTTCGACTTTCT





1510
STAT1/2
IRF7
IRF7_1
Forward primer
TACCATCTACCTGGGCTT





1511
STAT1/2
IRF7
IRF7_1
Reverse primer
CAGGGTTCCAGCTTCAC





1512
STAT1/2
IRF7
IRF7_1
Probe
CCAAGGAGAAGAGCCTGGTCCT





1513
STAT1/2
IRF7
IRF7_2
Forward primer
AAGGAGAAGAGCCTGGT





1514
STAT1/2
IRF7
IRF7_2
Probe
AGCGTGAGGGTGTGTCTTCCCT





1515
STAT1/2
IRF7
IRF7_2
Reverse Primer
CTGAGGCTGCTGCTATC





1516
STAT1/2
IRF7
IRF7_3
Forward primer
GAGGCCCAAGGAGAAGA





1517
STAT1/2
IRF7
IRF7_3
Probe
ACAGCCAGGGTTCCAGCTTCAC





1518
STAT1/2
IRF7
IRF7_3
Reverse Primer
TGCTGCTATCCAGGGAA





1519
STAT1/2
IRF7
IRF7_4
Forward primer
CCCACGCTATACCATCTAC





1520
STAT1/2
IRF7
IRF7_4
Probe
TTCACCAGGACCAGGCTCTTCTCC





1521
STAT1/2
IRF7
IRF7_4
Reverse Primer
CTATCCAGGGAAGACACAC





1522
STAT1/2
IRF9
IRF9_1
Forward primer
GAGCCCTACAAGGTGTATC





1523
STAT1/2
IRF9
IRF9_1
Probe
CCAGCCAGGGACTCAGAAAGTACCA





1524
STAT1/2
IRF9
IRF9_1
Reverse Primer
ATCCTCTTCCTCCTTCCT





1525
STAT1/2
IRF9
IRF9_2
Forward primer
CGCATGGATGTTGCTGA





1526
STAT1/2
IRF9
IRF9_2
Reverse primer
TGATGGTACTTTCTGAGTCC





1527
STAT1/2
IRF9
IRF9_2
Probe
CAGTTGCTGCCACCAGGAATCGT





1528
STAT1/2
IRF9
IRF9_3
Forward primer
CACCAGGAATCGTCTCTG





1529
STAT1/2
IRF9
IRF9_3
Probe
CCAGCCAGGGACTCAGAAAGTACCA





1530
STAT1/2
IRF9
IRF9_3
Reverse Primer
GACTGAGTGTGCAGTTCT





1531
STAT1/2
IRF9
IRF9_4
Forward primer
ATGTTGCTGAGCCCTAC





1532
STAT1/2
IRF9
IRF9_4
Probe
ATCAGTTGCTGCCACCAGGAATCG





1533
STAT1/2
IRF9
IRF9_4
Reverse Primer
CGCTTTGATGGTACTTTCTG





1534
STAT1/2
ISG15
ISG15_1
Forward primer
AATGCGACGAACCTCTG





1535
STAT1/2
ISG15
ISG15_1
Probe
CTGCTGCGGCCCTTGTTATTCCTC





1536
STAT1/2
ISG15
ISG15_1
Reverse Primer
TCACTTGCTGCTTCAGG





1537
STAT1/2
ISG15
ISG15_2
Forward primer
TGGGACCTGACGGTGAA





1538
STAT1/2
ISG15
ISG15_2
Reverse primer
CGATCTTCTGGGTGATCTG





1539
STAT1/2
ISG15
ISG15_2
Probe
TTCCAGGTGTCCCTGAGCAGCT





1540
STAT1/2
ISG15
ISG15_3
Forward primer
GCATCCTGGTGAGGAATAA





1541
STAT1/2
ISG15
ISG15_3
Reverse primer
AGCCAGAACAGGTCGTC





1542
STAT1/2
ISG15
ISG15_2
Probe
ACCTGAAGCAGCAAGTGAGCGG





1543
STAT1/2
ISG15
ISG15_4
Forward primer
CAGATCACCCAGAAGATCG





1544
STAT1/2
ISG15
ISG15_4
Probe
TTCCAGCAGCGTCTGGCTGT





1545
STAT1/2
ISG15
ISG15_4
Reverse Primer
TTCGTCGCATTTGTCCA





1546
STAT1/2
LY6E
LY6E_1
Forward Primer
TGACTGTGTCTGCTAGTG





1547
STAT1/2
LY6E
LY6E_1
Probe
ACATTTGGCCACAGCCTGAGCA





1548
STAT1/2
LY6E
LY6E_1
Reverse Primer
CAACATTGACGCCTTCTG





1549
STAT1/2
LY6E
LY6E_2
Forward Primer
TCCGACCAGGACAACTA





1550
STAT1/2
LY6E
LY6E_2
Probe
ACATTTGGCCACAGCCTGAGCA





1551
STAT1/2
LY6E
LY6E_2
Reverse Primer
AGCCACACCAACATTGA





1552
STAT1/2
LY6E
LY6E_3
Forward Primer
GACAACTACTGCGTGACT





1553
STAT1/2
LY6E
LY6E_3
Probe
TCACGAGATTCCCAATGCCGGC





1554
STAT1/2
LY6E
LY6E_3
Reverse Primer
AACAGGTCTTGCTCAGG





1555
STAT1/2
LY6E
LY6E_4
Forward Primer
GCAATCTGTACTGCCTGAA





1556
STAT1/2
LY6E
LY6E_4
Probe
TCCGACCAGGACAACTACTGCGT





1557
STAT1/2
LY6E
LY6E_4
Reverse Primer
TGGCCAAATGTCACGAG





1558
STAT1/2
OAS1
OAS1_1
Forward Primer
CCTGTGTGTGTGTCCAA





1559
STAT1/2
OAS1
OAS1_1
Reverse primer
CCAGGTCAGCGTCAGAT





1560
STAT1/2
OAS1
OAS1_1
Probe
AAAGGGTGGCTCCTCAGGCAAG





1561
STAT1/2
OAS1
OAS1_2
Forward Primer
CCATGCCATTGACATCATC





1562
STAT1/2
OAS1
OAS1_2
Probe
TCCTACCCTGTGTGTGTGTCCAAGG





1563
STAT1/2
OAS1
OAS1_2
Reverse Primer
GAGGAGCCACCCTTTAC





1564
STAT1/2
OAS1
OAS1_3
Forward Primer
TGACATCATCTGTGGGTTC





1565
STAT1/2
OAS1
OAS1_3
Probe
AGGTGGTAAAGGGTGGCTCCTCA





1566
STAT1/2
OAS1
OAS1_3
Reverse Primer
GGAAGACAACCAGGTCAG





1567
STAT1/2
OAS1
OAS1_4
Forward Primer
TGTGTCCAAGGTGGTAAAG





1568
STAT1/2
OAS1
OAS1_4
Probe
CGATCTGACGCTGACCTGGTTGTCT





1569
STAT1/2
OAS1
OAS1_4
Reverse Primer
AAGTGGTGAGAGGACTGA





1570
STAT1/2
PDCD1
PDCD1_1
Forward Primer
CCAGGATGGTTCTTAGACTC





1571
STAT1/2
PDCD1
PDCD1_1
Probe
TGCAGGTGAAGGTGGCGTTGTC





1572
STAT1/2
PDCD1
PDCD1_1
Reverse Primer
TCCGATGTGTTGGAGAAG





1573
STAT1/2
PDCD1
PDCD1_2
Forward Primer
CCTGAGCAGTGGAGAAG





1574
STAT1/2
PDCD1
PDCD1_2
Probe
TCGTCTGGGCGGTGCTACAACT





1575
STAT1/2
PDCD1
PDCD1_2
Reverse Primer
GGAGTCTAAGAACCATCCTG





1576
STAT1/2
PDCD1
PDCD1_3
Forward Primer
TCCAGGCATGCAGATCC





1577
STAT1/2
PDCD1
PDCD1_3
Probe
TCGTCTGGGCGGTGCTACAACT





1578
STAT1/2
PDCD1
PDCD1_3
Reverse Primer
GTTCCAGGGCCTGTCTG





1579
STAT1/2
PDCD1
PDCD1_4
Forward Primer
TCTGGGCGGTGCTACAA





1580
STAT1/2
PDCD1
PDCD1_4
Probe
TGGCGGCCAGGATGGTTCTTAGA





1581
STAT1/2
PDCD1
PDCD1_4
Reverse Primer
TGGAGAAGCTGCAGGTGAA





1582
STAT1/2
RFPL3
RFPL3_1
Forward Primer
CTACAGATGAACCCAAGGAT





1583
STAT1/2
RFPL3
RFPL3_1
Probe
TGGATGCCGACACAGCCAACAA





1584
STAT1/2
RFPL3
RFPL3_1
Reverse Primer
TGAGGTCGTCAGAAATGAG





1585
STAT1/2
RFPL3
RFPL3_2
Forward Primer
GAGCCCAAGCTGAAGAA





1586
STAT1/2
RFPL3
RFPL3_2
Probe
TTGGATGCCGACACAGCCAACA





1587
STAT1/2
RFPL3
RFPL3_2
Reverse Primer
GTCAGAAATGAGGAGGAAGT





1588
STAT1/2
RFPL3
RFPL3_3
Forward Primer
GCTGGTTTCCCACATCAA





1589
STAT1/2
RFPL3
RFPL3_3
Probe
ACAGATGAACCCAAGGATGCGGAA





1590
STAT1/2
RFPL3
RFPL3_3
Reverse Primer
CGGCATCCAAGGTCATATC





1591
STAT1/2
RFPL3
RFPL3_4
Forward Primer
GCTAGAGAGGCTGGTTTC





1592
STAT1/2
RFPL3
RFPL3_4
Probe
ACAGATGAACCCAAGGATGCGGAA





1593
STAT1/2
RFPL3
RFPL3_4
Reverse Primer
AGGTCATATCCACTTGGAAC





1594
STAT1/2
SSTR3
SSTR3_1
Forward Primer
CACAGGATTCCAGCTCTAAA





1595
STAT1/2
SSTR3
SSTR3_1
Probe
ATAGCTGACTGCTGACCACCCTCC





1596
STAT1/2
SSTR3
SSTR3_1
Reverse Primer
GACACCGATGATGGATGAA





1597
STAT1/2
SSTR3
SSTR3_2
Forward Primer
AAAGACGGCACCTCAAT





1598
STAT1/2
SSTR3
SSTR3_2
Probe
TCCATCATCGGTGTCCACGACCT





1599
STAT1/2
SSTR3
SSTR3_2
Reverse Primer
AGGCATTCTCAGGTTCTG





1600
STAT1/2
SSTR3
SSTR3_3
Forward Primer
AAAGTCCCTCCTTCTCAAG





1601
STAT1/2
SSTR3
SSTR3_3
Probe
ATAGCTGACTGCTGACCACCCTCC





1602
STAT1/2
SSTR3
SSTR3_3
Reverse Primer
GATGATGGATGAAGCATGTC





1603
STAT1/2
SSTR3
SSTR3_4
Forward Primer
CAGGCAAGCTTGTGCCA





1604
STAT1/2
SSTR3
SSTR3_4
Probe
ACGGCACCTCAATTGCAGGCAA





1605
STAT1/2
SSTR3
SSTR3_4
Reverse Primer
AGGGTGGTCAGCAGTCA





1606
STAT1/2
STAT1
STAT1_1
Forward Primer
CTGGCACAGTGGTTAGAA





1607
STAT1/2
STAT1
STAT1_1
Probe
AAGCAAGACTGGGAGCACGCTG





1608
STAT1/2
STAT1
STAT1
Reverse Primer
GTGACAGGAGGTCATGAAA





1609
STAT1/2
STAT1
STAT1_2
Forward Primer
CAGGTTCACCAGCTTTATGA





1610
STAT1/2
STAT1
STAT1_2
Probe
AAAGCAAGACTGGGAGCACGCT





1611
STAT1/2
STAT1
STAT1_2
Reverse Primer
AAACGGATGGTGGCAAA











1612
STAT1/2
STAT1
STAT1_3
Forward Primer
AATCAGACAGTACCTGGCA





1613
STAT1/2
STAT1
STAT1_3
Probe
AAAGCAAGACTGGGAGCACGCT





1614
STAT1/2
STAT1
STAT1_3
Reverse Primer 
CAGCTGTGACAGGAGGT





1615
STAT1/2
STAT1
STAT1_4
Forward Primer
ACCAGCTTTATGATGACAGTT





1616
STAT1/2
STAT1
STAT1_4
Reverse Primer 
GATGGTGGCAAATGAAACA





1617
STAT1/2
STAT1
STAT1_4
Probe
AAGCAAGACTGGGAGCACGCTG





1618
STAT1/2
TAP1
TAP1_1
Forward Primer
GATGCAAACAGCCAGTTAC





1619
STAT1/2
TAP1
TAP1_1
Probe
TGTACGAAAGCCCTGAGCGGTACT





1620
STAT1/2
TAP1
TAP1_1
Reverse Primer 
GGTGATGAGAAGCACTGA





1621
STAT1/2
TAP1
TAP1_2
Forward Primer
CGGAAACCGTGTGTACTT





1622
STAT1/2
TAP1
TAP1_2
Probe
ACCAGTGCCCTGGATGCAAACA





1623
STAT1/2
TAP1
TAP1_2
Reverse Primer 
CTCAGGGCTTTCGTACAG





1624
STAT1/2
TAP1
TAP1_3
Forward Primer
TGCCCTGCTGCAGAATC





1625
STAT1/2
TAP1
TAP1_3
Reverse Primer 
AGACTTCTTCCAAATACCTGTGG





1626
STAT1/2
TAP1
TAP1_3
Probe
ATGAGCACCGCTACCTGCACAG





1627
STAT1/2
TAP1
TAP1_4
Forward Primer
GTGCCCTGGATGCAAAC





1628
STAT1/2
TAP1
TAP1_4
Probe
AGGGCTTTCGTACAGGAGCTGC





1629
STAT1/2
TAP1
TAP1_4
Reverse Primer 
CACTGAGCGGGAGTACC





1630
STAT1/2
USP18
USP18_1
Forward Primer
AGCGAGAGTCTTGTGATG





1631
STAT1/2
USP18
USP18_1
Probe
TTTGCTGTGATTGCGCACGTGG





1632
STAT1/2
USP18
USP18_1
Reverse Primer 
CCGGATGTAGACACAGTAAT





1633
STAT1/2
USP18
USP18_2
Forward Primer
AGCCAGATCCTTCCAATG





1634
STAT1/2
USP18
USP18_2
Reverse Primer 
TTCCCACGTGCGCAATC





1635
STAT1/2
USP18
USP18_2
Probe
TGTGATGCTGAGGAGCAGTCTGGA





1636
STAT1/2
USP18
USP18_3
Forward Primer
CCTTCCAATGAAGCGAGA





1637
STAT1/2
USP18
USP18_3
Probe
TGTGATGCTGAGGAGCAGTCTGGA





1638
STAT1/2
USP18
USP18_3
Reverse Primer 
CAGTAATGACCGGAGTCTG





1639
STAT1/2
USP18
USP18_4
Forward Primer
TTTCAGCCAGATCCTTCC





1640
STAT1/2
USP18
USP18_4
Probe
TGGGAATGGCAGACTCCGGTCA





1641
STAT1/2
USP18
USP18_4
Reverse Primer 
TCCATCCACAGCATTCC
















TABLE 11







Sets of primers and probes for determining the JAK-STAT1/2 cellular


signaling pathway activity.












NO







SEQ







ID
Pathway
Gene
Assay
Oligo
Sequence





1642
NFkB
BIRC3
BIRC3_1
Forward primer
CTAGTCAATGATCTTGTGTTAGAC





1643
NFkB
BIRC3
BIRC3_1
Reverse Primer
GGATTGGAATTACACAAGTCAA





1644
NFkB
BIRC3
BIRC3_1
Probe
AGGGAAGAGGAGAGAGAAAGAGCAACTG





1645
NFkB
BIRC3
BIRC3_4
Forward primer
CCTGGAGAAGACCATTCAG





1646
NFkB
BIRC3
BIRC3_4
Probe
ATGCTGCCGTGGAAATGGGCTTTA





1647
NFkB
BIRC3
BIRC3_4
Reverse Primer
CTCTCCAGTTGCTAGGATTT





1648
NFkB
BIRC3
BIRC3_2
Forward primer
CTGCTATCCACATCAGACA





1649
NFkB
BIRC3
BIRC3_2
Probe
ACCTGGAGAAGACCATTCAGAAGATGCA





1650
NFkB
BIRC3
BIRC3_2
Reverse Primer
CACGGCAGCATTAATCAC





1651
NFkB
BIRC3
BIRC3_3
Forward primer
GACTTACTCAATGCAGAAGATG





1652
NFkB
BIRC3
BIRC3_3
Probe
AGGGAAGAGGAGAGAGAAAGAGCAACTG





1653
NFkB
BIRC3
BIRC3_3
Reverse Primer
CCAGGATTGGAATTACACAAG





1654
NFkB
CCL20
CCL20_4
Forward primer
GTGACATCAATGCTATCATCTT





1655
NFkB
CCL20
CCL20_4
Reverse Primer
AGGAGACGCACAATATATTTCA





1656
NFkB
CCL20
CCL20_4
Probe
AGTTGTCTGTGTGCGCAAATCCA





1657
NFkB
CCL20
CCL20_1
Forward primer
CAGACCGTATTCTTCATCCT





1658
NFkB
CCL20
CCL20_1
Probe
TTATTGTGGGCTTCACACGGCAGC





1659
NFkB
CCL20
CCL20_1
Reverse Primer
GATTTGCGCACACAGAC





1660
NFkB
CCL20
CCL20_2
Forward primer
TGCTATCATCTTTCACACAAAG





1661
NFkB
CCL20
CCL20_2
Probe
AGTTGTCTGTGTGCGCAAATCCAA





1662
NFkB
CCL20
CCL20_2
Reverse Primer
TGTCCAATTCCATTCCAGA





1663
NFkB
CCL20
CCL20_3
Forward primer
TATTGTGGGCTTCACACG





1664
NFkB
CCL20
CCL20_3
Probe
TGGCCAATGAAGGCTGTGACATCA





1665
NFkB
CCL20
CCL20_3
Reverse Primer
CGCACAATATATTTCACCCAAG





1666
NFkB
CCL3
CCL3_3
Forward primer
CCACAGAATTTCATAGCTGAC





1667
NFkB
CCL3
CCL3_3
Reverse Primer
GCTTGGTTAGGAAGATGACAC





1668
NFkB
CCL3
CCL3_3
Probe
ACTTTGAGACGAGCAGCCAGTGC





1669
NFkB
CCL3
CCL3_1
Forward primer
GACTACTTTGAGACGAGCA





1670
NFkB
CCL3
CCL3_1
Probe
AGCCCGGTGTCATCTTCCTAACCA





1671
NFkB
CCL3
CCL3_1
Reverse Primer
CCAGGTCGCTGACATATT





1672
NFkB
CCL3
CCL3_2
Forward primer
CGGCAGATTCCACAGAA





1673
NFkB
CCL3
CCL3_2
Probe
TGACTACTTTGAGACGAGCAGCCAGT





1674
NFkB
CCL3
CCL3_2
Reverse Primer
GCTTCGCTTGGTTAGGA





1675
NFkB
CCL3
CCL3_4
Forward Primer
GCAGATTCCACAGAATTTCATAG





1676
NFkB
CCL3
CCL3_4
Probe
AGCCCGGTGTCATCTTCCTAACCA





1677
NFkB
CCL3
CCL3_4
Reverse Primer
GACCCACTCCTCACTGG





1678
NFkB
CCL4
CCL4_4
Forward Primer
TCGCAACTTTGTGGTAGAT





1679
NFkB
CCL4
CCL4_4
Reverse primer
GATTCACTGGGATCAGCAC





1680
NFkB
CCL4
CCL4_4
Probe
TCCCAGCCAGCTGTGGTATTCCA





1681
NFkB
CCL4
CCL4_1
Forward Primer
TGTCCTGTCTCTCCTCAT





1682
NFkB
CCL4
CCL4_1
Probe
TAGTAGCTGCCTTCTGCTCTCCAGC





1683
NFkB
CCL4
CCL4_1
Reverse Primer
CCTCGCGGTGTAAGAAA





1684
NFkB
CCL4
CCL4_2
Forward Primer
AGCTTCCTCGCAACTTT





1685
NFkB
CCL4
CCL4_2
Probe
CAGCCAGCTGTGGTATTCCAAACCAA





1686
NFkB
CCL4
CCL4_2
Reverse Primer
ACAGACTTGCTTGCTTCT





1687
NFkB
CCL4
CCL4_3
Forward Primer
GCTAGTAGCTGCCTTCTG





1688
NFkB
CCL4
CCL4_3
Probe
ACCACAAAGTTGCGAGGAAGCTTCC





1689
NFkB
CCL4
CCL4_3
Reverse Primer
GCTGCTGGTCTCATAGTAAT





1690
NFkB
CCL5
CCL5_2
Forward Primer
CTGTCATCCTCATTGCTACT





1691
NFkB
CCL5
CCL5_2
Reverse primer
GCCACTGGTGTAGAAATACT





1692
NFkB
CCL5
CCL5_2
Probe
TCGGACACCACACCCTGCTGCT





1693
NFkB
CCL5
CCL5_1
Forward Primer
ATTGCTACTGCCCTCTG





1694
NFkB
CCL5
CCL5_1
Reverse primer
GCCACTGGTGTAGAAATACT





1695
NFkB
CCL5
CCL5_1
Probe
TCGGACACCACACCCTGCTGCT





1696
NFkB
CCL5
CCL5_4
Forward Primer
CTCGCTGTCATCCTCATT





1697
NFkB
CCL5
CCL5_4
Probe
ACACCCTGCTGCTTTGCCTACATT





1698
NFkB
CCL5
CCL5_4
Reverse Primer
CTTGCCACTGGTGTAGAA





1699
NFkB
CCL5
CCL5_3
Forward Primer
TCTGCGCTCCTGCATCT





1700
NFkB
CCL5
CCL5_3
Probe
CCATATTCCTCGGACACCACACCCT





1701
NFkB
CCL5
CCL5_3
Reverse Primer
AGTGGGCGGGCAATGTA





1702
NFkB
CXCL2
CXCL2_1
Forward Primer
CATCGCCCATGGTTAAGA





1703
NFkB
CXCL2
CXCL2_1
Probe
TGGCAAATCCAACTGACCAGAAGG





1704
NFkB
CXCL2
CXCL2_1
Reverse Primer
CAGGAACAGCCACCAATA





1705
NFkB
CXCL2
CXCL2_2
Forward Primer
AATGGCAAATCCAACTGAC





1706
NFkB
CXCL2
CXCL2_2
Probe
CCTTCAGGAACAGCCACCAATAAGC





1707
NFkB
CXCL2
CXCL2_2
Reverse Primer
CTGTGTCTCTCTTTCCTCTT





1708
NFkB
CXCL2
CXCL2_3
Forward Primer
CTCAAGAATGGGCAGAAAG





1709
NFkB
CXCL2
CXCL2_3
Probe
CCGCATCGCCCATGGTTAAGAAA





1710
NFkB
CXCL2
CXCL2_3
Reverse Primer
CTTCTGGTCAGTTGGATTTG





1711
NFkB
CXCL2
CXCL2_4
Forward Primer
GCAGAAAGCTTGTCTCAAC





1712
NFkB
CXCL2
CXCL2_4
Probe
CCGCATCGCCCATGGTTAAGAAA





1713
NFkB
CXCL2
CXCL2_4
Reverse Primer
GCTTCCTCCTTCCTTCTG





1714
NFkB
ICAM1
ICAM1_3
Forward Primer
GCTGACGTGTGCAGTAATA





1715
NFkB
ICAM1
ICAM1_3
Reverse primer
CTGGCTTCGTCAGAATCA





1716
NFkB
ICAM1
ICAM1_3
Probe
ACCAGAGCCAGGAGACACTGCA





1717
NFkB
ICAM1
ICAM1_1
Forward Primer
CTGCAGACAGTGACCATCTA





1718
NFkB
ICAM1
ICAM1__1
Probe
AAGGGACCGAGGTGACAGTGAAGT





1719
NFkB
ICAM1
ICAM1_1
Reverse Primer
GCGTCACCTTGGCTCTA





1720
NFkB
ICAM1
ICAM1_2
Forward Primer
AGGAGACACTGCAGACA





1721
NFkB
ICAM1
ICAM1_2
Probe
CGCCGGAAAGCTGTAGATGGTCAC





1722
NFkB
ICAM1
ICAM1_2
Reverse Primer
TTCTGAGACCTCTGGCTT





1723
NFkB
ICAM1
ICAM1_4
Forward Primer
GAACCAGAGCCAGGAGA





1724
NFkB
ICAM1
ICAM1_4
Probe
CGCCCAACGTGATTCTGACGAAGC





1725
NFkB
ICAM1
ICAM1_4
Reverse Primer
TCGGTCCCTTCTGAGAC





1726
NFkB
IL6
IL6_1
Forward Primer
CCTTCCAAAGATGGCTGAA





1727
NFkB
IL6
IL6_1
Probe
TCAATGAGGAGACTTGCCTGGTGA





1728
NFkB
IL6
IL6_1
Reverse Primer
TGTTCCTCACTACTCTCAAATC





1729
NFkB
IL6
IL6_2
Forward Primer
GATGGATGCTTCCAATCTG





1730
NFkB
IL6
IL6_2
Probe
TCAATGAGGAGACTTGCCTGGTGA





1731
NFkB
IL6
IL6_2
Reverse Primer
AAATCTGTTCTGGAGGTACT





1732
NFkB
IL6
IL6_3
Forward Primer
CTTCCAATCTGGATTCAATGAG





1733
NFkB
IL6
IL6_3
Probe
TGAGAGTAGTGAGGAACAAGCCAGA





1734
NFkB
IL6
IL6_3
Reverse Primer
TGTACTCATCTGCACAGC





1735
NFkB
IL6
IL6_4
Forward Primer
CAGCAAAGAGGCACTGG





1736
NFkB
IL6
IL6_4
Probe
ACAACCTGAACCTTCCAAAGATGGC





1737
NFkB
IL6
IL6_4
Reverse Primer
TGAATCCAGATTGGAAGCAT





1738
NFkB
IRF1
IRF1_1
Forward Primer
CCACCTCTCACCAAGAAC





1739
NFkB
IRF1
IRF1_1
Probe
GGTATCAGGGCTGGAATC





1740
NFkB
IRF1
IRF1_1
Reverse Primer
AGTCGAAGTCCAGCCGAGATGCT





1741
NFkB
IRF1
IRF1_4
Forward Primer
TAAGAGCAAGGCCAAGAG





1742
NFkB
IRF1
IRF1_4
Probe
TGATGGACTCAGCAGCTCCACTCT





1743
NFkB
IRF1
IRF1_4
Reverse Primer
GTAGCCTGGAACTGTGTAG





1744
NFkB
IRF1
IRF1_2
Forward Primer
AAAGACCAGAGCAGGAAC





1745
NFkB
IRF1
IRF1_2
Probe
TGCTTCCACCTCTCACCAAGAACCA





1746
NFkB
IRF1
IRF1_2
Reverse Primer
GCTGGACTTCGACTTTCT





1747
NFkB
IRF1
IRF1_3
Forward Primer
ATGCTTCCACCTCTCAC





1748
NFkB
IRF1
IRF1_3
Probe
AAGTCGAAGTCCAGCCGAGATGCT





1749
NFkB
IRF1
IRF1_3
Reverse Primer
CCCACATGACTTCCTCTT





1750
NFkB
MMP9
MMP9_4
Forward Primer
GGAGACCTGAGAACCAATC





1751
NFkB
MMP9
MMP9_4
Probe
GACTCTCCACGCATCTCTG





1752
NFkB
MMP9
MMP9_4
Reverse Primer
AGGCAGCTGGCAGAGGAATACCT





1753
NFkB
MMP9
MMP9_1
Forward Primer
TGGAGACCTGAGAACCAATC





1754
NFkB
MMP9
MMP9_1
Probe
ACCCGAGTGTAACCATAGC





1755
NFkB
MMP9
MMP9_1
Reverse Primer
AGGCAGCTGGCAGAGGAATACCT





1756
NFkB
MMP9
MMP9_2
Forward Primer
TCCACCCTTGTGCTCTT





1757
NFkB
MMP9
MMP9_2
Probe
ACTCTCCACGCATCTCTG





1758
NFkB
MMP9
MMP9_2
Reverse Primer
AACCAATCTCACCGACAGGCAGC





1759
NFkB
MMP9
MMP9_3
Forward Primer
AGAACCAATCTCACCGACAG





1760
NFkB
MMP9
MMP9_3
Probe
CCAGAGATTTCGACTCTCCAC





1761
NFkB
MMP9
MMP9_3
Reverse Primer
TGGTTACACTCGGGTGGCAGAGA





1762
NFkB
NFkB2
NFkB2_2
Forward Primer
AATGGATGGCAGGCCTTT





1763
NFkB
NFkB2
NFkB2_2
Reverse primer
CGCTCAATCTTCATCTTGTG





1764
NFkB
NFkB2
NFkB2_2
Probe
TGCCATTGTGTTCCGGACACCC





1765
NFkB
NFkB2
NFkB2_1
Forward Primer
TCCCACAGATGTGCATAAA





1766
NFkB
NFkB2
NFkB2_1
Probe
TATGCCATTGTGTTCCGGACACCC





1767
NFkB
NFkB2
NFkB2_1
Reverse Primer
TTACAGGCCGCTCAATC





1768
NFkB
NFkB2
NFkB2_4
Forward Primer
CGGTTCTATGAGGATGATGA





1769
NFkB
NFkB2
NFkB2_4
Probe
TGCACATCTGTGGGAGAGAAGTCCC





1770
NFkB
NFkB2
NFkB2_4
Reverse Primer
CGGAACACAATGGCATAC





1771
NFkB
NFkB2
NFkB2_3
Forward Primer
AGGATGATGAGAATGGATGG





1772
NFkB
NFkB2
NFkB2_3
Probe
CACAAGATGAAGATTGAGCGGCCTGT





1773
NFkB
NFkB2
NFkB2_3
Reverse Primer
GTTTCAGTTGCAGAAACACT





1774
NFkB
PTGS2
PTGS2_1
Forward Primer
TGTGTTGACATCCAGATCAC





1775
NFkB
PTGS2
PTGS2_1
Probe
TAGGAGAGGTTAGAGAAGGC





1776
NFkB
PTGS2
PTGS2_1
Reverse Primer
CCACCAACTTACAATGCTGACTATGGCT





1777
NFkB
PTGS2
PTGS2_4
Forward Primer
TTGACAGTCCACCAACTTAC





1778
NFkB
PTGS2
PTGS2_4
Probe
GGAGGAAGGGCTCTAGTATAA





1779
NFkB
PTGS2
PTGS2_4
Reverse Primer
AAGCTGGGAAGCCTTCTCTAACCTCT





1780
NFkB
PTGS2
PTGS2_2
Forward Primer
GTGAATAACATTCCCTTCCTTC





1781
NFkB
PTGS2
PTGS2_2
Probe
TAGCCATAGTCAGCATTGTAA





1782
NFkB
PTGS2
PTGS2_2
Reverse Primer
CCAGATCACATTTGATTGACAGTCCACCA





1783
NFkB
PTGS2
PTGS2_3
Forward Primer
CCAACTTACAATGCTGACTATG





1784
NFkB
PTGS2
PTGS2_3
Probe
CAATCATCAGGCACAGGAG





1785
NFkB
PTGS2
PTGS2_3
Reverse Primer
AAGCTGGGAAGCCTTCTCTAACCTCT





1786
NFkB
TNF
TNF_3
Forward Primer
TGCACTTTGGAGTGATCG





1787
NFkB
TNF
TNF_3
Reverse primer
GGTTCGAGAAGATGATCTGAC





1788
NFkB
TNF
TNF_3
Probe
AGGGACCTCTCTCTAATCAGCCCTCT





1789
NFkB
TNF
TNF_1
Forward Primer
AGCCTCTTCTCCTTCCT





1790
NFkB
TNF
TNF_1
Probe
TTCTGCCTGCTGCACTTTGGAGTG





1791
NFkB
TNF
TNF_1
Reverse Primer
AGAGGGCTGATTAGAGAGA





1792
NFkB
TNF
TNF_2
Forward Primer
TCAGATCATCTTCTCGAACC





1793
NFkB
TNF
TNF_2
Probe
AGCCCATGTTGTAGCAAACCCTCA





1794
NFkB
TNF
TNF_2
Reverse Primer
GGTTATCTCTCAGCTCCAC





1795
NFkB
TNF
TNF_4
Forward Primer
CTGCCTGCTGCACTTTG





1796
NFkB
TNF
TNF_4
Probe
AGGGACCTCTCTCTAATCAGCCCTCT





1797
NFkB
TNF
TNF_4
Reverse Primer
GGCTACAGGCTTGTCACT





1798
NFkB
TNIP1
TNIP1_4
Forward primer
AGAGGAGCTAGTGAAGGA





1799
NFkB
TNIP1
TNIP1_4
Reverse primer
CTGTGACATTTGAGTCCTTTC





1800
NFkB
TNIP1
TNIP1_4
Probe
TCCCACCACCTTCTCCCTCCTT





1801
NFkB
TNIP1
TNIP1_1
Forward primer
AGAGGAGCTAGTGAAGGA





1802
NFkB
TNIP1
TNIP1_1
Probe
TCCCACCACCTTCTCCCTCCTT





1803
NFkB
TNIP1
TNIP1_1
Reverse Primer
GAGATGCTGTGACATTTGAG





1804
NFkB
TNIP1
TNIP1_2
Forward primer
GCTAGTGAAGGACAACGAG





1805
NFkB
TNIP1
TNIP1_2
Probe
TCCCACCACCTTCTCCCTCCTT





1806
NFkB
TNIP1
TNIP1_2
Reverse Primer
CTGTGGGAGATGCTGTG





1807
NFkB
TNIP1
TNIP1_3
Forward primer
CCACCTTCTCCCTCCTT





1808
NFkB
TNIP1
TNIP1_3
Probe
AAATGTCACAGCATCTCCCACAGCC





1809
NFkB
TNIP1
TNIP1_3
Reverse Primer
GTGCTGGCTTGTCACTG





1810
NFkB
TRAF
TRAF_3
Forward primer
CTGGAAAGAGAACCCATCTG





1811
NFkB
TRAF
TRAF_3
Reverse primer
CTCACGGTTGTTCTGGT





1812
NFkB
TRAF
TRAF_3
Probe
AGTATGATGCGCTGCTGCCG





1813
NFkB
TRAF
TRAF_2
Forward primer
AACCCATCTGTCGCTCT





1814
NFkB
TRAF
TRAF_2
Reverse primer
CTCACGGTTGTTCTGGT





1815
NFkB
TRAF
TRAF_2
Probe
AGTATGATGCGCTGCTGCCG





1816
NFkB
TRAF
TRAF_1
Forward primer
CTGAGCTTGGAGCAGAG





1817
NFkB
TRAF
TRAF_1
Probe
CAGGAAAGTGCCATCGAAGGAGGC





1818
NFkB
TRAF
TRAF_1
Reverse Primer
TGGTGACATTGGTGATCTT





1819
NFkB
TRAF
TRAF_4
Forward primer
CCCTGGCCACCTCTATC





1820
NFkB
TRAF
TRAF_4
Probe
ATCCTGAGCTTGGAGCAGAGGGT





1821
NFkB
TRAF
TRAF_4
Reverse Primer
CAGGGCCTGGTCTTTCT





1822
NFkB
VCAM1
VCAM1_1
Forward primer
CTGGAAGAAGCAGAAAGGA





1823
NFkB
VCAM1
VCAM1_1
Probe
CTGAGAGTGTCAAAGAAGGAGACACTGT





1824
NFkB
VCAM1
VCAM1_1
Reverse Primer
TTCCACATGTACAAGAGATGA





1825
NFkB
VCAM1
VCAM1_2
Forward primer
TTTCCTTCTGAGAGTGTCAA





1826
NFkB
VCAM1
VCAM1_2
Probe
ACACTGTCATCATCTCTTGTACATGTGGA





1827
NFkB
VCAM1
VCAM1_2
Reverse Primer
TAGTACTGTGTCTCCTGTCT





1828
NFkB
VCAM1
VCAM1_3
Forward primer
TGAAGGAATTAACCAGGCT





1829
NFkB
VCAM1
VCAM1_3
Probe
TTCCACTTCCTTTCTGCTTCTTCC





1830
NFkB
VCAM1
VCAM1_3
Reverse Primer
CTTTGACACTCTCAGAAGGA





1831
NFkB
VCAM1
VCAM1_4
Forward primer
GCAGAAAGGAAGTGGAATTA





1832
NFkB
VCAM1
VCAM1_4
Probe
TCCTTCTGAGAGTGTCAAAGAAGGAGA





1833
NFkB
VCAM1
VCAM1_4
Reverse Primer
GTACAAGAGATGATGACAGTG








Claims
  • 1. Assembly of primers and probe for determining the activity of the AR cellular signaling pathway, and optionally one or more additional cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the AR cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 2 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 2. Assembly of primers and probes according to claim 1 further comprising primers and probes for determining the activity of the ER cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the ER cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 1 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 3. Assembly of primers and probes according to claim 1 further comprising primers and probes for determining the activity of the PI3K-FOXO cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the PI3K-FOXO cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 3 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 4. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the MAPK-AP1 cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the MAPK-AP1 cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 4 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 5. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the Notch cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the Notch cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 5 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 6. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the Hedgehog (HH) cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the HH cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 6 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 7. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the TGFbeta cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the TGFbeta cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 7 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 8. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the JAK-STAT1/2 cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the JAK-STAT1/2 cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 10 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 9. Assembly of primers and probes according to claim 1, further comprising primers and probes for determining the activity of the NFkB cellular signaling pathway, wherein the assembly of primers and probes comprises three or more sets of primers or probes for determining the expression level of three or more target genes of the NFkB cellular signaling pathway, wherein said three or more sets of primers and probes are selected from Table 11 of the description, wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 10. Assembly of primers and probes according to claim 1, wherein all of the primers and probes in the three or more sets of primers and probes in the assembly are identical to the corresponding sequence according to Tables 1 to 7, 10 and 11.
  • 11. A kit of parts for determining the expression levels for a plurality of genes, the kit comprising primers and probes for the amplification and detection of the expression levels of the plurality of genes, wherein the kit comprises an assembly of primers and probes as defined in claim 1, wherein the kit further comprises primers and probes for the amplification and detection of three or more of the reference genes selected from ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, preferably wherein said three or more sets of primers and probes are selected from Table 8 of the description, and wherein each primer and/or probe individually has the listed nucleotide sequence identified by the corresponding SEQ ID NO or has a sequence that differs at 1, 2 or 3 positions, wherein said 1, 2 or 3 differences are individually selected from a single base substitution, a single base deletion or a single base addition.
  • 12. Use of the assembly of primers and probes as defined in claim 1 for determining the AR cellular signaling pathway activity, and optionally the cellular signaling pathway activity of one or more cellular signaling pathways selected from the group consisting of: HH, ER, TGFbeta, PI3K-FOXO, Notch, MAPK-AP1, JAK-STAT1/2 and NFkB.
  • 13. Use of a set of three or more primers and probes to determine the expression levels of three or more target genes of a cellular signaling pathway, wherein the set of primers and probe combinations are as defined in claim 1, and wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB 2, SGK1, and TMPRSS2;wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of: BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of: CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of: CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of: ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of: CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of: BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of: APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of: AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1.
  • 14. A method for designing primers and probes for the detection of the expression levels of target genes of a cellular signaling pathway suitable for determining the activity of the AR cellular signaling pathway and optionally one or more additional cellular signaling pathways, the method comprising: designing for a target gene of the AR cellular signaling pathway and optionally one or more additional cellular signaling pathway a forward primer and a reverse primer such that: the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;wherein the amplification product, when using the forward and reverse primers in a PCR amplification reaction, has a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning; designing the probe such that: the probe used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics:the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides; andthe binding part of the probe does not have a G at the 5′ part.
  • 15. A method of determining the AR cellular signaling pathway activity and optionally one or more additional cellular signaling pathway activity or activities, by simultaneously determining the expression level of six or more genes in a sample, the method comprising simultaneously amplifying six or more gene products using a polymerase chain reaction to generate a plurality of amplification products, followed by the detection of the plurality of amplification products using a plurality of probes, wherein the polymerase chain reaction uses, for each amplification product, a forward and a reverse primer which have the following characteristics: the forward and reverse primer have a GC content between 35% and 69%, preferably between 35% and 65%;the forward and reverse primer have a melting temperature between 50 and 71 degrees Celsius, preferably between 58 and 64 degrees Celsius;the forward and reverse primer have a length between 16 and 25 nucleotides, preferably between 17 and 24 nucleotides;wherein the amplification products have a size between 60 and 240 base pairs, preferably between 65 and 150 base pairs, and preferably wherein the amplicon product is intron spanning,wherein each of the probes used for detection of an amplification product comprises a binding part which is complementary to a part of the amplification product, the binding part further having the following characteristics: the binding part of the probe has a GC content between 35% and 69%, preferably between 40% and 60%;the binding part of the probe has a melting temperature between 56 and 72 degrees Celsius, preferably between 64 and 72 degrees Celsius;the binding part of the probe has a length between 17 and 31 nucleotides, preferably between 18 and 30 nucleotides;the binding part of the probe does not have a G at the 5′ part,wherein the expression levels are used in a method for determining the AR cellular signaling pathway and optionally one or more cellular signaling pathway activities selected from the group consisting of: WNT, HH, ER, PR, PR, TGFbeta, NFkB, STAT1/2, STAT3, PI3K-FOXO, Notch, MAPK-AP1, andwherein the primers and probes amplify and detect of the expression levels of three or more of the reference genes selected from: ACTB, ALAS1, B2M, EEF1A1 POLR2A, PUM1, RPLP0, TBP, TPT1 and TUBA1B, andwherein the primers and probes further amplify and detect the expression levels of three or more target genes for the AR cellular signaling pathway and optionally one or more cellular signaling pathways selected from the group consisting of: ER, PI3K-FOXO, MAPK-AP1, HH, Notch, TGFbeta, WNT, PR, NFkB, JAK-STAT1/2, JAK-STAT3,wherein the three or more target genes for the AR cellular signaling pathway are selected from the group consisting of: ABCC4, AR, CREB3L4, DHCR24, ELL2, FKBP5, GUCY1A3, KLK2, KLK3, LRIG1, NDRG1, NKX3.1 (also known as NKX3_1), PLAU, PMEPA1, PPAP2A, PRKACB 2, SGK1, and TMPRSS2;wherein the three or more target genes for the ER cellular signaling pathway are selected from the group consisting of: AP1B1, CA12, CDH26, CELSR2, CTSD, ERBB2, ESR1, GREB1, HSPB1, IGFBP4, MYC, NRIP1, PDZK1, PGR, RARA, SGK3, SOD1, TFF1, WISP2, and XBP1;the three or more target genes for the PI3K-FOXO cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCNG2, CDKN1A, CDKN1B, ESR1, FBXO32, FOXO3, GADD45A, INSR, MXI1, SOD2, TNFSF10;wherein the three or more target genes for the MAPK-AP1 cellular signaling pathway are selected from the group consisting of: BCL2L11, CCND1, DDIT3, EGFR, ENPP2, EZR, GLRX, MMP1, MMP3, MMP9, PLAU, PLAUR, PTGS2, SERPINE1, TIMP1, TP53, VEGFD, and VIM;wherein the three or more target genes for the Notch cellular signaling pathway are selected from the group consisting of: CD44, EPHB3, FABP7, HES1, HES4, HES5, HEY1, HEY2, MYC, NOX1, NRARP, PIN1, PLXND1, and SOX9;wherein the three or more target genes for the HH cellular signaling pathway are selected from the group consisting of: CFLAR, FOXM1, FYN, GLI1, HHIP, MYCN, NKX2-2, PTCH1, PTCH2, RAB34, SPP1, TCEA2, and TSC22D1;wherein the three or more target genes for the TGFbeta cellular signaling pathway are selected from the group consisting of: ANGPTL4, CDKN1A, CTGF, GADD45A, GADD45B, ID1, IL11, JUNB, MMP2, MMP9, PDGFB, SERPINE1, SGK1, SKIL, SMAD4, SMAD7, SNAI1, TIMP1, and VEGFA;wherein the three or more target genes for the WNT cellular signaling pathway are selected from the group consisting of: CEMIP, AXIN2, CD44, RNF43, MYC, TBX3, TDGF1, SOX9, ASCL2, CXCL8, SP5, ZNRF3, EPHB2, LGR5, EPHB3, KLF6, CCND1, DEFA6, and FZD7;wherein the three or more target genes for the PR cellular signaling pathway are selected from the group consisting of: AGRP, BCL2L11, BCL6, BNIP3, BTG1, CAT, CAV1, CCND1, CCND2, CCNG2, CDKN1A, CDKN1B, ESR1, FASLG, FBXO32, GADD45A, INSR, MXI1, NOS3, PCK1, POMC, PPARGC1A, PRDX3, RBL2, SOD2 and TNFSF10;wherein the three or more target genes for the NFkB cellular signaling pathway are selected from the group consisting of: BIRC3, CCL3, CCL4, CCL5, CCL20, CXCL2, ICAM1, IL6, IRF1, MMP9, NFKB2, PTGS2, TNF, TNIP1, TRAF1, and VCAM1;wherein the three or more target genes for the JAK-STAT1/2 cellular signaling pathway are selected from the group consisting of: APOL1, BID, CXCL9, GBP1, GNAZ, IFI6, IFIT2, IFITM1, IRF1, IRF7, IRF9, ISG15, LY6E, OAS1, PDCD1, RFPL3, SSTR3, STAT1, TAP1 and USP18;wherein the three or more target genes for the JAK-STAT3 cellular signaling pathway are selected from the group consisting of: AKT1, BCL2, BCL2L1, BIRC5, CCND1, CD274, CDKNIA, CRP, FGF2, FOS, FSCN1, FSCN2, FSCN3, HIFIA, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, ICAM1, IFNG, IL10, JunB, MCL1, MMP1, MMP3, MMP9, MUC1, MYC, NOS2, POU2F1, PTGS2, SAA1, STAT1, TIMP1, TNFRSF1B, TWIST1, VIM and ZEB1,wherein the primers and probes are able to amplify and detect the respective genes under the following reaction conditions: 50 mM monovalent salt;400 nM forward primer400 nM reverse primer3.0 mM divalent salt, preferably the divalent salt being Mg2+;100 nM probe; and0.8 mM dNTP.
Priority Claims (1)
Number Date Country Kind
20193288.6 Aug 2020 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2021/073469 8/25/2021 WO