This application claims priority to Japanese patent application serial number 2012-247540, the contents of which are incorporated herein by reference.
Embodiments of the present invention relate to PCV (Positive Crankcase Ventilation) valves that may be used for blow-by gas refluxing systems of internal combustion engines of vehicles such as automobiles.
A known PCV valve will be described with reference to
The valve member 146 has a cylindrical base shaft portion 160 and a tapered portion 162. The tapered portion extends from the base shaft portion 160 and is tapered toward the leading end side. The diameter of the tapered portion 162 increases toward the base shaft portion 160. The tapered portion 162 is inserted into the monitoring portion 156 from the inlet port 143 toward the side of the outlet port 144. A spring 166 is interposed between the housing 142 and the valve member 146 in order to bias the valve member 146 toward the side of the inlet port 143.
When a negative pressure is produced within the intake air passage of the engine, the negative pressure may be introduced into the housing 142 via the outlet port 144. Then, by the action of the negative pressure, the valve member 146 may move toward the side of the outlet port 144 against the biasing force of the spring 166. Therefore, the position of the tapered portion 162 of the valve member 146 may be changed relative to the monitoring portion 156 of the housing 142. In this way, the flow rate of the blow-by gas flowing from the inlet port 143 toward the outlet port 144 after flowing through a clearance (i.e., an opening) between the monitoring portion 156 and the tapered portion 162 may be measured (adjusted).
Four rib-like guide portions 170 protrude radially outward from the tapered portion 162 and extend in the axial direction so as to slidably contact the monitoring portion 156 of the housing 142 (see
For example, Japanese Laid-Open Patent Publication No. 2007-182939 discloses a PCV valve including a valve member having a plurality of guide portions that can slidably contact a monitoring portion of a housing.
In the case of the known PCV valve described above, the width 170W of each guide portion 170 of the valve member 146 is constant throughout the axial length. Therefore, it may not be possible to satisfy both of two contradicting targets, i.e., an improvement in reduction in wear of slide contact portions of the monitoring portion 156 and the guide portions 170 as well as an increase of the flow rate of the blow-by gas flowing through the opening formed between the monitoring portion 156 of the valve member 146. In
Japanese Laid-Open Patent Publication No. 2007-182939 also involves the same problem as the known PCV valve 140.
Therefore, there has been a need in the art for PCV valves that are reduced in wear of the slide contact portions and that can provide an increased flow rate of the blow-by gas.
In one aspect according to the present teachings, a PCV valve may include a housing and a valve member movable in an axial direction within the housing. A plurality of guide portions may be formed on the valve member, so that the plurality of guide portions slidably contact the monitoring portion of the housing as the valve member moves in the axial direction. When a first part of a tapered portion of the valve member opposes the monitoring portion, a first contact part of each of the guide portions may contact the monitoring portion. When a second part of the tapered portion having a smaller diameter than the first part opposes the monitoring portion, a second contact part of each of the guide portions may contact the monitoring portion. The second contact part may be smaller than the first part with respect to a width in a circumferential direction or may have a circumferential contact length smaller than that of the first part.
Each of the additional features and teachings disclosed above and below may be utilized separately or in conjunction with other features and teachings to provide improved PCV valves. Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in conjunction with one another, will now be described in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed in the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Moreover, various features of the representative examples and the dependent claims may be combined in ways that are not specifically enumerated in order to provide additional useful examples of the present teachings.
In one embodiment, a PCV valve may include a housing with an inlet port and an outlet port, a valve member movable in an axial direction within the housing, and a monitoring portion formed on an inner wall of the housing and having a substantially circular shape in cross section along a direction perpendicular to the axial direction. The valve member may have a first end portion, a second end portion opposite to the first end portion in the axial direction, and a tapered portion formed throughout an outer circumference of the valve member and positioned between the first end portion and the second end portion, so that the first end portion has a diameter larger than a diameter of the second end portion. As the valve member moves in the axial direction within the housing, the position of the tapered portion may change relative to the monitoring portion, so that a blow-by gas flowing into the housing from the inlet port flows out of the outlet port after the blow-by gas is monitored as the blow-by gas flows through a clearance defined between the monitoring portion and the tapered portion. A plurality of guide portions each configured as a rib may be formed on the valve member. The plurality of guide portions may protrude radially outward from the tapered portion and extend in the axial direction along the valve member, so that the plurality of guide portions can slidably contact the monitoring portion of the housing. Each of the guide portions may have a first part and a second part respectively positioned on the side of the first end portion and the side of the second end portion. The second part may have a width that is smaller than a width of the first part.
With this arrangement, the valve member may be guided to move in the axial direction through the sliding contact of the plurality of guide portions with the monitoring portion of the housing. Therefore, the valve member may be prevented from shifting in the radial direction during axial movement. As a result it is possible to improve the stability in operation of the valve member. In addition, by selecting the width of the second part of each guide portion to be smaller than the width of the first part, it is possible to reduce the wear of the slide contact portions of the guide portions and the monitoring portion when the first parts of the guide portions positioned on the side of the first end portion having a larger diameter than the second end portion of the valve member contact the monitoring portion. On the other hand, it is possible to increase the flow rate of the blow-by gas when the second parts of the guide portions positioned on the side of the second end portion having a smaller diameter than the first end portion of the valve member contact the monitoring portion. In this way, it is possible to reduce the wear of the slide contact portions and to increase the flow rate of the blow-by gas when needed.
Embodiments of the present invention will now be described with reference to the drawings.
A first embodiment will be described with reference to
Referring to
In addition to including the cylinder block 14, the engine body 13 may include an oil pan 15 fastened to the lower surface of the crank case 15, a cylinder head 17 fastened to the upper surface of the cylinder block 14 and a cylinder head cover 18 fastened to the upper surface of the cylinder head 17. The engine body 13 may generate a drive force through intake, compression, expansion and exhaust processes of a known manner. As fuel is combusted within the combustion chamber of the engine body 13, blow-by gas may be produced within the engine body 13 including the inside of the crankcase 15 and the inside of the cylinder head cover 18 communicating with the crankcase 15. In the following explanation, the inside of the cylinder head cover 18, the crankcase 15, etc. within which the blow-by gas may be produced or into which the blow-by gas may flow will be hereinafter collectively called as the inside of the engine body 13.
The cylinder head cover 18 may be provided with a fresh air introduction port 18a and/or a blow-by gas extraction port 18b. The fresh air introduction port 18a may communicate with one end (downstream end) of a fresh air introduction passage 30. The blow-by gas extraction port 18b may communicate with one end (upstream end) of a blow-by gas passage 36. The fresh air introduction port 18a and/or the blow-by gas extraction port 18b may be provided at the crankcase 15 in place of the cylinder head 18.
One end (downstream end) of the intake manifold 20 may communicate with the cylinder head 17. The intake manifold 20 may include a surge tank 21. The other end (upstream end) of the intake manifold 20 may communicate with an air cleaner 25 via a throttle body 24 and an intake pipe 23. The throttle body 24 may include a throttle valve 24a. The throttle valve 24a may be linked to an accelerator pedal (not shown), so that the throttle valve 24a can be opened and closed according to the stepping amount (operation amount) of the accelerator pedal. The air cleaner 25 may receive outside fresh air and may include a filter element 26 disposed therein. The fresh air (intake air) may be introduced from the air cleaner 25 into the combustion chamber of the engine body 13 via the intake pipe 23, throttle body 24 and the intake manifold 20 which together may form a continuous intake passage 27 communicating between the air cleaner 25 and the combustion chamber. In the following explanation, a passage portion of the intake passage 27 on the upstream side of the throttle valve 24a will be called an upstream side intake passage portion 27a. A passage portion of the intake passage 27 on the downstream side of the throttle valve 24a will be called a downstream side intake passage portion 27b.
The intake pipe 23 may have a fresh air intake port 29 communicating with the other end (upstream end) of the fresh air introduction passage 30. A backflow preventing valve 32 may be provided in the fresh air introduction passage 30 for allowing the flow of fresh air from the upstream side intake passage portion 27a into the crankcase 15 (see arrow Y1 in
Next, the operation of the blow-by gas refluxing system 10 will be described. During a low load range and a middle load rage of the engine 12, the throttle valve 24a may be positioned at a substantially fully closed position. In this way, a negative pressure may be produced in the intake air passage 27. A negative pressure produced in the downstream sided intake passage portion 27b may be larger than that produced in the upstream side intake passage portion 27a. In this way, the blow-by gas produced in the engine body 13 may be introduced into the downstream side intake passage portion 27b via the blow-by gas passage 36 (see arrow Y2 in
The backflow preventing valve 32 may be opened as the blow-by gas is introduced from within the engine body 13 into the downstream side intake passage portion 27b via the blow-by gas passage 36. In this way, the fresh air within the upstream side intake passage portion 27a of the intake passage 27 may be introduced into the engine body 13 via the fresh air introduction passage 30 (see arrow Y1 in
During a high load range of the engine 12, the degree of opening of the throttle valve 24a may be larger than when it is in the low and middle load ranges. In this way, the pressure within the downstream side intake passage portion 27b of the intake passage 27 may become closer to the atmospheric pressure. Therefore, the blow-by gas produced in the engine body 13 may be difficult to introduce into the downstream side intake passage portion 27b via the fresh air introduction passage 30. For this reason, the pressure within the engine body 13 may become closer to the atmospheric pressure. Hence, the flow rate of the fresh air introduced from the upstream side intake passage portion into the engine body 13 via the fresh air introduction passage 30 may be lowered. The backflow preventing valve 32 may be closed in order to prevent the backflow of the blow-by gas in a direction from within the engine body 13 into the fresh air introduction passage 30.
The PCV valve 40 provided in the blow-by gas passage 36 may control or monitor the flow rate of the blow-by gas according to the difference between the upstream side pressure and the downstream side pressure of the blow-by gas with respect to the PCV valve 40. This pressure difference may be called an intake negative pressure or a boost pressure. Therefore, the blow-by gas may flow into the downstream side intake passage portion 27b at a flow rate that is appropriate for the amount of the blow-by gas produced in the engine 12.
The PCV valve 40 will be further described with reference to
As shown in
The housing 42 may include a front housing member 42a and a rear housing member 43b. If separate members, the front housing member 42a and the rear housing member 43b may be joined together to form the housing 42. The front and rear housing members 42a and 43b may be made of resin. A seat portion 50 may be coaxially formed on the inner circumferential wall of the front housing member 42a at a substantially middle position with respect to the axial direction so as to protrude radially inward from the circumferential wall in a manner like a flange. An annular stepped surface 50a may be formed at the rear end of the seat portion 50. The rear housing member 42b may include a cylindrical upstream side passage wall 52 defining a part of the gas passage 48 at a position on the side of the inlet port 43 (right side in
A monitoring portion 56 may be formed within the housing 42 at a position between the inlet port 43 and the outlet port 44. The monitoring portion 56 is formed as a cylindrical wall having a predetermined diameter, a predetermined axial length and a circular cross-section. The monitoring portion 56 may be formed by the inner circumferential part of the seat portion 50. A flange-like wall portion 58 may be coaxially formed with the rear end portion of the rear housing member 42b so as to protrude radially inward from the rear end of the upstream side passage wall 52. The outlet port 43 may be defined by the circular hole formed in the wall portion 58.
The valve member 46 may include a cylindrical base shaft portion 60 and a tapered portion 62. The tapered portion 62 may extend generally forward from the front end of the base shaft portion 60 and may be tapered toward the front side. A flange 64 may be formed at the rear end (right end in
The tapered portion 62 of the valve member 36 may be inserted into the monitoring portion 56 of the housing 42 in a direction from the side of the inlet port 43 toward the side of the outlet port 44. As the valve member 46 moves rearward (rightward in
As shown in
If the engine 12 (see
During the low load range of the engine 12, the degree of opening of the throttle valve 24a may be relatively small, so that a relatively large negative pressure may be produced in the intake passage 27. Therefore, the valve member 46 may move toward the outlet port 44 by the negative pressure. In this way, the base end side part Rc of the operational range R (see
As the operational range of the engine 12 transfers from the low load range to the middle load range, the degree of opening of the throttle valve 24a may increase, so that the negative pressure produced in the intake passage 27 may be reduced. Therefore, the valve member 46 may move toward the inlet port 43 by the biasing force of the spring 66. In this way, the middle part Rb of the operational range R (see
As the operational range of the engine 12 transfers from the middle load range to the high load range, the degree of opening of the throttle valve 24a may be further increased, so that the negative pressure produced in the intake passage 27 may be further reduced. Therefore, the valve member 46 may move further toward the inlet port 43 by the biasing force of the spring 66. In this way, the leading end side part Ra of the operational range R used for the WOT range of the engine 12 may be positioned to oppose the monitoring portion 56. Therefore, the cross-sectional flow area of the opening formed between the monitoring portion 56 and the tapered portion 62 may further increase. In this way the flow rate of the blow-by gas flowing through the PCV valve 40 may increase in comparison with the flow rate during the middle load range of the engine 12. As described previously, there has been a need to increase the flow rate of the blow-by gas in the WOT region of the engine.
As described above, the tapered portion 62 of the valve member 46 is inserted into the monitoring portion 56 of the housing 42, and the flow rate of the blow-by gas flowing through the opening between the monitoring portion 56 and the tapered portion 62 may change as the position of the tapered portion 62 relative to the monitoring portion 56 in the moving direction of the valve member 46 changes.
Four rib-like guide portions 70 may protrude radially outward from the tapered portion 62 and extend in the axial direction so as to slidably contact the monitoring portion 56 of the housing 42 (see
As shown in
The flange 64 of the valve member 46 may have a substantially circular disk-shape (see
With the PCV valve 40 configured as described above, as the valve member 46 moves axially within the housing 42, the four guide portions 70 (more specifically, their radially outer end surfaces) slidably contact the monitoring portion 56 of the housing 42. In addition, the four auxiliary guide portions 65 (more specifically, their slide contact surfaces 64a) may slidably contact the upstream side passage wall 52 of the housing 42. In this way, the valve member 46 may be guided in the axial direction by the four guide portions 70 and the four auxiliary guide portions 65. Hence, it is possible to assuredly prevent the valve member 46 from shifting movement in the radial direction. As a result, it is possible to improve stability in terms of the operation of the valve member 46.
In addition, by determining the width 72W of the leading end side part of each of the guide portions 70 (i.e., the width of the narrow width part 72) to be smaller than the width 71W of the base end side part (i.e., the width of the broad width part 71) (see
The leading end side part (having the narrow width 72W) of each guide portion 70 may contact the monitoring portion 56 when the narrow width part 72 corresponding to the leading end side part Ra of the operational range R (see
In this way, it is possible to achieve both a decrease in the wear of the slide contact portions and an increase of the flow rate of the blow-by gas.
Second to seventh embodiments will now be described with reference to
The second embodiment will now be described with reference to
According to the second embodiment, each of the guide portions 70 of the valve member 46 has a broad width part 74, a narrow width part 75 and a width-changing part 74a. The axial length of the broad width part 74 is determined such that the broad width part 74 extends along the length of the base end part Rc (see
The third embodiment will now be described with reference to
According to the third embodiment, each of the guide portions 70 of the valve member 46 has a broad width part 77, a narrow width part 78 and a width-changing part 79. The axial length of the broad width part 77 is determined such that the broad width part 77 extends along the length of the base end part Rc (see
The fourth embodiment will now be described with reference to
The fifth embodiment will now be described with reference to
The sixth embodiment will now be described with reference to
The seventh embodiment will now be described with reference to
The above embodiments may be modified in various ways. For example, it may be possible to combine features from two or more of the above embodiments. The number of the guide portions 70 may not be limited to four but may be one, two, three or five or more. Similarly, the number of the auxiliary guide portions 65 may not be limited to four but may be one, two, three or five or more. It may be also possible that the number of the guide portions 70 is different from the number of the auxiliary guide portions 65. The auxiliary guide portions 65 may be omitted in some cases. The housing 42 and/or the valve member 46 may be made of any other material than resin and may be made, for example, of metal.
Number | Date | Country | Kind |
---|---|---|---|
2012-247540 | Nov 2012 | JP | national |