PD-L1 EXPRESSION AS MARKER FOR CANCER TREATMENT RESPONSE

Information

  • Patent Application
  • 20240006024
  • Publication Number
    20240006024
  • Date Filed
    May 14, 2021
    3 years ago
  • Date Published
    January 04, 2024
    a year ago
  • CPC
    • G16B25/10
    • G16H20/00
  • International Classifications
    • G16B25/10
    • G16H20/00
Abstract
A method for determining the susceptibility of a patient suffering from proliferative disease to treatment using an agent targeting a cell pathway or components thereof comprises an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof. The method comprises determining tumour type, determining expression levels of PD-L1, determining tumour mutational burden, preparing a DNA damage and repair related genes analysis based on the tumour type and PD-L1 expression levels.
Description

The present invention relates to a method for determining the susceptibility of a patient suffering from proliferative disease, such as cancer, to treatment using a target agent. It further comprises the development of treatment regimens for selected patients, based upon the determination, and computers programmed to carry out the determination.


BACKGROUND OF THE INVENTION

Programmed death 1 receptor (PD-1) and its ligands, PD-1 programmed death-ligand 1 (PD-L1) and PD-L2, deliver inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. The PD-L1 is a transmembrane protein that binds to the PD-1 during immune system modulation. This PD-1/PD-L1 interaction protects normal cells from immune recognition by inhibiting the action of T-cells thereby preventing immune-mediated tissue damage. The PD-1/PD-L1 pathway is normally involved in promoting tolerance and preventing tissue damage in the setting of chronic inflammation.


Harnessing the immune system in the fight against cancer has become a major topic of interest. Immunotherapy for the treatment of cancer is a rapidly evolving field from therapies that globally and non-specifically stimulate the immune system to more targeted approaches.


The PD-1/PD-L1 pathway has emerged as a powerful target for immunotherapy. A range of cancer types have been shown to express PD-L1 which binds to PD-1 expressed by immune cells resulting in immunosuppressive effects that allows these cancers to evade tumour destruction. The PD-1/PD-L1 interaction inhibits T-cell activation and augments the proliferation of T-regulatory cells (T-regs) which further suppresses the effector immune response against the tumour. This mimicks the approach used by normal cells to avoid immune recognition. Targeting PD-1/PD-L1 has therefore emerged as a new and powerful approach for immunotherapy directed therapies.


Disrupting the PD-1/PD-L1 pathway with therapeutic antibodies directed against either PD-1 or PD-L1 (anti-PD-L1 or anti-PD-1 agents) results in restoration of effector immune responses with preferential activation of T-cells directed against the tumour.


All solid tumours and haematological malignancies including, melanoma, renal cell carcinoma, lung cancers of the head and neck, gastrointestinal tract malignancies, ovarian cancer, haematological malignancies are known to express PD-L1 resulting in immune evasion. Anti-PD-L1 and anti-PD-1 therapy has been shown to induce a strong clinical response in many of these tumour types, for example 20-40% in melanoma and 33-50% in advanced non-small cell lung cancer (NSCLC). A number of these antibodies, for example anti-PD-1 directed agents Nivolumab and Pembrolizumab, have now received FDA-approval for the treatment of metastatic NSCLC and advanced melanoma.


There are nine drugs in development targeting the PD-1/PD-L1 pathway, and the current practice of pharmaceutical companies is to independently develop an anti-PD-L1 IHC diagnostic assays as a predictor of response to anti PD-1/anti PD-L1 directed therapies. These PD-1/PD-L1 directed therapies include Pembrolizumab, atezolizumab, avelumab, nivolumab, durvalumab, PDR-001, BGB-A317, REG W2810 and SHR-1210.


The leading Biopharma companies have all chosen an immunohistochemical approach on paraffin wax embedded formalin fixed diagnostic biopsies and resection tissues/samples (PWET) for the development of companion diagnostics for anti-PD-1/PD-L1 directed therapies. All these tests involve the application of a monoclonal antibody raised against PD-L1 applied to the tissue section using a standard immunohistochemical assay approach with enzyme linked chromogen detection systems. The immunohistochemical staining of cells, either partial or complete surface membrane staining for PD-L, is then assessed manually by microscopic examination by a pathologists to determine the proportion of cells which express PD-L1. A tumour proportion score is then reported. Some assays assess only the tumour cell expression of PD-L1, others assess both tumour cells and the expression of PD-L1 in the associated intratumoural and peritumoural immune cell infiltrates (ICs).


Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available. Published studies using the VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1 IHC 22C3 pharmDx assay, Dako PD-L1 IHC 28-8 pharmDx assay, and laboratory-developed tests utilizing the E1L3N antibody (Cell Signaling Technology), have demonstrated differing levels of PD-L1 staining between assays. Moreover, different cut-points have been developed for prediction of response in relation to the tumour proportion score and/or PD-L1 positive IC populations.


However major problems have arisen in relation to the ability of these IHC PD-L1 companion diagnostic assays to predict response to anti-PD-L1/PD-1 directed therapies.


For instance, it has been observed that the percentage of PD-L1-stained tumour cells varies with the type of IHC assay used. For example, comparable results are observed in relation to 22C3, 28-8, and SP263 whereas the SP142 assay exhibits fewer stained tumour cells.


PD-L1 ring studies have also shown poor correlation between the scores generated by individual pathologists. The poor Inter-reader reliability is a particular problem in the assessment of PD-L1 immune cell populations.


The immune checkpoint involves not only PD-L1 but many other biological factors. For example, the PD-L1 signalling axis involves other major components in addition to PD-1 and PD-L1 which have been shown to be predictors of response to anti-PD-1/PD-L1/PD-L2 directed immunotherapy agents including aberration of NFATC1, PIK3CA, PIK3CD, PRDM1, PTEN, PTPN11, MTOR, HIF1A, FOX01.


Similar issues arise with regard to tests developed for drugs developed to target other cell pathways or components thereof such as DDR/MMR signalling pathway.


Accordingly, there is a need to develop further methods to determine the susceptibility of a patient suffering from proliferative disease, such as cancer, to treatment using particular types of agent.


SUMMARY OF THE INVENTION

According to the present invention there is provided a method for determining the susceptibility of a patient suffering from proliferative disease to treatment using an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR/MMR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, said method comprising determining tumour type, determining expression levels of PD-L1, determining tumour mutational burden, preparing a DNA damage and repair related genes analysis based on the tumour type and the PD-L1 expression levels.


PD-L1 mRNA expression levels can be measured using next generation sequencing (NGS) analysis to provide a readout measured in RPM (Reads per million mapped reads). The RPM reads were first normalised and a log score generated to derive a nLRPM.


It has been identified that the pattern of DNA damage and repair related (DDR) genes within a cell is dependent upon the tumour type and the PD-L1 expression of the cell. Therefore, instead of having to conduct a scattergun approach to the analysis of DDR genes within tumour cells a targeted approach can be followed. This allows the analysis to be carried out more efficiently and effectively. Further, if the PD-L1 expression levels are 10% or greater (i.e. 7 or more nLRPM) then fewer DDR genes will need to be investigated. Accordingly, although this is a complex and multicomponent system, it provides a simple approach.


The present method can be used in relation to treatments using an agent which targets immune checkpoint components, for example, the PD-L1 signalling axis, Wnt/β-catenin, RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, TGF-β, ID01 and JAK/STAT signaling pathways, TMB-neoantigen load and HLA variability and pathways involved in innate and adaptive immune responses, druggable immune checkpoint components, for example, PD-1/PD-L1, CTLA-4, B7-1 and B7-2, and druggable targets in the DNA damage and response (DDR) signaling pathways include, for example, PARP, DNA-PK, Cdc7, ATM, ATR, CHK1 and CHK2.


Agents which target immune checkpoint components include Pembrolizumab, atezolizumab, avelumab, nivolumab, durvalumab, PDR-001, BGB-A317, REG W2810, SHR-1210 against PD-1/PD-L1 and Ipilimumab, Tremelimumab against CTLA-4. PARP can be targeted by agents such as rucaparib, veliparib, niraparib, DNA-PK by agents such as omipalisib, DMNB, compound 401, AZD7648, Cdc7 by agents such as LY3143921 or SRA141, ATM by agents such as AZD0156, ATR by agents such as AZD6738 and BAY 1895344, CHK1 by agents such as prexasertib and SRA737, CHK2 by agents such as CCT241533 and LY2606368.


Further, the present approach can be used when a combination of agents, such as those aforementioned, are being used.


In the present invention, analysis of the tumour mutational burden (TMB) can take place at any point of time in the method of the present invention.


The analysis of the TMB is not specific to the tumour type nor the PD-L1 expression levels and, therefore, can be conducted at any stage of the method. Determining the levels of TMB is a well known practice and many methods will be known to those skilled in the art.


Conveniently testing is performed on formalin fixed paraffin wax embedded tissue samples (PWET). Quantative analysis of RNA performed in parallel and integrated with DNA DDR mutation analysis has to date been a technical challenge because formalin fixation results in degradation of nucleic acid resulting in low DNA/RNA yields with low integrity and quality. In the present invention, the combined PD-L1-DDR NGS assay design is unique in being able to analyse PWET tissues and circumvent the problem of degraded DNA/RNA thereby enabling a combined integrated PD-L1 mRNA gene expression and DDR signature to be generated.


Conveniently the tumour type is selected from bladder, breast, cervical, colorectal, cancer of unknown primary (CUP), endometrial, gallbladder, gastric, glioblastoma, glioma, gastro oesophageal junction, head and neck, kidney, liver, lung, melanoma, mesothelioma, oesophageal, ovarian, pancreatic, prostrate, sarcoma, small bowel and thyroid. Tumours of other origins can also be included under the term “Other”. In this regard, the DDR analysis of some “Other” cancers have been identified in Table A. However, it will be appreciated that many “Other” cancers may not be encompassed by the DDR analysis. However, the experimental protocol in the present application allows a person skilled in the art to carry out the relevant analysis of the tumour to identify the DDR genes which would be relevant for analysis in the relevant cancer.


The tumour is typed by any method known to those skilled in the art. Tumour typing is a well known practice and many methods will be known to those skilled in the art.


The tumour type is based upon the origin of the cancer and not the tissue type. In this regard, it will be appreciated by those skilled in the art that, for example, breast cancer can spread to bones, liver, lungs and/or brain. However, despite not being in the breast the tumour type will remain breast cancer.


Conveniently the DNA damage and repair (DDR) related gene analysis is prepared using the tumour type and PDL-1 gene expression levels to select the core genes in Table A for analysis.


DDR genes analysis is a well known practice and many methods will be known to those skilled in the art.


It has been found that the presence of specific DDR genes is dependent upon the tumour type and the PD-L1 expression levels. Table A sets out the core DDR genes which should be investigated for specific tumour types. Other DDR genes could also be analysed.


Conveniently scores are assigned to each of the analysed parameters:

    • i) a score of ‘0’ is applied in the absence of PD-L1 expression;
    • ii) a score of ‘1’ is applied in the presence <7 nLRPM but not 0 in relation to PD-L1 expression;
    • iii) a score of ‘2’ is applied in the presence 7-10 nLRPM in relation to PD-L1 expression;
    • iv) a score of ‘3’ is applied in the presence >10 nLRPM in relation to PD-L1 expression;
    • v) a score of ‘0’ is applied if the tumour mutational burden is ‘low’;
    • vi) a score of ‘1’ is applied if the tumour mutational burden is ‘high’;
    • vii) a score of ‘0’ is applied if there are no aberrations in the DNA damage and repair related genes analysis;
    • viii) a score of ‘1’ is applied if there is 1 aberration in the DNA damage and repair related genes analysis;
    • xi) a score of ‘2’ is applied if there are 2 aberrations in the DNA damage and repair related genes analysis;
    • x) a score of ‘3’ is applied if there are aberrations in the DNA damage and repair related genes analysis;
    • wherein an overall score of 0 is indicative of no susceptibility to the target agent, an overall score of 1-2 indicates a weak response, an overall score of 3-4 indicates a moderate response, and an overall score of 5 to 7 indicates a strong response.


An example of this method is illustrated in FIG. 1.


This scoring system ensures that there is less likelihood of poor inter-reader reliability. The scores given are based on absolute values. Further, it allows a complex, multicomponent predictive system to be utilised but in a simple manner.


If a moderate or strong response is shown then the relevant practitioner has empirical data to support starting or continuing the patient on a certain treatment. Further if a weak or null response is given then alternative treatments can be explored at an early stage which can be vital when treating proliferative diseases such as cancer.


Conveniently the tumour mutational burden is designated ‘low’ if there are <10 mut/MB and the tumour mutational burden is designated ‘high’ if there are ≥1.0 mut/MB.


Conveniently the method of the present invention further comprising administering to a patient found to have a moderate response or strong response, an effective amount of the target agent.


According to the present invention there is provided a method for treating a patient suffering from proliferative disease, said method comprising carrying out a method according to the present invention using a tumour sample from said patient, developing a customised recommendation for treatment or continued treatment, based upon the overall score, and administering a suitable target agent, therapy or treatment to said patient.


According to the present invention there is provided a computer or machine-readable cassette programmed to implement the method according to the present invention.


According to the present invention there is provided a system for identifying patients suffering from proliferative disease who would respond to treatment using an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, said system comprising:

    • a processor; and
    • a memory that stores code of an algorithm that, when executed by the processor, causes the computer system to:
    • receive data regarding tumour type of a sample;
    • receive data regarding level of expression of PD-L1 in the sample;
    • receive data regarding level of the tumour mutational burden in said sample;
    • receive data regarding level of DNA damage and repair related genes analysis based on the tumour type and PD-L1 levels;
    • analyse and transform the input levels via an algorithm to provide an output indicative of the level of susceptibility of said patient to treatment using the target agent; display the output on a graphical interface of the processor.


Conveniently instead of merely receiving the data, the memory further comprises code which allows at least one of the levels to be determined by the system.


Conveniently the memory further comprises code to provide a customised recommendation for the treatment of the patient, based upon the output.


Conveniently the customised recommendation is displayed on a graphical interface of the processor.


According to the present invention there is provided a non-transitory computer-readable medium storing instructions that, when executed by a processor, cause a computer system to identify patients suffering from proliferative disease who would respond to treatment using an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, by:

    • receiving data regarding tumour type of a sample;
    • receiving data regarding level of expression of PD-L1 in the sample;
    • receiving data regarding level of the tumour mutational burden in said sample;
    • receiving data regarding level of DNA damage and repair related genes analysis based on the tumour type and PD-L1 levels;
    • analysing and transforming the input levels via an algorithm to provide an output indicative of the level of susceptibility of said patient to treatment using the target agent;
    • displaying the output on a graphical interface of the processor.


Conveniently the non-transitory computer-readable medium further comprises instructions which allows at least one of the levels to be determined by the system.


Conveniently the non-transitory computer-readable medium further stores instructions for developing a customised recommendation for treatment of the patient based upon the output and displaying the customised recommendation on a graphical interface of the processor.


Conveniently, the algorithm used in the present invention is shown diagrammatically in FIG. 1 and is as follows:


Scores are assigned to each of the analysed parameters:

    • i) a score of ‘0’ is applied in the absence of PD-L1 expression;
    • ii) a score of ‘1’ is applied in the presence <7 nLRPM but not 0 in relation to PD-L1 expression;
    • iii) a score of ‘2’ is applied in the presence 7-10 nLRPM in relation to PD-L1 expression;
    • iv) a score of ‘3’ is applied in the presence >10 nLRPM in relation to PD-L1 expression;
    • v) a score of ‘0’ is applied if the tumour mutational burden is ‘low’;
    • vi) a score of ‘1’ is applied if the tumour mutational burden is ‘high’;
    • vii) a score of ‘0’ is applied if there are no aberrations in the DNA damage and repair related genes analysis;
    • viii) a score of ‘1’ is applied if there is 1 aberration in the DNA damage and repair related genes analysis;
    • xi) a score of ‘2’ is applied if there are 2 aberrations in the DNA damage and repair related genes analysis;
    • x) a score of ‘3’ is applied if there are aberrations in the DNA damage and repair related genes analysis;
    • wherein an overall score of 0 is indicative of no susceptibility to the target agent, an overall score of 1-2 indicates a weak response, an overall score of 3-4 indicates a moderate response, and an overall score of 5 to 7 indicates a strong response.


Automation of the system minimises human error when calculating the output.









TABLE A







DDR signatures in relation to tumour type and PD-L1 positive cut-offs










DDR Signature ≥7 nLRPM
DDR Signature <7 nLRPM


Tissue
(PD-L1 IHC ≥10%)
(PD-L1 IHC <10%)





Bladder
TP53
AKT2 ARID1A BRCA2 CDK12




CREBBP MSH6 NBN PALB2 RB1




SLX4 TP53


Breast
AKT1 AKT2 ATM ATR BRCA1
AKT1 AKT2 AKT3 ARID1A ATM



TP53
ATR AXL BAP1 BRCA1 BRCA2




CHEK1 CHEK2 CREBBP FANCA




MLH1 NBN NF1 NOTCH1




NOTCH2 PALB2 PMS2 PTEN




RAD50 RAD51D RB1 SETD2




TP53


Cervical
DDR2 TP53
ARID1A BAP1 BRCA2 NBN




NOTCH3 PTEN RAD51B


Colorectal
ATM ATR CREBBP IDH2 PTEN
AKT1 AKT2 ALK ARID1A ATM



RNF43 TP53
ATR ATRX BRCA1 BRCA2 CDK12




CHEK2 FANCA FANCD2 MLH1


Bladder
TP53
AKT2 ARID1A BRCA2 CDK12




CREBBP MSH6 NBN PALB2 RB1




SLX4 TP53




MRE11 NBN NF1 PMS2 POLE




PTEN RAD51C RAD51D RB1




SETD2 TP53


CUP
ATM BRCA1 TP53
AKT3 ARID1A BAP1 BRCA2




FANCI IDH1 MLH1 PTEN SETD2




TP53


Endometrial
AKT2 TP53
AKT1 ALK ARID1A ATM ATR




ATRX BRCA2 CREBBP MSH2




MSH6 NF1 POLE PTEN RAD51C




TP53


Gallbladder

ARID1A FANCD2 TP53


Gastric
AKT1 ARID1A ATM ATR AXL
ARID1A ATM ATR BAP1 PTEN



TP53
RAD50 TP53


Glioblastoma/Glioma
ATM NBN NF1 PTEN RB1
ARID1A ATM ATR ATRX BRCA2



SETD2 TP53
CREBBP FGFR3 IDH1 MLH1




MRE11 NBN NF1 PTEN RB1




SETD2 TP53


GOJ

AKT2 NBN NF2 POLE TP53


Head and Neck
ATM BRCA2 TP53
BAP1 FGFR3 NF1 NOTCH1 PTEN




SETD2 TP53


Kidney
SLX4
BAP1 PTEN SETD2 SMARCB1




TP53


Bladder
TP53
AKT2 ARID1A BRCA2 CDK12




CREBBP MSH6 NBN PALB2 RB1




SLX4 TP53


Liver
TP53
ARID1A ATM BAP1 BRCA2




CHEK2 FANCA NBN NF1 NF2




PTEN RB1 TP53


Lung
AKT2 ARID1A ATM ATR
AKT1 AKT2 ARID1A ATM ATR



CHEK2 NBN NF1 NF2
AXL BAP1 BRCA2 CHEK1



NOTCH1 PTEN RB1 TP53
CREBBP DDR2 FANCA FANCD2




MLH1 MRE11 NBN NF1




NOTCH3 PALB2 RAD50 RB1 RET




SETD2 SMARCA4 TP53


Melanoma
PTEN
ATM ATR BAP1 CHEK1 FANCD2




FANCI MRE11 NF1 PTEN SETD2




TP53


Mesothelioma
BAP1 NF2 TP53
ATM BAP1 NF2 TP53


Oesophageal
ARID1A BRCA2 PTEN TP53
ATM ATRX CREBBP PTEN SETD2




TP53


Other
ARID1A IDH1 NOTCH1 PMS2
ARID1A BRCA2 NBN RAD51B



SETD2 TP53
SMARCB1 TP53


Ovarian
ARID1A ATM BRCA1 BRCA2
AKT2 ARID1A ATM ATR AXL



FANCD2 MLH1 MSH6 NF1
BRCA1 BRCA2 CDK12 FANCI



NOTCH1 PTEN RB1 TP53
NBN NF1 POLE PTEN TP53


Pancreatic
AKT2 ATM BRCA2 NF2 TP53
ARID1A ATM BRCA2 CDK12




CHEK2 NBN NF2 PTEN RB1




RNF43 TP53


Bladder
TP53
AKT2 ARID1A BRCA2 CDK12




CREBBP MSH6 NBN PALB2 RB1




SLX4 TP53


Prostate

AKT1 ARID1A ATM ATR BAP1




BRCA2 CDK12 CHEK2 FANCA




FANCD2 FGFR3 PALB2 PTEN




RAD50 RB1 TP53


Sarcoma
NF1 TP53
ALK ATM ATRX BRCA2 CREBBP




IDH1 MRE11 NF1 NOTCH3




PALB2 RAD51C RB1 SLX4




SMARCB1 TP53


Small bowel
NBN TP53
NBN TP53


Thyroid
NF1 TP53
ATM PTEN RET














DETAILED DESCRIPTION OF THE INVENTION

The invention will now be particularly described by way of example with reference to the accompanying diagrammatic drawings in which:



FIG. 1 shows a diagrammatic representation of the method of the present invention which integrates PD-L1 expression levels as determined by normalised log RPM (nLRPM) with DDR mutation signature (DDR) and tumour mutation burden (TMB) to generate a polygenic prediction score (PPS) which is predictive of response to PD-L1 immune checkpoint targeted agents/immunotherapies



FIG. 2 shows a pie chart noting the frequency of samples with a PD-L1 tumour proportion score of 11+ compared to 0-10. Nineteen percent of tumours in the cohort of 1098 tumours analysed for PD-L1 expression by immunohistochemistry (IHC) show PD-L1 expression levels 1.0%.



FIGS. 3A to C show a validation of analysis of PD-L1 mRNA expression by NGS (nLRPM) on stably expressing PD-L1 cell lines provided by Horizon Discovery Group plc. A CD274 (PD-L1) Reference Standard highly-characterized, biologically-relevant quality control material with negative (−), low positive (25%), intermediate positive (75%) and strong positive (100%) controlled protein expressing cell lines which can be utilised to test analytical (technical) performance of PD-L1 assays. The nLRPM readout shows strong correlation with PD-L1 expression as measured by IHC.


A) shows nLRPM counts from the two different amplicons targeting the PD-L1 gene.


B) shows PD-L1 nLRPM counts (mRNA) generated by the method of the present invention compared to PD-L1 protein expression assessed by IHC.


C) shows photomicrographs of four cell line controls immunohistochemically stained with an antibody against PD-L1 and expressing different levels of PD-L1 protein together with the observed tumour proportion score (TPS).



FIGS. 4A to C show a validation of analysis of PD-L1 mRNA expression by NGS (non-normalised RPM) with PD-L1 expression as assessed by IHC. Analysis was performed on 9 cases of non-small cell lung cancer (NSCLC). PD-L1 expression by IHC was determined by combining the PD-L1 tumour proportion score with the area of the section occupied by PD-L1 positive immune cells (ICs) [combined PD-L1 IHC score] using the algorithm [Combined PD-L1 expression score=tumour content×PD-L1 positive tumour cells+PIC score×PD-L1 positive ICs].


A) shows nRPM counts from the two different amplicons targeting the PD-L1 gene.


B) shows PD-L1 RPM counts (mRNA) generated by the method of the present invention compared to PD-L1 protein expression assessed by IHC.


C) shows photomicrographs of a representative sample of NSCLC stained with hematoxylin and eosin and immunohistochemically stained with an antibody against PD-L1.


The PD-L1 RPM expression levels show strong correlation with combined PD-L1 IHC expression levels.



FIG. 5 shows log of normalised reads per million (nLRPM) and PD-L1 IHC expression (combined PD-L1 score as described above) The cohort tested includes PD-L1 Horizon control cell lines and 16 cases of non-small cell lung cancer (NSCLC). There is a strong correlation between PD-L1 nLRPM scores and PD-L1 IHC scores.



FIG. 6 sets out the primer sets which were designed to span the exon/intron boundaries across the PD-L1 gene. A person skilled in the art would be able to design their own primers based on the information given in the experimental protocol herein. However, it was found that AMPLSP_1.158989 and AMPLSP_1.1072738 provided a strong signal with notably a linear strong correlation with PD-L1 expression levels as measure by IHC.


In the present application, validation testing was performed on formalin fixed paraffin wax embedded tissue samples (PWET). Quantative analysis of RNA was performed in parallel and integrated with DNA DDR mutation analysis which has to date been a technical challenge because formalin fixation results in degradation of nucleic acid resulting in low DNA/RNA yields with low integrity and quality. The combined PD-L1-DDR NGS assay design is unique in being able to analyse PWET tissues and circumvent the problem of degraded DNA/RNA thereby enabling a combined PD-L1 mRNA gene expression and DDR signature to be generated.


Patient Demographics:


PD-L1 IHC expression analysis and genomic analysis of DDR genes was performed on a total of 1112 solid tumours. Details of the tumour cohort are shown in Table 1.









TABLE 1







Cancer type and histological classification of the study cohort.












Primary/Metastatic




Cancer Type
lesion tested
N = 1112















Breast
Primary carcinoma
176




Invasive ductal (70)




Invasive lobular (5)




Metastatic carcinoma (101)



Colorectal
Primary carcinoma
177




Colorectal




adenocarcinoma (109)




Appendiceal




adenocarcinoma (4)




Appendiceal




neuroendocrine




carcinoma (1)




Anal squamous cell




carcinoma (5)




Metastatic carcinoma




Colorectal




adenocarcinoma (54)




Anal squamous cell




carcinoma (1)




Rectal squamous cell




carcinoma (1)




Appendiceal




adenocarcinoma (1)




Appendiceal




neuroendocrine




carcinoma (1)



Ovarian
Primary carcinoma
85




Serous (38)




Mucinous (2)




Endometrioid (2)




Clear cell (3)




Undifferentiated (2)




Malignant sex cord




stromal tumour (1)




Granulosa cell tumour




(1)




Metastatic carcinoma (36)



Glioma
Astrocytoma
81




Oligodendroglioma




Glioblastoma



Lung
Primary carcinoma
75




NSCLC (58)




SCLC (14)




Mucoepidermoid (1)




Metastatic carcinoma (2)



Upper GI
Primary carcinoma
75




Oesophageal




adenocarcinoma (23)




Oesophageal




squamous cell




carcinoma (10)




Oesophageal




lymphoepithelial




carcinoma (1)




Gastric




adenocarcinoma (25)




Gastric




neuroendocrine




carcinoma (1)




Gastro-oesophageal




junction




adenocarcinoma (6)




Metastatic carcinoma




Oesophageal (4)




Gastric (4)




GOJ (1)



Pancreatic
Primary carcinoma
71




Adenocarcinoma (41)




Anaplastic carcinoma




(1)




Adenosquamous




carcinoma (1)




Neuroendocrine




carcinoma (1)




Metastatic carcinoma (27)



Sarcoma
Primary
58




Leiomyosarcoma (11)




Liposarcoma (5)




Chordoma (3)




Ewing's sarcoma (3)




Pleomorphic sarcoma




(3)




Rhabdomyosarcoma




(3)




Angiosarcoma (2)




Chondrosarcoma (2)




Malignant peripheral




nerve sheath tumour




(2)




Other (11)




Metastatic sarcoma (12)



Prostate
Primary carcinoma
45




Adenocarcinoma (44)




Metastatic carcinoma (1)



CUP
Metastatic carcinoma
38




Poorly differentiated




carcinoma (9)




Adenocarcinoma (22)




Squamous cell




carcinoma (3)




Neuroendocrine




carcinoma (4)



Head & Neck
Primary carcinoma
34




Squamous cell




carcinoma (23)




Adenoid cystic




carcinoma (3)




Acinic cell carcinoma




(1)




Mucoepidermoid (3)




Salivary duct




carcinoma (3)




Low grade parotid




tumour (1)



Liver
Primary carcinoma
32




Cholangiocarcinoma




(19)




Biliary tract




adenocarcinoma (3)




Hepatocellular




carcinoma (7)




Hepatoblastoma (1)




Metastatic carcinoma




Hepatocellular




carcinoma (2)



Bladder
Primary carcinoma
24




Transitional cell




carcinoma (17)




Adenocarcinoma (4)




Urethral




adenocarcinoma (1)




Metastatic carcinoma




Transitional cell




carcinoma (2)



Other
Primary tumours
19




Vulva squamous cell




carcinoma (3)




Right buttock




squamous cell




carcinoma (1)




Mediastinal tumour




(1)




NUT midline




carcinoma (1)




Pecoma (1)




Merkel cell carcinoma




(1)




Neurocytoma (1)




Pseudomyxoma




peritonei (2)




Adrenal carcinoma (1)




Peritoneal high grade




serous carcinoma (1)




Testicular




adenocarcinoma/germ




cell tumour (1)




Yolk sac tumour (1)




Diffuse B-cell




lymphoma (1)




Teratoma (1)




Neurocytoma (1)




Choroid plexus




carcinoma (1)



Endometrial
Primary carcinoma
23




Adenocarcinoma (8)




Serous carcinoma (4)




Carcinosarcoma (4)




Metastatic carcinoma




Adenocarcinoma (7)



Cervix
Primary carcinoma
22




Squamous cell




carcinoma (12)




Adenocarcinoma (6)




Adenosquamous




carcinoma (1)




Metastatic carcinoma (3)



Mesothelioma
Primary
19




Epitheliod (17)




Sarcomatoid (2)




Biphasic (2)



Kidney
Primary carcinoma
18




Transitional cell




carcinoma (3)




Renal cell carcinoma




(11)




Metastatic carcinoma (4)



Melanoma
Primary
17




Malignant melanoma




(4)




Ocular spindle cell




malignant melanoma




(1)




Metastatic malignant




melanoma (12)



Thyroid
Primary carcinoma
9




Papillary (2)




Follicular (3)




Anaplastic (3)




Metastatic carcinoma (1)



Small Bowel
Primary carcinoma
7




Adenocarcinoma (6)




Metastatic carcinoma (1)



Gallbladder
Primary carcinoma
7




Adenocarcinoma (7)

















TABLE 2





List of DDR genes analysed


















AKT1
ALK



AKT2
ARMT1



AKT3
ATAD5



ARID1A
ATG7



ATM
ATIC



ATR
AXL



ATRX
BIRC6



BAP1
BRD3



BRCA1
BRD4



BRCA2
CAPRIN1



CDK12
CCAR2



CHEK1
CCDC6



CHEK2
CDK5RAP2



CREBBP
CHD9



ERC1
CIT



ERCC2
CTNNB1



FANCA
CUL1



FANCD2
DDR2



FANCI
EBF1



IDH1
EIF3E



IDH2
GNAS



MDM2
HIP1



MDM4
HMGA2



MLH1
IRF2BP2



MRE11A
MED12



MSH2
NF1



MSH6
NF2



NBN
NOTCH1



NSD1
NOTCH2



PALB2
NOTCH3



PMS2
NOTCH4



POLE
NPM1



POLH
OFD1



PPM1G
RNF43



PTEN
SLX4



RAD18
SPOP



RAD50
TACC1



RAD51
TACC3



RAD51B
TERF2



RAD51C
TMEM106B



RAD51D
UBE2L3



RB1
USP10



SETD2
WDR48



SMARCA4
XPO1



SMARCB1
YAP1



TERT
ZEB2



TP53
ZMYND8



TP53BP1

















TABLE 3







Fusions










Fusion




and



Gene
partner
Sequence





AKT2
BCAM-
CTCCTGCTCCTCGTCGTTGCTGTCTTCTACTGCGTGAGACGCAAA



AKT2.B13A5
GGGGGCCCCTGCTGCCGCCAGCGGCGGGAGAAGGGGGCTCCG




GAGGAGTGGATGCGGGCCATCCAGATGGTCGCCAACAGCCT






ZNF226-
GACGACGTAGCAGCCATCTTTTCCCTGGCTTTGGTGATTCAGCCC



AKT2.Z2A5
TGACTTCTCAAAAAGCACTGCACAGAGGAGGAGGCAGCAGAAC




CCCATGGAGGAGTGGATGCGGGCCATCCAGATGGTCGCCAACA




GCCT





BRCA1
BRCA1-
AGTCTGGGCCACACGATTTGACGGAAACATCTTACTTGCCAAGG



BRCA1.
CAAGATCTAGATGCTCGTGTACAAGTTTGCCAGAAAACACCACAT



B15B17.
CACTTTAACTAATCTAATTACTGAAGAGACTACTCATGTTGTTATG



V16
AAAACAGATGCTGAG






BRCA1-
GGGTGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGGG



BRCA1.B
TGTCCACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGG



19B23.V20
ACAATGGCTTCCATG






BRCA1-
CCTGGAAGTAATTGTAAGCATCCTGAAATAAAAAAGCAAGAATA



BRCA1.
TGAAGAAGTAGTTCAGACTGTTAATACAGATTTCTCTCCATATCT



B10B14.
GATTTCAGATAACTTAGAACAGCCTATGGGAATATTAACTTCACA



V11
GAAAAGTAGTGAATACCCTATAAGCCAGAATCCA






BRCA1-
CCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGTCA



BRCA1.B
TCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCAC



4B15.V5
AGTTGCTCTGGGAGTCTTCAGAATAGA



es







BRCA1-
GAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCAA



BRCA1.
AAGACGTCTGTCTACATTGAATTGGCAGAGGGATACCATGCAAC



B7B12.
ATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCT



V8es
GTGT






BRCA1-
GAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCAA



BRCA1.
AAGACGTCTGTCTACATTGAATTGGTATTAACTTCACAGAAAAGT



B7B14.
AGTGAATACCCTATAAGCCAGAATCCA



V8es







BRCA1-
AGTCTGGGCCACACGATTTGACGGAAACATCTTACTTGCCAAGG



BRCA1.
CAAGATCTAGATGCTGAGTTTGTGTGTGAACGGACACTGAAATA



B15B18
TTTTCTAGGAATTGCGGGAGGAAAATG






BRCA1-
GAAGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTC



BRCA1.
CAAAGCGAGCAAGAGAATCCCAGGACAGAAAGGGTGTCCACCC



B20B23.
AATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCT



V21es
TCCATG





BRCA2
BRCA2-
TGCATCATGTTTCTTTAGAGCCGATTACCTGTGTACCCTTTCGGGC



BRCA2.
TCTGTGTGACACTCCAGGTGTGGATCCAAAGCTTATTTCTAGAAT



B13B17.
TTGGGTTTATAATCACTATAGATGGATCATATGGAAACTGGCAGC



V14
TATGGAATGTGCC






BRCA2-
GTCAGCTTACTCCGGCCAAAAAAGAACTGCACCTCTGGAGCGGA




TTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTCTTCAGA



BRCA2.
AGCTCCACCCTATAATTCTGAACCTGCAGAAGAATCTGAACATAA



B1B3.V2
A






BRCA2-
CCATCACGTGCACTAACAAGACAGCAAGTTCGTGCTTTGCAAGAT



BRCA2.
GGTGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAGACCCAG



B21B25.
CTTACCTTGAGGACTTGCCCCTTTCGTCTATTTGTCAGACGAATGT



V22
TACAATTTACTGGCA






BRCA2-
TTCTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGTC



BRCA2.
AAGTTCTTTAGCTACACCACCCACCCTTAGTTCTACTGTGCTCATA



B7B10.V8
GGATTTGGAAAAACATCAGGGAATTCATTTAAAGTAAATAGCTG




CAAAGACCACATTGG






BRCA2-
ACGAGGCATTGGATGATTCAGAGGATATTCTTCATAACTCTCTAG



BRCA2.
ATAATGATGAATGTAGCACGCATTCACATTCCTTACACAAAGTTA



B11B11.D
AGGGAGTGTTAGAGGAATTTGATTTAATCAGAACTGAGCATAGT




CTTCACTATTCACCTACGTCTAGACAA






BRCA2-
GCATGTCTAACAGCTATTCCTACCATTCTGATGAGGTATATAATG



BRCA2.
ATTCAGGATATGGTTTATCAAGGGATGTCACAACCGTGTGGAAG



B11B22.V12
TTGCGTATTGTAAGCTATTCA






BRCA2-
ACTTGATTCTGGTATTGAGCCAGTATTGAAGAATGTTGAAGATCA



BRCA2.
AAGTCCTTTATCACTTTGTATGGCCAAAAGGAAGTCTGTTTCCAC



B11B27.V12
ACCTGTCTCAGCCCAGATGACTTCAAAGTCTTGTAAAGGGGAG





ERC1
ERC1-
CCAGCTTCCTATAACTTGGACGATGACCAGGCGGCTTGGGAGAA



RET.E17R12
TGAGCTGCAGAAGATGACCCGGGGGCAGGAGGATCCAAAGTGG




GAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAGA




AGGCGAATTTGG






ERC1-
GGCTTAAGACACTAGAGATTGCTTTGGAGCAGAAGAAGGAGGA



RET.E11R12
GTGTCTGAAAATGGAATCACAATTGAAAAAGGAGGATCCAAAGT




GGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGA




GAAGGCGAATTTGG






ERC1-
CAGGCAGAAGTTGATCGACTCTTAGAAATCTTGAAGGAGGTGGA



ROS1.
AAATGAGAAGAATGACAAAGATAAGAAGATAGCTGAGTTGGAA



E11R36
AGTACTCTTCCAACCCAAGAGGAGATTGAAAATCTTCCTGCCTTC




C






ERC1-
GCAGTCTCTGGCAGAAAAGGAAACTCACTTGACTAATCTTCGGG



PDGFRB.
CAGAGAGAAGGAAACACTTAGAGGAAGTTCTGGAGATGAAGTG



E15P10
TCCACGTGAGCTGCCGCCCACGCTGCTGGGGAACAGTTCCGAAG




AGGAGAGCCAGC






ERC1-
GCAGTCTCTGGCAGAAAAGGAAACTCACTTGACTAATCTTCGGG



PDGFRB.
CAGAGAGAAGGAAACACTTAGAGGAAGTTCTGGAGATGAACCT



E15P11
TGCCCTTTAAGGTGGTGGTGATCTCAGCCATCCTGGCCCTGGTG




GTGCTCACCATCATCTCCCTTATCATCCTCATCATGCTTTGGC






ERC1-
AAAGAAGAGTGCACAAATGTTAGAGGAGGCGCGACGACGGGA



BRAF.
GGACAATCTCAACGACAGCTCTCAGCAGCTACAGAAAGCCTTAC



E12B10
AGAAATCTCCAGGACCTCAGCGAGAAAGGAAGTCATCTTCATCC




TCAGAAGACAGGAATCGAATGAAAACACT






ERC1-
CCAGCTTCCTATAACTTGGACGATGACCAGGCGGCTTGGGAGAA



BRAF.
TGAGCTGCAGAAGATGACCCGGGGGCAGCCAGCAGATGAAGAT



E17B8
CATCGAAATCAATTTGGGCAACGAGACCGATCCTCATCAGCTCCC




AATGTGCA






ERC1-
AAAGAAGAGTGCACAAATGTTAGAGGAGGCGCGACGACGGGA



RET.E12R12
GGACAATCTCAACGACAGCTCTCAGCAGCTACAGGAGGATCCAA




AGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTA




GGAGAAGGCGAATTTGG






ERC1-
GCTGGAGAGATACATGACCTCAAGGACATGTTGGATGTGAAGG



RET.E7R12
AGCGGAAGGTTAATGTTCTTCAGAAGAAGGAGGATCCAAAGTG




GGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAG




AAGGCGAATTTGG





NSD1
NSD1-
GGGTCAAAGATCCTTGCATCTAATAGTATCATCTGCCCTAATCAC



NOTCH4.
TTTACCCCTAGGCGGGGCTGCCGAAATCATGAGCATGTTAATGTT



N14N18
AGCTGGTGCTTTGTGTGCTCAGAAGGCATAGACGTCTCTTCCCTT




TGCCACAATGGAGGC





POLH
ESR1-
GCTTACTGACCAACCTGGCAGACAGGGAGCTGGTTCACATGATC



POLH.E6P2
AACTGGGCGAAGAGGGTGCCAGAAAAATGGCTACTGGACAGGA




TCGAGTGGTTGCTCTCGTGGACATGGACTGTTTTTTTGTTCAAGT




GGAGCAGCG





PPM1G
PPM1G-
GCTTCTCCGCCATGCAAGGCTGGCGCGTCTCCATGGAGTGATGG



ALK.P1A18
AAGGCCACGGGGAAGTGAATATTAAGCATTATCTAAACTGCAGT




CACTGTGAGGTAG





PTEN
PTEN-
CTGCAGAAAGACTTGAAGGCGTATACAGGAACAATATTGATGAT



BTAF1.P2B2
GTAGTAAGGCTAGATCGCCTTTTTATTTTACTGGATACTGGCACT




ACTCCTGTTACAAGAAAAGCTGCTGCACAGCAAC






PTEN-
CTGCAGAAAGACTTGAAGGCGTATACAGGAACAATATTGATGAT



SHROOM4.P2S3
GTAGTAAGGAGGAACGCCCCTGTCAGTAGGCCGCACTCATGGCA




TGTGGCCAAGCTGCTGGAGGGATGCCCTGAAGCAGCCACCACCA




TGCATTTCCCTTCTGAAG






PTEN-
CTGCAGAAAGACTTGAAGGCGTATACAGGAACAATATTGATGAT



SHROOM4.P3S4
GTAGTAAGGTTTTTGGATTCAAAGCATAAAAACCATTACAAGATA




TACAATCTTGACGTGTGTGTGCAGTGGTGTCCACTCTCCCGGCAT




TGCAGCACCGAGAAAAGCAGCTCCATTGGCA





RAD18
RAD18-
CAACAGCTCATTAAAAGGCACCAAGAATTTGTACACATGTACAAT



BRAF.R7B10
GCCCAATGCGATGCTTTGCATCCTAAATCAGGATCAACCACAGGT




TTGTCTGCTACCCCCCCTGCCTCATTACCTGGCTCACTAACTAACG




TG





RAD51
CHD9-
GCTCGGAGTTGGCATTCATCATTTTCTAATCATCAGCATTTACATG



RAD51B.C2R8
ACAGAAATCACCTATGTTTACAGCGACAGGTTATCTTGACGAATC




AGATTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGAC




CTGGTGTCTCCAGCTG






EIF3E-
CTCGCATCGCGCACTTTTTGGATCGGCATCTAGTCTTTCCGCTTCT



RAD51B.E1R5
TGAATTTCTCTCTGTAAAGGAGATTACAGGTCCACCAGGTTGTGG




AAAAACTCAGTTTTGTATAATGATGAGCATTTTGGCTACATTACC




CACCAACATGGGAG






HMGA2-
CTAAAGCAGCTCAAAAGAAAGCAGAAGCCACTGGAGAAAAACG



RAD51B.H3R11
GCCAAGAGGCAGACCTAGGAAATGGAGACAACATTTTGCTCTGT




CACCCAAGCTGAACTGAACTGGGCTCCAGAAATCCTCCCACCTCA




GCCTCCTGAGCAGCTAGGACTACAGATGTGCCACCA






NPC2-
GTTATCCGCGATGCGTTTCCTGGCAGCTACATTCCTGCTCCTGGC



RAD51B.N1R9
GCTCAGCACCGCTGCCCAGGCCGAACCGGTGCAGTTCAAGGACT




GCGGCACTTCTGGATCCAGCTGTGTGATAGCCGCACTAGGAAAT




ACCTGGAGTCACAGTGT






PCNX-
CAGGCCACCTTCGTGAACGCGCTGCACCTCTACCTGTGGCTCTTT



RAD51B.P1R8
CTGCTGGGCCTGCCCTTCACCCTCTACATGGTTATCTTGACGAATC




AGATTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGAC




CTGGTGTCTCCAGCTG





RAD51B
CHD9-
GCTCGGAGTTGGCATTCATCATTTTCTAATCATCAGCATTTACATG



RAD51B.
ACAGAAATCACCTATGTTTACAGCGACAGGTTATCTTGACGAATC



C2R8
AGATTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGAC




CTGGTGTCTCCAGCTG






EIF3E-
CTCGCATCGCGCACTTTTTGGATCGGCATCTAGTCTTTCCGCTTCT



RAD51B.E1R5
TGAATTTCTCTCTGTAAAGGAGATTACAGGTCCACCAGGTTGTGG




AAAAACTCAGTTTTGTATAATGATGAGCATTTTGGCTACATTACC




CACCAACATGGGAG






HMGA2-
CTAAAGCAGCTCAAAAGAAAGCAGAAGCCACTGGAGAAAAACG



RAD51B.H3R11
GCCAAGAGGCAGACCTAGGAAATGGAGACAACATTTTGCTCTGT




CACCCAAGCTGAACTGAACTGGGCTCCAGAAATCCTCCCACCTCA




GCCTCCTGAGCAGCTAGGACTACAGATGTGCCACCA






NPC2-
GTTATCCGCGATGCGTTTCCTGGCAGCTACATTCCTGCTCCTGGC



RAD51B.N1R9
GCTCAGCACCGCTGCCCAGGCCGAACCGGTGCAGTTCAAGGACT




GCGGCACTTCTGGATCCAGCTGTGTGATAGCCGCACTAGGAAAT




ACCTGGAGTCACAGTGT






PCNX-
CAGGCCACCTTCGTGAACGCGCTGCACCTCTACCTGTGGCTCTTT



RAD51B.P1R8
CTGCTGGGCCTGCCCTTCACCCTCTACATGGTTATCTTGACGAATC




AGATTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGAC




CTGGTGTCTCCAGCTG





RB1
RB1-
CTGAGCACCCAGAATTAGAACATATCATCTGGACCCTTTTCCAGC



RB1.R20R24
ACACCCTGCAGAATGAGTATGAACTCATGAGAGACAGGCATTTG




GACCAAAATCTTAGTATCAATTGGTGAATCATTCGGGACTTCTGA




GAAGTTCCAGAAAATAAATCAGATGGTATGTAACAGCGACCGTG




TGCTCAAAAGAAGTGCTGAAG






RB1-
TGTTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA



RB1.R21R23
TTCAAAATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTC




AGGAGCCCCCTACCTTGTCACCAATACCTCACATTCCTCGAAGCC




CTTACAAGTTTC






RB1-
TGTTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA



RB1.R21R25
TTCAAAATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTC




AGGAGACTTCTGAGAAGTTCCAGAAAATAAATCAGATGGTATGT




AACAGCGACCGTGTGCTCAAAAGAAGTGCTGAAG






RB1.E4E5.WT
AATGCTATGTCAAGACTGTTGAAGAAGTATGATGTATTGTTTGCA




CTCTTCAGCAAATTGGAAAGGACATGTGAACTTATATATTTGACA




CAACCCAGCAGTTCGATATCTACTGAAATAAATTCTGCATTGGTG




CTAAAAGTTTCTTG






RB1.
AGGATCAGATGAAGCAGATGGAAGTAAACATCTCCCAGGAGAG



E26E27.WT
TCCAAATTTCAGCAGAAACTGGCAGAAATGACTTCTACTCGAACA




CGAATGCAAAAGCAGAAAATGAATGATAGCATGGATACCTCAAA




CAAGGAAGAGAAATGA






RB1.R21
TGTTCCATGTATGGCATATGCAAAGTGAAGAATATAGACCTTAAA



R22R23.WT
TTCAAAATCATTGTAACAGCATACAAGGATCTTCCTCATGCTGTTC




AGGAGACATTCAAACGTGTTTTGATCAAAGAAGAGGAGTATGAT




TCTATTATAGTATTCTATAACTCGGTCTTCATGCAGAGACTGAAA




ACAAATATTTTGCAGTATGCTTCCACCAGGCCCCCTACCTTGTCAC




CAATACCTCACATTCCTCGAAGCCCTTACAAGTTTC





TERT
CCDC127-
ATTCCAGGGCGGATGGTGGTGATGGAAGCAGGTGGAATTATGC



TERT.C2T3
CCTGTTGGTTCCAATGCTGGGATTGGCTGCTTTTCGGGTTGGCTG




TGTTCCGGCCGCAGAGCACCGTCTGCGTGAGGAGATCCTGGCCA




AGTTCCTGCACTGGCT






GLIS3-
CTATAAACTGCTGATCCACATGAGAGTCCACTCTGGGGAGAAGC



TERT.G3T3
CCAACAAGTGTACGGGGTTGGCTGTGTTCCGGCCGCAGAGCACC




GTCTGCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCT






MTMR12-
CAAAGGCAACATGAAGTACAAAGCAGTGAGTGTCAACGAAGGC



TERT.M7T3
TATAAAGTCTGTGAGAGGGGTTGGCTGTGTTCCGGCCGCAGAGC




ACCGTCTGCGTGAGGAGATCCTGGCCAAGTTCCTGCACTGGCT






TRIO-
GCAGCAGCCAGCCTGATACGATTTCCATCGCCTCACGGACGTCTC



TERT.T33T2
AGAACACGCTGGACAGCGATAAGGTGTCCTGCCTGAAGGAGCT




GGTGGCCCGAGTGCTGCAGAGGCTGTGCGAGCGCGGCGCGAAG




AACGTGCTGGCCTTC






SLC12A7-
CATGCCCACCAACTTCACCGTGGTGCCCGTGGAGGCTCACGCCG



TERT.S1T3
ACGGCGGCGGGGACGAGACTGCCGAGCGGACGGAGGCTCCGG




GCACCCCCGAGGGCCCCGAGCCCGAGCGCCCCAGCCCGGGGGT




TGGCTGTGTTCCGGCCGCAGAGCACCGTCTGCGTGAGGAGATCC




TGGCCAAGTTCCTGCACTGGCT






TTLL7-
CGGGCTGGGCTTTCCTCACCCGGGGGTTGGCTGTGTTCCGGCCG



TERT.T1T3
CAGAGCACCGTCTGCGTGAGGAGATCCTGGCCAAGTTCCTGCAC




TGGCT






TERT-
ACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCC



ALK.T11A5
TGGAGGTGCAGAGCGACTACTCCAGTTGGACAGTGCTCCAGGG




AAGAATCGGGCGTCCAGACAACCCATTTCGAGTGGCCCTGGA






ADAMTS16-
AGTAAATATCGCAGCTGCACGATTAATGAAGATACAGGTCTTGG



TERT.A8T3
ACTGGCCTTCACCATTGCCCATGAGTCTGGACACAAGGGTTGGCT




GTGTTCCGGCCGCAGAGCACCGTCTGCGTGAGGAGATCCTGGCC




AAGTTCCTGCACTGGCT





TP53
TP53-
GAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGA



NTRK1.
AGGAGCCAGGGGGGAGCAGGGCTCACTCCAGTCCCGGCCAGTG



T10N9
TGCAGCTGCACACGGCGGTGGAGATGCACCACTGGTG






TP53-
CAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGA



NTRK1.
GCTGCCCCCAGGGAGCACTAAGCGAGTCCCGGCCAGTGTGCAGC



T8N9
TGCACACGGCGGTGGAGATGCACCACTGGTG






TP53-
CTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTT



NTRK1.
CACCCTTCAGTCCCGGCCAGTGTGCAGCTGCACACGGCGGTGGA



T9N9
GATGCACCACTGGTG






TP53-
TCCCCTCCTTCTCCCTTTTTATATCCCATTTTTATATCGATCTCTTAT



NTRK1.
TTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTGTCC



T11N9
CGGCCAGTGTGCAGCTGCACACGGCGGTGGAGATGCACCACTG




GTG





TP53BP1
TP53BP1-
CAAGCGAGGTCGCAAGTCTGCCACAGTAAAACCTGCCTTGCCCTT



PDGFRB.
TAAGGTGGTGGTGATCTCAGCCATCCTGGCCCTGGTGGTGCTCA



T23P11
CCATCATCTCCCTTATCATCCTCATCATGCTTTGGC





ALK
EML4-ALK.
GTGCTGTCTCAATTGCAGGAAAAGAAACTCTTTCATCTGCTGCTA



E3p53insA20
AAAGTGCTTCAAGGGCCAGGCTGCCAGGCCATGTTGCAGCTGAC




CACCCACCTGCAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGC




CATGCAGATGGAGCTGCAGAGCCCTGAG






PPM1G-
GCTTCTCCGCCATGCAAGGCTGGCGCGTCTCCATGGAGTGATGG



ALK.P1A18
AAGGCCACGGGGAAGTGAATATTAAGCATTATCTAAACTGCAGT




CACTGTGAGGTAG






KANK2-
CCAGGAGGTGGTGGAGACAATGTGCCCAGTGCCCGCTGCAGCT



ALK.K4A16
ACCAGCAACGTCCATATGGTGAAGAAGATTAGCATCACAGAGCG




AAGCTGCGATGGAGCAGCAGGTGGTGGAGGTGGCTGGAATGAT




AACACTTCCTTGCTCTGGG






KIF5B-
ATCGCAAACGCTATCAGCAAGAAGTAGATCGCATAAAGGAAGCA



ALK.K24A19
GTCAGGTCAAAGAATATGGCCAGAAGAGGGCATTCTGCACAGAT




TGTGTCACCCACCCCGGAGCCACACCTGCCACTCTCGCTGATCCT




CTCTGTGGTGACCT






MCFD2-
GGACCAGCTCCGGCATGCGGTCCCAGTGGCCCTCGGCGCGGCA



ALK.M1A20
GCGCTCCAGCTCGCTCTCCACCTTCAGTGTACCGCCGGAAGCACC




AGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






STK32B-
CCCGCTGAATGGACACCTGCAGCACTGTTTGGAGACTGTCCGGG



ALK.S11A20
AGGAATTCATCATATTCAACAGAGAGAATGTACCGCCGGAAGCA




CCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






CAD-
GCTTCCTGATGGCCGCTTCCATCTGCCGCCCCGAATCCATCGAGC



ALK.C35A20
CTCCGACCCAGGTTTGCCAGTGTACCGCCGGAAGCACCAGGAGC




TGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






GFPT1-
CTCAGCGTGATCCCTTTACAGTTGCTGGCTTTCCACCTTGCTGTGC



ALK.G18A20.1
TGAGAGGCTATGATGACCTCCTCCATCAGTGACCTGAAGGAGGT




GCCGCGGAAAAACATCACCCTCATTCGGGGTCTGGGCCATGGCG




CCTTTGGGGAGGTGTATGAAGGCCAGGTGTCCGGAATGCCC






TPR-
GGAAGAATTAGAAGCTGAGAAAAGAGACTTAATTAGAACCAAT



ALK.T4A20
GAGAGACTATCTCAAGAACTTGAATACTTAACAGTGTACCGCCG




GAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGC




CCTGAG






EML4-
CCTTCCTGGCTGTAGGATCTCATGACAACTTTATTTACCTCTATGT



ALK.E19A20
AGTCTCTGAAAATGGAAGAAAATATAGCAGATATGGAAGGTGCA




CTCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCT




GAG






CCDC88A-
TGGAAATGGCACAGAAACAAAGTATGGATGAATCATTACATCTT



ALK.C12A20
GGCTGGGAACTGGAACAGATATCCAGAACTAGTGAACTTTCCGA




AGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATG




GAGCTGCAGAGCCCTGAG






KTN1-
ACACAGTTACAGCAGTTGCTTCAGGCGGTAAACCAACAGCTCAC



ALK.K43A19
AAAGGAGAAAGAGCACTACCAGGTGTTAGTGTCACCCACCCCGG




AGCCACACCTGCCACTCTCGCTGATCCTCTCTGTGGTGACCT






MSN-ALK.
CTCGAATCTCCCAGCTGGAGATGGCCCGACAGAAGAAGGAGAG



M11int12A20
TGAGGCTGTGGAGTGGCAGCAGAAGCAGGCAGCATGGGAGAA




GGCACTCATGGTTTCGTCAAATACTTACTGGAGTTCTCTCAGGAG




CTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






MYH9-ALK.
CTGGAGATGGACCTGAAGGACCTGGAGGCGCACATCGACTCGG



M34A20del23
CCAACAAGAACCGGGACGAAGCCATCAAACAGCTGCGGAAGCT




GCAGGTCCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-ALK.
GGATGTTATTAACTGGAGGAGGGAAAGACAGAAAAATAATTCT



E14A20.
GTGGGATCATGATCTGAATCCTGAAAGAGAAATAGAGCACCAG



COSF1064.1
GAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-ALK.
GGATGTTATTAACTGGAGGAGGGAAAGACAGAAAAATAATTCT



E14del36A20
GTGGGATCATGATCTGAATCCTGAAAGAGAAATAGAGATGGAG




CTGCAGAGCCCTGAG






EML4-ALK.
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



E17int17Aint
GGAACGCACTCAGGCAGGAGACAAAAACATGAAGTCAATTTTCC



19E20
CAAAATTAAACTCATTAAAAAATGTGGAATGCTGCCAGGCCATG




TTGCAGCTGACCACCCACCTGCAGTGTACCGCCGGAAGCACCAG




GAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






BEND5-
GTCTGAAATGAAGGAGCTCCGTGACCTTAACCGGAGGCTCCAGG



ALK.B3A20
ACGTGCTGCTCCTGCGGCTTGGCAGCGTGTACCGCCGGAAGCAC




CAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






CLTC-ALK.
TGCTTCAGAATCACTGAGAAAAGAAGAAGAACAAGCTACAGAG



C31ins63A20
ACACAACCCATTGTTTATGATGGGGTCTCGTCTGTCACCCAGGCT




GGAGTGCAGTGGCGTGATCTCGGCTCACTGCAACCTTTGTACCG




CCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG




AGCCCTGAG






FN1-
CTGCAGCCTGCATCTGAGTACACCGTATCCCTCGTGGCCATAAAG



ALK.F20A19
GGCAACCAAGAGAGCCCCAAAGCCACTGGAGTCTTTACCACACT




GTCACCCACCCCGGAGCCACACCTGCCACTCTCGCTGATCCTCTC




TGTGGTGACCT






KCNQ5-
GCGGGTGCAGAACTACCTGTACAACGTGCTGGAGAGACCCCGC



ALK.K1A10
GGCTGGGCGTTCATCTACCACGCTTTCGTGTTCTGGCTGCAGATG




GTCGCATGGTGGGGACAAGGATCCAGAGCCATCGTGGCTTTTGA




CAATATCTCCAT






ATRNL1-
ACCACAGGAAAGCAGTGTCAAGATTGTATGCCAGGTTATTATGG



ALK.A19A20
AGATCCAACCAATGGTGGACAGTGCACAGTGTACCGCCGGAAGC




ACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






TRMT61
CCAGCCTTGGAAGACTATGTAGTATTGATGAAAAGAGGGACTGC



B-ALK.
CATAACATTCCCAAAGCTCCGAATGTCCTGGCTCATTCGTGGAGT



T1A9
CTTGAGGGGAAACGTGTCCTTGGTGCTAGTGGAGAACAAAACCG




GGAAGGAGCAAGGCAGG






TFG-
CGGCTATGGTGCACAGCAGCCGCAGGCTCCACCTCAGCAGCCTC



ALK.T7A19
AACAGTATGGTATTCAGTATTCAGTGTCACCCACCCCGGAGCCAC




ACCTGCCACTCTCGCTGATCCTCTCTGTGGTGACCT






GTF3C2-
CGTCATAAGACCGCGACCAGACAGGCGGCGCCATCTTCGAACTT



ALK.G1A18
AGACTTCCGGAAGGACTTTGGCGAGGATTATCTAAACTGCAGTC




ACTGTGAGGTAG






PPFIBP1-
GTTAGTGAAATGGACAGTGAGAGACTTCAGTATGAAAAAAAGCT



ALK.
TAAATCAACCAAAGTTACTACGTGCTCGGCAATTTACACATTTCA



P8A20ins49
ATTCATTCGATCCTCAGTGTACCGCCGGAAGCACCAGGAGCTGC




AAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






MYH9-
GGACAAGGACATGTTCCAGGAGACCATGGAGGCCATGAGGATT



ALK.
ATGGGCATCCCAGAAGAGGAGCAAATGGTGCTCTCCAGGAACAT



M9A6ins10
CCCCAGGCTCCAAGATGGCCCTGCAGAGCTCCTTCACTTGTTGGA




ATGGGACAGTCCTCCAGCTTGGG






DCTN1-
GCCAGCTGCTGGAGACATTGAATCAATTGAGCACACACACGCAC



ALK.D29A20
GTAGTAGACATCACTCGCACCAGCCCTGTGTACCGCCGGAAGCA




CCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






HIP1-
AAAACTGGGAGAGCTTCGGAAAAAGCACTACGAGCTTGCTGGT



ALK.H30A20
GTTGCTGAGGGCTGGGAAGAAGTGTACCGCCGGAAGCACCAGG




AGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






CLIP1-
CAAAAGGAGGAACAGTTTAACATGCTGTCTTCTGACTTGGAGAA



ALK.C13A20
GCTGAGAGAAAACTTAGCAGTGTACCGCCGGAAGCACCAGGAG




CTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






BIRC6-
TGAGGAACAGGACACATTTGTTTCTGTGATTTACTGTTCTGGCAC



ALK.B10A20
AGACAGGCTGTGTGCATGCACCAAAGTGTACCGCCGGAAGCACC




AGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






TERT-
ACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCC



ALK.T11A5
TGGAGGTGCAGAGCGACTACTCCAGTTGGACAGTGCTCCAGGG




AAGAATCGGGCGTCCAGACAACCCATTTCGAGTGGCCCTGGA






CLIP4-
GGAGAGAGAGTGTTAGTGGTAGGACAGAGACTGGGCACCATTA



ALK.C12A23
GGTTCTTTGGGACAACAAACTTCGCTCCAGGCCCCGGTTCATCCT




GCTGGAGCTCATGGCGGGGGGAGACCTCAAGTCCTTCCTCCGAG




AGACC






EML4-
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



ALK.
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGCTGACC



E6ins18A20
ACCCACCTGCAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCC




ATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-
GGAATGGAGATGTTCTTACTGGAGACTCAGGTGGAGTCATGCTT



ALK.
ATATGGAGCAAAACTACTGTAGAGCCCACACCTGGGAAAGGACC



E13ins90A20
TAAAGATCCAGGGAGGCTTCCTGTAGGAAGTGGCCTGTGTAGTG




CTTCAAGGGCCAGG






EML4-ALK.
GGATGTTATTAACTGGAGGAGGGAAAGACAGAAAAATAATTCT



E14ins2del52
GTGGGATCATGATCTGAATCCTGAAAGAGAAATAGAGGTCCCTG



A20
AGTACAAGCTGAGCAAGCTCCGCACCTCGACCATCATGACCGAC




TACAACCCCAACTACTGCTTTGCTGGCAAGACCTCCT






EML4-ALK.
GGATGTTATTAACTGGAGGAGGGAAAGACAGAAAAATAATTCT



E14ins124A20.1
GTGGGATCATGATCTGAATCCTGAAAGAGAAATAGAGGGAAAG




GTTCAGAGCTCAGGGGAGGATATGGAGATCCAGGGAGGCTTCC




TGTAGGAAGTGGCCTGTGTAGTGCTTCAAGGGCCAGG






EML4-
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



ALK.
GGAACGCACTCAGGCAGAGTAACAGATTCCCTGGATACCCTTTC



E17ins65A20
AGAAATTTCTTCAAATAAACAGAACCATTCTTATCCTGTGTACCG




CCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG




AGCCCTGAG






EML4-
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



ALK.
GGAACGCACTCAGGCAGAGTCTTGCTCTGTCTCCCAGGCTGGAG



E17ins68A20
TGCAGTGGCAATTTACACATTTCAATTCATTCGATCCTCAGTGTAC




CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGC




AGAGCCCTGAG






EML4-
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



ALK.
GGAACGCACTCAGGCAGGCCATGTTGCAGCTGACCACCCACCTG



E17ins30A20_
CAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGAT



V8a
GGAGCTGCAGAGCCCTGAG






PRKAR1A-
GCACTGCTCGACCTGAGAGACCCATGGCATTCCTCAGGGAATAC



ALK.
TTTGAGAGGTTGGAGAAGACCTCCTCCATCAGTGACCTGAAGGA



P2A20.NGS.2
GGTGCCGCGGAAAAACATCACCCTCATTCGGGGTCTGGGCCATG




GCGCCTTTGGGGAGGTGTATGAAGGCCAGGTGTCCGGAATGCC




C






TRAF1-
CGATGGCACTTTCCTGTGGAAGATCACCAATGTCACCAGGCGGT



ALK.T6A20
GCCATGAGTCGGCCTGTGGCAGGACCGTCAGCCTCTTCTCCCCA




GTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGG




AGCTGCAGAGCCCTGAG






PPP4R3B-
GCACCACTTTTGACCAATACTTCAGAAGACAAATGTGAAAAGGA



ALK.P9A2
TAATATAGTTGGATCAAACAAAAACAACACAATTTGTCCCGGTCA




TAGCTCCTTGGAATCACCAACAAACATGCCTTCTCCTTCTCCTGAT




TATTTTACATGGAATCTCACCTGGATAATGAAAG






DCTN1-
AGAACTAAAGCAGCGTCTGAACAGCCAGTCCAAACGCACGATTG



ALK.D26A20
AGGGACTCCGGGGCCCTCCTCCTTCAGGCATTGCTACTCTGGTCT




CTGGCATTGCTGGTGTGTACCGCCGGAAGCACCAGGAGCTGCAA




GCCATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-
CAAATGGCTGCAAACTAATCAGGAATCGATCGGATTGTAAGGAC



ALK.E21A20
ATTGATTGGACGACATATACCTGTGTGCTAGGATTTCAAGTATTT




GTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGG




AGCTGCAGAGCCCTGAG






A2M-
CAGTCATCAAGCCTCTGTTGGTTGAACCTGAAGGACTAGAGAAG



ALK.A22A19
GAAACAACATTCAACTCCCTACTTTGTCCATCAGTGTCACCCACCC




CGGAGCCACACCTGCCACTCTCGCTGATCCTCTCTGTGGTGACCT






TPM1-
CTGAGACTCGGGCTGAGTTTGCGGAGAGGTCAGTAACTAAATTG



ALK.T8A20.
GAGAAAAGCATTGATGACTTAGAAGTGTACCGCCGGAAGCACCA



NGS
GGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






TPR-
AAATGCAGCTTGTTGATTCCATAGTTCGTCAGCGTGATATGTACC



ALK.T15A20
GTATTTTATTGTCACAAACAACAGGAGTTGCCATTCCATTACATG




TGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGA




GCTGCAGAGCCCTGAG






NCOA1-ALK.
CTCAAAACAGAAGCAGATGGAACCCAGCAGGTGCAACAGGTTCA



N21A1.NGS
GGTGTTTGCTGACGTCCAGTGTACAGTGAATCTGGTAGGCGGCT




GTGGGGCTGCTCCAGTTCAATCTCAGCGAGCTGTTCA






MEMO1-
ACAGCTAGAAGGTTGGCTTTCACAAGTACAGTCTACAAAAAGAC



ALK.M2A7
CTGCTAGAGCCATTATTGCCCCGGAAACTGCCTGTGGGTTTTTAC




TGCAACTTTGAAGATGGCTTCTGTGGCT






GTF2IRD1-
CCTCTCATCCAGAACGTCCATGCCTCCAAGCGCATTCTCTTCTCCA



ALK.G7A20
TCGTCCATGACAAGTCAGTGTACCGCCGGAAGCACCAGGAGCTG




CAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






HIP1-
AGCGACGCCATTGCTCATGGTGCCACCACCTGCCTCAGAGCCCCA



ALK.H21A20
CCTGAGCCTGCCGACTTGTACCGCCGGAAGCACCAGGAGCTGCA




AGCCATGCAGATGGAGCTGCAGAGCCCTGAG






HIP1-
GCGTTGTGGCCTCAACCATTTCCGGCAAATCACAGATCGAAGAG



ALK.H28A20
ACAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGA




TGGAGCTGCAGAGCCCTGAG






EML4-ALK.
GGAATGGAGATGTTCTTACTGGAGACTCAGGTGGAGTCATGCTT



E13A20.
ATATGGAGCAAAACTACTGTAGAGCCCACACCTGGGAAAGGACC



COSF1062.2
TAAAGGAAGTGGCCTGTGTAGTGCTTCAAGGGCCAGG






EML4-
GGATGTTATTAACTGGAGGAGGGAAAGACAGAAAAATAATTCT



ALK.E14A20.
GTGGGATCATGATCTGAATCCTGAAAGAGAAATAGAGATATGCT



COSF477.1
GGATGAGCCCTGAGTACAAGCTGAGCAAGCTCCGCACCTCGACC




ATCATGACCGACTACAACCCCAACTACTGCTTTGCTGGCAAGACC




TCCT






EML4-ALK.
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



E17A20.
GGAACGCACTCAGGCAGCATACTATGTATACAAGGGAGTTGCAG



COSF1366.2
AGCCCTGAGTACAAGCTGAGCAAGCTCCGCACCTCGACCATCAT




GACCGACTACAACCCCAACTACTGCTTTGCTGGCAAGACCTCCT






EML4-ALK.
GACACTGTGCAGATTTTCATCCAAGTGGCACAGTGGTGGCCATA



E17A20.
GGAACGCACTCAGGCAGGGAGTTGCAGAGCCCTGAGTACAAGC



COSF1367.2
TGAGCAAGCTCCGCACCTCGACCATCATGACCGACTACAACCCCA




ACTACTGCTTTGCTGGCAAGACCTCCT






EML4-ALK.
CATTCCAGCTACATCACACACCTTGACTGGTCCCCAGACAACAAG



E20A20.
TATATAATGTCTAACTCGGGAGACTATGAAATATTGTACTCTGAC



COSF730.1
CACCCACCTGCAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGC




CATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-ALK.
GCGGCTTTGGCTGATGTTTTGAGGCGTCTTGCAATCTCTGAAGAT



E2A20.
CATGTGGCCTCAGTGAAAAAATCAGTCTCAAGTAAAGGTTCAGA



COSF479.1
GCTCAGGGGAGGATATGGAGATCCAGGGAGGCTTCCTGTAGGA




AGTGGCCTGTGTAGTGCTTCAAGGGCCAGG






EML4-
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



ALK.E6A17
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGGCGGCA




ATGCAGCCTCAAACAATGACCCCGAAATGGATGGGGAAGATGG




GGT






EML4-
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



ALK.E6A18
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGTGATGG




AAGGCCACGGGGAAGTGAATATTAAGCATTATCTAAACTGCAGT




CACTGTGAGGTAG






EML4-ALK.
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



E6bA20.
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGCAAAAA



AB374362
TGTCAACTCGCGAAAAAAACAGCCAAGTGTACCGCCGGAAGCAC




CAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-
AATTACCATGTTCATTCCTTCCGATGTTGACAACTATGATGACATC



ALK.E7A20.
AGAACGGAACTGCCTCCTGAGAAGCTGAGCAAGCTCCGCACCTC



NGS
GACCATCATGACCGACTACAACCCCAACTACTGCTTTGCTGGCAA




GACCTCCT






ACTG2-
CAGGCTTCGCAGGAGATGATGCCCCCCGGGCTGTCTTCCCCTCCA



ALK.A2A18
TTGTGGGCCGCCCTCGCCACCAGTGATGGAAGGCCACGGGGAA




GTGAATATTAAGCATTATCTAAACTGCAGTCACTGTGAGGTAG






CLTC-
TGGATTTTGCCATGCCCTATTTCATCCAGGTCATGAAGGAGTACT



ALK.C31A20.
TGACAAAGGGTGAAGGTTCAGAGCTCAGGGGAGGATATGGAGA



COSF470
TCCAGGGAGGCTTCCTGTAGGAAGTGGCCTGTGTAGTGCTTCAA




GGGCCAGG






FN1-
TGTCTCCACCAACAAACTTGCATCTGGAGGCAAACCCTGACACTG



ALK.F23A19.
GAGTGCTCACAGTCTCCTGGGAGAGGAGCACCACCCCAGTGTCA



COSF1301
CCCACCCCGGAGCCACACCTGCCACTCTCGCTGATCCTCTCTGTG




GTGACCT






RNF213-
GAAGGGAGGAACTGTTACTTCTAAAGAAAGAGAAAAGATGTGT



ALK.R20A20
TGATAGTCTCCTGAAGATGTGTGGGAACGTGAAACATCTGATAC




AAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGAT




GGAGCTGCAGAGCCCTGAG






PPFIBP1-
GATCTTCGACAGTGCCTGAACAGGTACAAGAAAATGCAAGACAC



ALK.P12A20.
GGTGGTACTGGCCCAAGGTAAAAAAGTGTACCGCCGGAAGCAC



COSF1461
CAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






SQSTM1-
CTTCTGGTCCATCGGAGGATCCGAGTGTGAATTTCCTGAAGAAC



ALK.S5A20.
GTTGGGGAGAGTGTGGCAGCTGCCCTTAGCCCTCTGGTGTACCG



COSF1051
CCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG




AGCCCTGAG






STRN-
AGGAAAGAGCCAAATACCACAAGTTGAAATACGGGACAGAATT



ALK.S3A20.
GAATCAGGGAGATATGAAGCCTCCAAGCTATGATTCTGTGTACC



COSF1430
GCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCA




GAGCCCTGAG






TPM4-
CTGACAAACTGAAAGAGGCTGAGACCCGTGCTGAATTTGCAGAG



ALK.T7A20.
AGAACGGTTGCAAAACTGGAAAAGTGTACCGCCGGAAGCACCA



COSF441
GGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






VCL-
CTGTGAAAGCTGCCTCTGATGAATTGAGCAAAACCATCTCCCCGA



ALK.V16A20.
TGGTGATGGATGCAAAAGCTGTGGCTGGAAACATTTCCGACCCT



COSF1057
GTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGG




AGCTGCAGAGCCCTGAG






KIF5B-
GAGCAGCTGAGATGATGGCATCTTTACTAAAAGACCTTGCAGAA



ALK.K15A20.
ATAGGAATTGCTGTGGGAAATAATGATGTAAAGTGTACCGCCGG



COSF1381
AAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCC




CTGAG






KIF5B-
GAGCAGCTGAGATGATGGCATCTTTACTAAAAGACCTTGCAGAA



ALK.K15A20.
ATAGGAATTGCTGTGGGAAATAATGATGTAAAGCACCAGGAGCT



COSF1060.1
GCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






KIF5B-
AAAGAAAAGACAGTTGGAGGAATCTGTCGATGCCCTCAGTGAA



ALK.K17A20.
GAACTAGTCCAGCTTCGAGCACAAGTGTACCGCCGGAAGCACCA



COSF1257
GGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






KIF5B-
ATCGCAAACGCTATCAGCAAGAAGTAGATCGCATAAAGGAAGCA



ALK.K24A20.
GTCAGGTCAAAGAATATGGCCAGAAGAGGGCATTCTGCACAGAT



COSF1058
TGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATG




GAGCTGCAGAGCCCTGAG






TFG-
CCTCCTCAGCAGCTCACCCACCAGGCGTTCAGCCACAGCAGCCAC



ALK.T6A20.
CATATACAGGAGCTCAGACTCAAGCAGGTCAGATTGAAGTGTAC



COSF428
CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGC




AGAGCCCTGAG






TFG-
AGTGAATCGTTTATTGGATAGCTTGGAACCACCTGGAGAACCAG



ALK.T4A20.
GACCTTCCACCAATATTCCTGAAAATGTGTACCGCCGGAAGCACC



COSF424
AGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






TFG-
AAAAATGTTATGTCAGCGTTTGGCTTAACAGATGATCAGGTTTCA



ALK.T5A20.
GTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGG



COSF426
AGCTGCAGAGCCCTGAG






TPM3-
CAGAGACCCGTGCTGAGTTTGCTGAGAGATCGGTAGCCAAGCTG



ALK.T7A20.
GAAAAGACAATTGATGACCTGGAAGTGTACCGCCGGAAGCACCA



COSF439
GGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






SEC31A-
CAAATGCTGCTGGTCAGCTTCCCACATCTCCAGGTCATATGCACA



ALK.S21A20.
CCCAGGTACCACCTTATCCACAGCCACAGCTGTACCGCCGGAAG



COSF460
CACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTG




AG






SEC31A-
GCTCCACCATCATCTTCAGCTTATGCACTGCCTCCTGGAACAACA



ALK.S22A20.
GGTACACTGCCTGCTGCCAGTGAGCTGCCTGCGTCCCAAAGAAC



COSF459
AGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATG




GAGCTGCAGAGCCCTGAG






RANBP2-
CATCGTTGGCCCACAGAGAATTATGGACCAGACTCAGTGCCTGA



ALK.R18
TGGATATCAGGGGTCACAGACATTTCATGGGGCTCCACTAACAG



A20.COSF415
TGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGA




GCTGCAGAGCCCTGAG






NPM1-
GGGCTTTGAAATAACACCACCAGTGGTCTTAAGGTTGAAGTGTG



ALK.N4A20.
GTTCAGGGCCAGTGCATATTAGTGGACAGCACTTAGTAGTGTAC



COSF198
CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGC




AGAGCCCTGAG






MSN-
CTCGAATCTCCCAGCTGGAGATGGCCCGACAGAAGAAGGAGAG



ALK.M11A20.
TGAGGCTGTGGAGTGGCAGCAGAAGCAGGAGCTGCAAGCCATG



COSF421
CAGATGGAGCTGCAGAGCCCTGAG






KLC1-
CAAGCAGAAACACTGTACAAAGAGATTCTCACTCGTGCACATGA



ALK.K9A20.
AAGGGAGTTTGGTTCTGTAGATGTGTACCGCCGGAAGCACCAGG



COSF1276
AGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






CLTC-
TGCTTCAGAATCACTGAGAAAAGAAGAAGAACAAGCTACAGAG



ALK.C31A20.
ACACAACCCATTGTTTATGTGTACCGCCGGAAGCACCAGGAGCT



COSF434
GCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






EML4-
GGAATGGAGATGTTCTTACTGGAGACTCAGGTGGAGTCATGCTT



ALK.E13A20.
ATATGGAGCAAAACTACTGTAGAGCCCACACCTGGGAAAGGACC



COSF408.1
TAAAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAG




ATGGAGCTGCAGAGCCCTGAG






EML4-
TCCTGAAAGAGAAATAGAGGTTCCTGATCAGTATGGCACAATCA



ALK.E15A20.
GAGCTGTAGCAGAAGGAAAGGCAGATCAATTTTTAGTAGGCAA



COSF413.1
GCTCCGCACCTCGACCATCATGACCGACTACAACCCCAACTACTG




CTTTGCTGGCAAGACCTCCT






EML4-
TGGATGCAGAAACCAGAGATCTAGTTTCTATCCACACAGACGGG



ALK.E18A20.
AATGAACAGCTCTCTGTGATGCGCTACTCAATAGTGTACCGCCGG



COSF487.1
AAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCC




CTGAG






EML4-
CATTCCAGCTACATCACACACCTTGACTGGTCCCCAGACAACAAG



ALK.E20A20.
TATATAATGTCTAACTCGGGAGACTATGAAATATTGTACTTGTAC



COSF409.1
CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGC




AGAGCCCTGAG






EML4-
GCGGCTTTGGCTGATGTTTTGAGGCGTCTTGCAATCTCTGAAGAT



ALK.E2A20.
CATGTGGCCTCAGTGAAAAAATCAGTCTCAAGTAAAGTGTACCG



COSF478.1
CCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG




AGCCCTGAG






EML4-
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



ALK.E6A19.
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGTGTCAC



COSF1296.1
CCACCCCGGAGCCACACCTGCCACTCTCGCTGATCCTCTCTGTGG




TGACCT






EML4-
GTCGAAAATACCTTCAACACCCAAATTAATACCAAAAGTTACCAA



ALK.E6aA20.
AACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGTGTACC



AB374361
GCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCA




GAGCCCTGAG






ATIC-
GGAAACAGTACAGCAAAGGCGTATCTCAGATGCCCTTGAGATAT



ALK.A7A20.
GGAATGAACCCACATCAGACCCCTGCCCAGCTGTACACACTGCA



COSF444
GCCCAAGCTTCCCATCACAGTGTACCGCCGGAAGCACCAGGAGC




TGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






CARS-
CACAGTCATGCCCTACCTTCAGGTGTTATCAGAATTCCGAGAAGG



ALK.C17A20.
AGTGCGGAAGATTGCCCGAGAGCAAAAAGTGTACCGCCGGAAG



COSF437
CACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTG




AG





ARMT1
ESR1-
GCCCTACTACCTGGAGAACGAGCCCAGCGGCTACACGGTGCGCG



ARMT1.E3A4
AGGCCGGCCCGCCGGCATTCTACAGTCCACCAATCGATTACTTTG




ATGTATTTAAAGAATCAAAAGAGCAAAATTTCTATGGGTCACAG




GA





ATAD5
NF1-
CTGTTTGTTCAGAAGACAATGTTGATGTTCATGATATAGAATTGT



ATAD5.N5A11
TACAGTATATCAATGTGGATTGTGCAAAATTAAAACGACTCCTGA




AGGATTCTGGAACTGAAGACATGCTTTGGACAGAAAAGTATCAA




CCTCAGACTGCCAGTG





ATG7
ATG7-
CTAGCCAAGGTGTTTAATTCTTCACATTCCTTCTTAGAAGACTTGA



BRAF.A18B9
CTGGTCTTACATTGCTGCATCAAGAAACCCAAGCTGCTGAGGACT




TGATTAGAGACCAAGGATTTCGTGGTGATGGAGGATCAACCACA




GGTTT





ATIC
ATIC-
GGAAACAGTACAGCAAAGGCGTATCTCAGATGCCCTTGAGATAT



ALK.A7A20.
GGAATGAACCCACATCAGACCCCTGCCCAGCTGTACACACTGCA



COSF444
GCCCAAGCTTCCCATCACAGTGTACCGCCGGAAGCACCAGGAGC




TGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG





AXL
AXL-
ACATGGATGAGGGTGGAGGTTATCCTGAACCCCCTGGAGCTGCA



MBIP.A20M4.1
GGAGGAGCTGACCCCCCAACCCAGCCAGACCCTAAGGATTCCTG




TAGCTGCCTCACTGCGGCTGAGATTGACAGACGAATATCTGCATT




TATTGAAAGAAAGCAAGCTGAAATCAA





BIRC6
BIRC6-
TGAGGAACAGGACACATTTGTTTCTGTGATTTACTGTTCTGGCAC



ALK.B10A20
AGACAGGCTGTGTGCATGCACCAAAGTGTACCGCCGGAAGCACC




AGGAGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG





BRD3
BRD3-
CACTTTGCGGGAACTGGAGAGATATGTCAAGTCTTGTTTACAGA



NUTM1.B10N2
AAAAGCAAAGGAAACCGTTCTCATCTGCATTGCCGGGACCGGAT




ATGAGCATGAAACCTAGTGCCGCCCCGTCTCCATCCCCTGCACTT




CCCTTTCTCCCACCAAC





BRD4
BRD4-
GTCACAGTTCCAGAGCCTGACCCACCAGTCTCCACCCCAGCAAAA



NUTM1.B15N2
CGTCCAGCCTAAGAAACAGCATCTGCATTGCCGGGACCGGATAT




GAGCATGAAACCTAGTGCCGCCCCGTCTCCATCCCCTGCACTTCC




CTTTCTCCCACCAAC






BRD4-
CTCGTCCTCAGAGTCGGAGAGCTCCAGTGAGTCCAGCTCCTCTGA



NUTM1.B11N2
CAGCGAAGACTCCGAAACAGCATCTGCATTGCCGGGACCGGATA




TGAGCATGAAACCTAGTGCCGCCCCGTCTCCATCCCCTGCACTTC




CCTTTCTCCCACCAAC






BRD4-
GCCAAGCCTCAGCAAGTCATCCAGCACCACCATTCACCCCGGCAC



NUTM1.
CACAAGTCGGACCCCTACTCAACCGGTGACCGCTCCAAAATTTCC



B14N2del585
AAGGACGTTTATGAGAACTTCCGTCAGTGGCAGCGTTACAAAG





CAPRIN1
CAPRIN1-
CAGAATGGGCTGTGTGAGGAAGAAGAGGCAGCCTCAGCACCTG



PDGFRB.C7P11
CAGTTGAAGACCAGGTACCTGAAGCTGCCTTGCCCTTTAAGGTG




GTGGTGATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCATC




TCCCTTATCATCCTCATCATGCTTTGGC





CCAR2
FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



CCAR2.F17C4
GAATTCTCACTCTCACAACCAATGAGGGTGGGGAGAAACAGCGG




GTCTTCACTGGTATTGTTACCAGCTTGCATGACTACTTTGGGGTT




GTGGATGAAGAGG





CCDC6
CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



BRAF.C1B9
CGCGACCTGCGCAAAGCCAGCGTGACCATCGACTTGATTAGAGA




CCAAGGATTTCGTGGTGATGGAGGATCAACCACAGGTTT






FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



CCDC6.F17C1
GAATTCTCACTCTCACAACCAATGAGTCGCCGCCGCTCCGAGTCT




GCGCCCTGGTGCCAGGCGCTCAGCTCGGCGCTCCCCTGTGCTCG




CCCGGCGCCCACTCATTCGCAGCCCG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R12.
CGCGACCTGCGCAAAGCCAGCGTGACCATCGAGGATCCAAAGTG



COSF1271
GGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAG




AAGGCGAATTTGG






CCDC6-
TGGTTTCACGCCACCAACTTCACTGACTAGAGCTGGAATGTCTTA



RET.C8R11.
TTACAATTCCCCGGGTCTTCACGTGCAGCACATGGGAACATCCCA



COSF1518
TGGTATCACAATCTCCTCAGCTGAGATGACCTTCCGGAGGCCCGC




CCAGGCCTTCCCGGTCAGCTACTCCTCTTCCGG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R13
CGCGACCTGCGCAAAGCCAGCGTGACCATCGAGTGAGCTGCGA




GACCTGCTGTCAGAGTTCAACGTCCTGAAG






CCDC6-
AGGAGAAAGAAACCCTTGCTGTAAATTATGAGAAAGAAGAAGA



RET.C2R12.1
ATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAGAAG




GCGAATTTGG






CCDC6-
TGGTTTCACGCCACCAACTTCACTGACTAGAGCTGGAATGTCTTA



RET.C8R11
TTACAATTCCCCGGGTCTTCACGTGCAGCACATGGGAACATCCCA




TGGTATCACAAGTTTGCCCACAAGCCACCCATCTCCTCAGCTGAG




ATGACCTTCCGGAGGCCCGCCCAGGCCTTCCCGGTCAGCTACTCC




TCTTCCGG






CCDC6-
TGGTTTCACGCCACCAACTTCACTGACTAGAGCTGGAATGTCTTA



RET.C8R12
TTACACCACGGTGGCCGTGAAGATGCTGAAAGAGAACGCCTCCC




CGAGTGAGCTGCGAGACCTGCTGTCAGAGTTCAACGTCCTGAAG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R12
CGCGACCTGCGCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTC




TTGGAAAAACTCTAGGAGAAGGCGAATTTGG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R11
CGCGACCTGCGCAAAGCCACCCATCTCCTCAGCTGAGATGACCTT




CCGGAGGCCCGCCCAGGCCTTCCCGGTCAGCTACTCCTCTTCCGG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R11.1
CGCGACCTGCGCAAAGCCAGCGTGACCATCTTTGCCCACAAGCC




ACCCATCTCCTCAGCTGAGATGACCTTCCGGAGGCCCGCCCAGG




CCTTCCCGGTCAGCTACTCCTCTTCCGG






CCDC6-
AGGAGAAAGAAACCCTTGCTGTAAATTATGAGAAAGAAGAAGA



RET.C2R11
ATTCCTCACTAATGAGCTCTCCAGAAAATTGATGCAGATCCACTG




TGCGACGAGCTGTGCCGCACGGTGATCGCAGCCGCTGT






CCDC6-
CGGCTGAAGAAGCAACTGAGAGCTGCTCAGTTACAGCAGTCTTG



RET.C5ins16R11
CTGTGTTGCCCACAAGTTTGCCCACAAGCCACCCATCTCCTCAGC




TGAGATGACCTTCCGGAGGCCCGCCCAGGCCTTCCCGGTCAGCT




ACTCCTCTTCCGG






CCDC6-
GGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAAC



RET.C1R9
CGCGACCTGCGCAAAGCCAGCGTGACCATCGGATCACCAGGAAC




TTCTCCACCTGCTCTCCCAGCACCAAGACCTG






CCDC6-
CGGCTGAAGAAGCAACTGAGAGCTGCTCAGTTACAGCTCTGGCA



ROS1.C5R35.1
TAGAAGATTAAAGAATCAAAAAAGTGCCAAGGAAGGGGTGACA




GTGCTTATAAACGAAGACAAAGAGTTGGCTGA






CCDC6-
CTTACACACCTTCTCCGAGTTCAAGCAGGCCTATATCACCTGCCTT



PDGFRB.C7P11
GCCCTTTAAGGTGGTGGTGATCTCAGCCATCCTGGCCCTGGTGG




TGCTCACCATCATCTCCCTTATCATCCTCATCATGCTTTGGC






FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



CCDC6.F17C2
GAATTCTCACTCTCACAACCAATGAGCAAGCCAGGGCTGAGCAG




GAAGAAGAATTCATTAGTAACACTTTATTCAAGAAAATTCAGGCT




TTGCAGAAGGAGAAAGAAACCC





CDK5RAP2
CDK5RAP2-
AGAAAGTACCAATCAGAAGGACGTGTTGCTTCAGGCCTGGAGCC



PDGFRA.
CTCCCTTCTCAAAGAGAACCCTGCGGGCAACTTATGACTCAAGAT



C13ins40P12
GGGAGTTTCCAAGAGATGGACTAGTGCTTGGTCGGGTCTTGGGG




TCTGGAGCGTTTGGGAAGGTGGTTGAAGGAA





CHD9
CHD9-
GCTCGGAGTTGGCATTCATCATTTTCTAATCATCAGCATTTACATG



RAD51B.C2R8
ACAGAAATCACCTATGTTTACAGCGACAGGTTATCTTGACGAATC




AGATTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGAC




CTGGTGTCTCCAGCTG





CIT
FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



CIT.F17C23
GAATTCTCACTCTCACAACCAATGAGGCACATAGAGATGAAATCC




AGCGCAAATTTGATGCTCTTCGTAACAGCTGTACTGTAATCACAG




ACCTGGAGGAGCA





CTNNB1
CTNNB1-
GGAGGAAGGTCTGAGGAGCAGCTTCAGTCCCCGCCGAGCCGCC



FGFR2.C1F10
ACCGCAGGTCGAGGACGGTCGGACTCCCGCGGCGGGAGGAGCC




TGTTCCCCTGAGGTTTCGGCTGAGTCCAGCTCCTCCATGAACTCC




AACACCC





CUL1
CUL1-
TCTTGCAGCAGAACCCAGTTACTGAATATATGAAAAAGGACTTG



BRAF.C7B9
ATTAGAGACCAAGGATTTCGTGGTGATGGAGGATCAACCACAGG




TTT





EBF1
EBF1-
CCAGTCGTCAGACCCCAGACCTCCCCACCTCCCACCTGCACCAGC



PDGFRB.E15P11
ACCAACGGGAACAGCCTGCAAGCCTTGCCCTTTAAGGTGGTGGT




GATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCATCTCCCTT




ATCATCCTCATCATGCTTTGGC






EBF1-
CCATCGATTATGGTTTCCAGAGGTTACAGAAGGTCATTCCTCGGC



PDGFRB.E11P11
ACCCTGGTGACCCTGAGCGTTTGCCAAAGCCTTGCCCTTTAAGGT




GGTGGTGATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCAT




CTCCCTTATCATCCTCATCATGCTTTGGC






EBF1-
CTCTGCCGCAATGTCCAATTTGGGCGGCTCCCCCACCTTCCTCAA



PDGFRB.E14P11
CGGCTCAGCTGCCAACTCCCCCTATGCCACCTTGCCCTTTAAGGT




GGTGGTGATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCAT




CTCCCTTATCATCCTCATCATGCTTTGGC






EBF1-
CTCTGCCGCAATGTCCAATTTGGGCGGCTCCCCCACCTTCCTCAA



JAK2.E14J17
CGGCTCAGCTGCCAACTCCCCCTATGCCATTCTTCAGGAGAGAAT




ACCATGGGTACCACCTGAATGCATTGAAAATCCTAAAAATTTAAA




TTTGGCAACAGACAAATGGAGTTTTGG





EIF3E
EIF3E-
CTCGCATCGCGCACTTTTTGGATCGGCATCTAGTCTTTCCGCTTCT



RSPO2.E1R2.
TGAATTTCTCTCTGTAAAGGAGGTTCGTGGCGGAGAGATGCTGA



COSF1307
TCGCGCTGAACTGACCGGTGCGGCCCGGGGGTGAGTGGCGAGT




CTCCCT






EIF3E-
CTCGCATCGCGCACTTTTTGGATCGGCATCTAGTCTTTCCGCTTCT



RAD51B.E1R5
TGAATTTCTCTCTGTAAAGGAGATTACAGGTCCACCAGGTTGTGG




AAAAACTCAGTTTTGTATAATGATGAGCATTTTGGCTACATTACC




CACCAACATGGGAG






EIF3E-
CTCGCATCGCGCACTTTTTGGATCGGCATCTAGTCTTTCCGCTTCT



RSPO2.E1R3.
TGAATTTCTCTCTGTAAAGGAGCTAGTTATGTATCAAATCCCATTT



COSF1309
GCAAGGGTTGTTTGTCTTGTTCAAAGGACAATGGGTGTAGCCGA




TGTCAACAGAAGTT






EIF3E-
CTGCAACCTCTGCCTCCTTAGTTCAAGCGATTCTCCTGCCTCAGCC



RSPO2.
TCCTGAGTAGCTGGTACTACAGGTTCGTGGCGGAGAGATGCTGA



E1ins351R2
TCGCGCTGAACTGACCGGTGCGGCCCGGGGGTGAGTGGCGAGT




CTCCCT





HIP1
HIP1-
AAAACTGGGAGAGCTTCGGAAAAAGCACTACGAGCTTGCTGGT



ALK.H30A20
GTTGCTGAGGGCTGGGAAGAAGTGTACCGCCGGAAGCACCAGG




AGCTGCAAGCCATGCAGATGGAGCTGCAGAGCCCTGAG






HIP1-
AGCGACGCCATTGCTCATGGTGCCACCACCTGCCTCAGAGCCCCA



ALK.H21A20
CCTGAGCCTGCCGACTTGTACCGCCGGAAGCACCAGGAGCTGCA




AGCCATGCAGATGGAGCTGCAGAGCCCTGAG






HIP1-
GCGTTGTGGCCTCAACCATTTCCGGCAAATCACAGATCGAAGAG



ALK.H28A20
ACAGTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGA




TGGAGCTGCAGAGCCCTGAG






HIP1-
AAAACTGGGAGAGCTTCGGAAAAAGCACTACGAGCTTGCTGGT



PDGFRB.H30P11
GTTGCTGAGGGCTGGGAAGAAGCCTTGCCCTTTAAGGTGGTGGT




GATCTCAGCCATCCTGGCCCTGGTGGTGCTCACCATCATCTCCCTT




ATCATCCTCATCATGCTTTGGC





HMGA2
HMGA2-
CTAAAGCAGCTCAAAAGAAAGCAGAAGCCACTGGAGAAAAACG



RAD51B.H3R11
GCCAAGAGGCAGACCTAGGAAATGGAGACAACATTTTGCTCTGT




CACCCAAGCTGAACTGAACTGGGCTCCAGAAATCCTCCCACCTCA




GCCTCCTGAGCAGCTAGGACTACAGATGTGCCACCA






HMGA2-
CTAAAGCAGCTCAAAAGAAAGCAGAAGCCACTGGAGAAAAACG



RAD51B.
GCCAAGAGGCAGACCTAGGAAATGGGTTATCTTGACGAATCAGA



H3R8.COSF981
TTACAACCCATCTGAGTGGAGCCCTGGCTTCTCAGGCAGACCTG




GTGTCTCCAGCTG





IRF2BP2
IRF2BP2-
GGCCCTTCGAGAGCAAGTTTAAGAAGGAGCCGGCCCTGACTGCA



NTRK1.|1N10.1
GACACTAACAGCACATCTGGAGACCCGGTGGAGAAGAAGGACG




AAACACCTTTTGGGGTCTCG





NOTCH1
NOTCH1-
TGACCTGCGCATGTCTGCCATGGCCCCCACACCGCCCCAGGGTG



GABBR2.
AGGTTGACGCCGACTGCATGGACGTCAATGTCCGCGGGCCTGCC



N30G14.
GGACCCAGCAGGACGGGATATCTCCATCCGCCCTCTCCTGGAGC



COSF1178
ACTGTGAGAACACCCATATGACCATCTGGCTTGGCATCG






SEC16A-
CTGAGGTGTCTGTGCTCGTCGCCAGCGTCGGGGGGCTTTCGCC



NOTCH1.S1N27
CGCGGCTCCTGAGGGATCGGTCTCAGCCGCGCGGCTCCATCGTC




TACCTGGAGATTGACAACCGGCAGTGT






SEC16A-
CTGAGGTGTCTGTGCTCGTCGCCAGCGTCGGGTGGGCTTTCGCC



NOTCH1.S1N28
CGCGGCTCCTGAGGGATCGGTCTCAGCCGCGCGGGTGAGACCG




TGGAGCCGCCCCCGCCGGCGCAGCTGCACTTCATGTACGTGGCG




GC






MIR143HG-
GCTGGGTCTAATTAGTTGAGAAGCAGTGACACCCCCAACCACTC



NOTCH1.M1N27
CCCAAACAGGCTGGCTCCCGTCTCCAGGCCCCAAGGAGCCACAC




CTGGACCAGACCCCAGGAAAGCTCCATCGTCTACCTGGAGATTG




ACAACCGGCAGTGT






NOTCH1-
CGGTGAGACCTGCCTGAATGGCGGGAAGTGTGAAGCGGCCAAT



NUP214.N2N25
GGCACGGAGGCCTGCGTTTCTTCAGTGCCCTACTCCACAGCCAAA




ACACCTCACCCAGTGTTGACCCCAGTGGCTGCTAACCAAGCCAA




GCAGGGGTCTCTAATAAA






NOTCH1-
ACTGTGAGGACCTGGTGGACGAGTGCTCACCCAGCCCCTGCCAG



SDCCAG3.
AACGGGGCCACCTGCACGGACTACCTGGGCGGCTACTCCTGCAA



N21S5
GCTGAAAGATGAAAATTCTAAGCTGAGAAGAAAGCTGAATGAG




G






NOTCH1-
CGGTGAGACCTGCCTGAATGGCGGGAAGTGTGAAGCGGCCAAT



SNHG7.N2S4
GGCACGGAGGCCTGCGTATGCAGAGGCCAGGATGTGGGCCCAG




CCCTGTGCCAGGAGGCTGGCTGGAATAAAGAGTAACAAACCCCC




TTGGAGGACTCTCCTGCCG





NOTCH4
NSD1-
GGGTCAAAGATCCTTGCATCTAATAGTATCATCTGCCCTAATCAC



NOTCH4.N14N18
TTTACCCCTAGGCGGGGCTGCCGAAATCATGAGCATGTTAATGTT




AGCTGGTGCTTTGTGTGCTCAGAAGGCATAGACGTCTCTTCCCTT




TGCCACAATGGAGGC





NPM1
NPM1-
GGGCTTTGAAATAACACCACCAGTGGTCTTAAGGTTGAAGTGTG



ALK.N4A20.
GTTCAGGGCCAGTGCATATTAGTGGACAGCACTTAGTAGTGTAC



COSF198
CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGC




AGAGCCCTGAG





OFD1
FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



OFD1.F17O3
GAATTCTCACTCTCACAACCAATGAGACACAACTTCGAAACCAGC




TAATTCATGAGTTGATGCACCCTGTATTGAG






OFD1-
AATCTGCTCACAGTGAAAATCCTTTAGAGAAATACATGAAAATCA



JAK2.O21J13
TCCAGCAGGAGCAAGACCAGGAGTCGGCAGATAAGAATGAAAG




CCTTGGCCAAGGCACTTTTACAAAGATTTTTAAAGGCGTACGAAG




AGAAGTAGGA





TACC1
FGFR1-
CCCTCACAGAGACCCACCTTCAAGCAGCTGGTGGAAGACCTGGA



TACC1.F17T7.
CCGCATCGTGGCCTTGACCTCCAACCAGGGGCTGCTGGAGTCCT



COSF1362
CTGCAGAGAAGGCCCCTGTGTCGGTGTCCTGTGGAGGTGAG






FGFR1-
TCCGTCCCTGTCCCCTTTCCTGCTGGCAGGAGCCGGCTGCCTACC



TACC1.F18T7
AGGGGCCTGGGCTGCTGGAGTCCTCTGCAGAGAAGGCCCCTGT




GTCGGTGTCCTGTGGAGGTGAG





TACC3
FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



TACC3.F17T11
GAATTCTCACTCTCACAACCAATGAGGTAAAGGCGACACAGGAG




GAGAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGGG




AAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGTGCCAG



TACC3.F17T10.
GCCCACCCCCAGGTGTTCCCGCGCCTGGGGGCCCACCCCTGTCCA



COSF1434
CCGGACCTATAGTGGACCTGCTCCAG






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACTTTAAGG



TACC3.F17T8.
AGTCGGCCTTGAGGAAGCAGTCCTTATACCTCAAGTTCGACCCCC



COSF1353
TCCTGAGGGACAGTCCTGGTAGACC






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGTAAAGG



TACC3.F17T11.
CGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGAGG



COSF1348
AGCTCCACGGGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGCCTTGTTTGACCGAGTCTACACTCACCAGAGTGACGTGTAAA



TACC3.F15T11
GGCGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGA




GGAGCTCCACGGGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGAGCTCTTCAAGCTGCTGAAGGAGGGCCACCGCATGGACAAG



TACC3.F16T10.
CCCGCCAACTGCACACACGACCTGTGCCAGGCCCACCCCCAGGT



COSF1359
GTTCCCGCGCCTGGGGGCCCACCCCTGTCCACCGGACCTATAGT




GGACCTGCTCCAG






FGFR3-
GGAGCTCTTCAAGCTGCTGAAGGAGGGCCACCGCATGGACAAG



TACC3.F16T11.
CCCGCCAACTGCACACACGACCTGTAAAGGCGACACAGGAGGA



COSF1348
GAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGGGAA




GAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGAAGGAACTTTCCAA



F17T13.NGS
AGCTGAAATCCAGAAAGTTCTAAAAGAAAAAGACCAACTTACCA




CAGATCTGAACTCCAT






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGCAGCTG



TACC3.F17T5
CATTCAGCCTCAGCGGAGGACACGCCTGTGGTGCAGTTGGCAGC




CGAGACCCCAACAGCAGAGAGCAAGGAGAGAGCCTT






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGAGAGAG



TACC3.F17T6
CCTTGAACTCTGCCAGCACCTCGCTTCCCACAAGCTGTCCAGGCA




GTGAGCCAGTGCCCACCCATCAGC






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACCATGCAC



TACC3.F17T9
GGTGCAAATGAGACTCCCTCAGGACGTCCGCGGGAAGCCAAGCT




TGTGGAGTTCGATTTCTTGGGAGCACTGGACATTC






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGAGTACC



TACC3.F18T7.
TGGAGCAGTTTGGAACTTCCTCGTTTAAGGAGTCGGCCTTGAGG



NGS
AAGCAGTCCTTATACCTCAAGTTCGACCCCCTCCTGAGGGACAGT




CCTGGTAGACC






FGFR3-
GTGACCGAGGACAACGTGATGAAGATCGCAGACTTCGGGCTGG



TACC3.F14T11
CCCGGGACGTGCACAACCTCGACGTAAAGGCGACACAGGAGGA




GAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGGGAA




GAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGCGCCTTTCGAGCAGTACTCCCCGAGCCAGCAGCTGCATTCAG



TACC3.
CCTCAGCGGAGGACACGCCTGTGGTGCAGTTGGCAGCCGAGAC



F18T4and5
CCCAACAGCAGAGAGCAAGGAGAGAGCCTT






FGFR3-
GGCGCCTTTCGAGCAGTACTCCCCGGGTGGCCAGGACACCCCCA



TACC3.
GCTCCAGCTCCTCAGGGGACGACTCCGTGTTTGCCCACGACGTG



F18T10.1
CCAGGCCCACCCCCAGGTGTTCCCGCGCCTGGGGGCCCACCCCT




GTCCACCGGACCTATAGTGGACCTGCTCCAG






FGFR3-
GGCGCCTTTCGAGCAGTACTCCCCGGGTGGCCAGGACACCCCCA



TACC3.
GCTCCAGCTCCTCAGGGGACGAGGACCTGGATGCAGTGGTAAA



F18T10
GGCGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGA




GGAGCTCCACGGGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGCGCCTTTCGAGCAGTACTCCCCGGGTGTAAAGGCGACACAGG



TACC3.
AGGAGAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACG



F18T11
GGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGAATGGAATTCTACAGAAAC



TACC3.
CAGTGGAGGCTGACACCGACCTCCTGGGGGATGCAAGCCCAGC



TruncatedF17T4
CTTTG






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.F17T7
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGCTGGTGGAGTACCT




GGAGCAGTTTGGAACTTCCTCGTTTAAGGAGTCGGCCTTGAGGA




AGCAGTCCTTATACCTCAAGTTCGACCCCCTCCTGAGGGACAGTC




CTGGTAGACC






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.F17T10
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGCTGGTGGAGGACCT




GGATGCAGTGGTAAAGGCGACACAGGAGGAGAACCGGGAGCT




GAGGAGCAGGTGTGAGGAGCTCCACGGGAAGAACCTGGAACTG




GGGAAGATCATGGA






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGCTGGTGGAGGACCT



F17T11.1
CCACGGGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGCAGGTGTGAGGAGC



F17T11.2
TCCACGGGAAGAACCTGGAACTGGGGAAGATCATGGA






FGFR3-
GGTGCCACCCGCCTATGCCCCTCCCCCTGCCGTCCCCGGCCATCC



TACC3.
TGCCCCCCAGAGTGCTGAGGTGTGGGGGGGGCCTTCTGGCCCAG



F17intron
GTGCCCTGGCTGACCTGGACTGCTCAAGCTCTTCCCAGAGCCCAG



17T4.1
GAA






FGFR3-
GGTGCCACCCGCCTATGCCCCTCCCCCTGCCGTCCCCGGCCATCC



TACC3.
CTCAGGACGTCCGCGGGAAGCCAAGCTTGTGGAGTTCGATTTCT



F17Intron
TGGGAGCACTGGACATTC



17T9







FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACAACGAAG



TACC3.F17T14
AGTCACTGAAGAAGTGCGTGGAGGATTACCTGGCAAGGATCACC




CAGGAGGGCCAGAGGTACCAAGCCCTGAAGGCC






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGAGTACC



TACC3.
TGGACCTGTCGGCGACACAGGAGGAGAACCGGGAGCTGAGGA



F18T11del5
GCAGGTGTGAGGAGCTCCACGGGAAGAACCTGGAACTGGGGAA




GATCATGGA






FGFR3-
GGCGCCTTTCGAGCAGTACTCCCCGGGTGGCCAGGACACCCCCA



TACC3.F18T1
GCTCCAGCTCCTCAGGGGACGACTCCGGAGGTCCTGGGAGGGTC




AGTCTGGCCCGCCTGCCTGCTGACTTGGGTGTGGCCTGAGCAGG




TAAAGGCGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGT




GTGAGGAGCTCCACGGGAAGAACCTGGAACTGGGGAAGATCAT




GGA






FGFR3-
GCACACACGACCTGTACATGATCATGCGGGAGTGCTGGCATGCC



TACC3.
GCGCCCTCCCAGAGGCCCACCTTCAAGCAGCTGGTGGAAGGACC



F17ins1T10
TGGATGCAGTGGTAAAGGCGACACAGGAGGAGAACCGGGAGCT




GAGGAGCAGGTGTGAGGAGCTCCACGGGAAGAACCTGGAACTG




GGGAAGATCATGGA






FGFR3-
GGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACTGAAGGC



TACC3.
CCACGCGGAGGAGAAGCTGCAGCTGGCAAACGAGGAGATCGCC



F17T14.1
CAGGTCCGGAGCAAGGCCCAGGCGGAAGCGTTGGCCCTCCAGG




CCAGCCTGAGGAAGGAGCAGA






FGFR3-
GGTGCCACCCGCCTATGCCCCTCCCCCTGCCACGGAGGAGCCAG



TACC3.F17T4
GTCCCTGTCTGAGCCAGCAGCTGCATTCAGCCTCAGCGGAGGAC




ACGCCTGTGGTGCAGTTGGCAGCCGAGACCCCAACAGCAGAGA




GCAAGGAGAGAGCCTT





TERF2
TERF2-
CCAAAGTACCCAAAGGCAAGTGGAACAGCTCTAATGGGGTTGAA



JAK2.T8J19
GAAAAGGAGACTTGGGTGGAAGAGGATGAACTGTTTCAAGTTC




AGGATTATGAACTATTAACAGAAAATGACATGTTACCAAATATGA




GGATAGGTGCCCTGGGGTTTTCTGGTGCCTTTGAAGACCGGGAT




C





TMEM106B
TMEM10
AGATGGAAGAAATGGAGATGTCTCTCAGTTTCCATATGTGGAAT



6B-
TTACAGGAAGAGATAGTGTCACCTGCCCTACTTGTCAGGGAACA



ROS1.T3R35
GGAAGAATTCCTAGGGTCTGGCATAGAAGATTAAAGAATCAAAA




AAGTGCCAAGGAAGGGGTGACAGTGCTTATAAACGAAGACAAA




GAGTTGGCTGA





UBE2L3
UBE2L3-
CAGGTCTGTCTGCCAGTAATTAGTGCCGAAAACTGGAAGCCAGC



KRAS.U3K2.
AACCAAAACCGACCAAGGCCTGCTGAAAATGACTGAATATAAAC



COSF1298.1
TTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACG




ATACAGCTAATTCAG





USP10
FGFR2-
CTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATC



USP10.
GAATTCTCACTCTCAAGTTGCTGGAGAATGTAACCCTAATCCATA



F17del11U5
AACCAGTGTCGTTGCAACCCCGTGGGCTGATCAATAAAGGGAAC




TGGTGCT





WRDR48
WDR48-
CTGCAATTTGGGTTGCAACAACTAAGTCTACAGTAAATAAATGG



PDGFRB.W9P12
AAGCCACGTTACGAGATCCGATGGAAGGTGATTGAGTCTGTGAG




CTCTGACGGCCATGAGTACATCTACGTGGACCC





YAP1
ESR1-
GCTTACTGACCAACCTGGCAGACAGGGAGCTGGTTCACATGATC



YAP1.E6Y4
AACTGGGCGAAGAGGGTGCCAGGTCCTCTTCCTGATGGATGGG




AACAAGCCATGACTCAGGATGGAGAAATTTACTATATAAACCAT




AAGAACAAGACCACCTCTT





ZEB2
ZEB2-
CAGAGAGTGGCATGTATGCATGTGACTTATGTGACAAGACATTC



PDGFRB.Z9P9
CAGAAAAGCAGTTCCCTTCTGCGACATAAATACGAACACACAGTC




CCTGTCCGAGTGCTGGAGCTAAGTGAGAGCCACCCTGACAGTGG




GGAACAGACAGTC





ZMYND8
ZMYND8-
GCTCGACCCTTGACCTTTCTGGCTCCAGAGAGACGCCCTCCTCCA



RELA.Z21R2
TTCTCTTAGGCTCCAACCAAGGCTCTGAACTGTTCCCCCTCATCTT




CCCGGCAGAGCCAGCCCAGGCCTCTGGCCCCTATGTGGAGATCA




TTGAGCAGC









Example 1

Detection of Genetic Biomarkers


1.1 Overview of Primer Design:


Primers for detecting each of the biomarkers listed in Table 2 were designed in accordance with conventional practice using techniques known to those skilled in the art. In general, primers of 18-30 nucleotides in length are optimal with a melting temperature (T m) between 65° C.-75° C. The GC content of the primers should be between 40-60%, with the 3′ of the primer ending in a C or G to promote binding. The formation of secondary structures within the primer itself is minimised by ensuring a balanced distribution of GC-rich and AT-rich domains. Intra/inter—primer homology should be avoided for optimal primer performance.


1.1.1 Primers for Copy Number Detection:


Primers were designed, as discussed in 1.1, to span the regions of the Table 2 genes as listed in Table 3. Several amplicons per gene were designed. Although the regions are given in Table 3 other regions within the genes in Table 2 could be used and a person skilled in the art would be able to identify the regions and design amplicons therefor. The depth of coverage is measured for each of these amplicons. The copy number amplification and deletion algorithm is based on a hidden Markov model (HMM). Prior to copy number determination, read coverage is corrected for GC bias and compared to a preconfigured baseline.


1.1.2 Primer for Hotspot Detection:


Primers were designed, as discussed in 1.1, to target specific regions prone to oncogenic somatic mutations as listed Table 3 and in consideration with the general points discussed above.


1.1.3 Primers for Fusion Detection:


Primers were designed, as discussed in 1.1, to target specific regions prone to gene rearrangement as listed Table 3 and in consideration with the general points discussed above.


1.1.4 Primers for Quantitative Detection of PD-L1 mRNA by NGS:


Extracted RNA is processed via RT-PCR to create complementary DNA (cDNA) which is then amplified using primers designed, as discussed in 1.1. Multiple primer sets were designed to span the exon/intron boundaries across the PD-L1 gene and are listed in Table 4 in FIG. 6.


1.2 DNA and RNA Extraction


DNA and RNA were extracted from a formalin fixed tumour sample. Two xylene washes were performed by mixing 1 ml of xylene with the sample. The samples were centrifuged and xylene removed. This was followed by 2 washes with 1 ml of pure ethyl alcohol. After the samples were air-dried, 25 μl of digestion buffer, 75 μl of nuclease free water and 4 μl of protease were added to each sample. Samples were then digested at 55° C. for 3 hours followed by 1 hour digestion at 90° C.


120 μl of Isolation additive was mixed with each sample and the samples added to filter cartridges in collection tubes and centrifuged. The filters were moved to new collection tubes and kept in the fridge for DNA extraction at a later stage. The flow-through was kept for RNA extraction and 275 μl of pure ethyl alcohol was added and the sample moved to a new filter in a collection tube and centrifuged. After a wash of 700 μl of Wash 1 buffer the RNA was treated with DNase as follows; a DNase mastermix was prepared using 6 μl of 10× DNase buffer, 50 μl of nuclease free water and 4 μl of DNase per sample. This was added to the centre of each filter and incubated at room temperature for 30 minutes.


After the incubation 3 washes were performed using Wash 1, then Wash 2/3 removing the wash buffer from the collection tubes after each centrifugation. The filters were moved to a new collection tube and the elution solution (heated to 95° C.) was added to each filter and incubated for 1 minute. After centrifuging the sample, the filter was discarded and the RNA collected in the flow through moved to a new low bind tube.


The DNA in the filters were washed with Wash 1 buffer, centrifuged and flow through discarded. The DNA was treated with RNase (50 μl nuclease water and 10 μl RNase) and incubated at room temperature for 30 minutes. As above with the RNA, three washes were completed and the samples eluted in elution solution heated at 95° C.


1.3 DNA and RNA Measurement


The quantity of DNA and RNA from the extracted samples were measured using the Qubit® 3.0 fluorometer and the Qubit® RNA High Sensitivity Assay kit (CAT: Q32855) and Qubit® dsDNA High Sensitivity Assay kit (Cat: Q32854). 1 μl of RNA/DNA combined with 199 μl of combined HS buffer and reagent were used in Qubit® assay tubes for measurement. 10111 of standard 1 or 2 were combined with 190 μl of the buffer and reagent solution for the controls.


1.4 Library Preparation


RNA samples were diluted to 5 ng/μl if necessary and reverse transcribed to cDNA in a 96 well plate using the SuperScript VILO cDNA synthesis kit (CAT 11754250). A mastermix of 2 μl of VILO, 1 μl of 10× SuperScript III Enzyme mix and 5 μl of nuclease free water was made for all of the samples. 8 μl of the MasterMix was used along with 2 μl of the RNA in each well of a 96 well plate. The following program was run:
















Temperature
Time









42° C.
30 min



85° C.
 5 min



10° C.
Hold










Amplification of the cDNA was then performed using 4 μl of 6 RNA primers covering multiple exon-intron loci across the gene, 4 μl of AmpliSeq HiFi*1 and 2 μl of nuclease free water into each sample well. The plate was run on the thermal cycler for 30 cycles using the following program:















Stage
Step
Temperature
Time



















Hold
Activate the enzyme
99° C.
2
min


Cycle
Denature
99° C.
15
sec


(30 cycles)
Anneal and extend
60° C.
4
min










Hold

10° C.
Hold









DNA samples were diluted to 5 ng/μl and added to AmpliSeq Hifi*1, nuclease free water and set up using two DNA primer pools (5 μl of pool 1 and 5 μl of pool 2) in a 96 well plate. The following program was run on the thermal cycler:















Stage
Step
Temperature
Time



















Hold
Activate the enzyme
99° C.
2
min


Cycle
Denature
99° C.
15
sec


(18 cycles)
Anneal and extend
60° C.
14
min










Hold

10° C.
Hold (up to





16 hours)









Following amplification, the amplicons were partially digested using 2 μl of LIB Fupa*1, mixed well and placed on the thermal cycler on the following program:
















Temperature
Time









50° C.
10 min



55° C.
10 min



60° C.
20 min



10° C.
Hold (for up




to 1 hour)










4 μl of switch solution*1, 2 μl of diluted Ion XPRESS Barcodes 1-16 (CAT: 4471250) and 2 μl of LIB DNA ligase*1 were added to each sample, mixing thoroughly in between addition of each component. The following program was run on the thermal cycler:
















Temperature
Time









22° C.
30 min



72° C.
10 min



10° C.
Hold (for up




to 1 hour)










The libraries were then purified using 30 μl of Agencourt AMPure XP (Biomeck Coulter cat: A63881) and incubated for 5 minutes. Using a plate magnet, 2 washes using 70% ethanol were performed. The samples were then eluted in 50 μl TE.


1.5 qPCR


The quantity of library was measured using the Ion Library TaqMan quantitation kit (cat: 4468802). Four 10-fold serial dilutions of the E. coli DH10B Ion control library were used (6.8 pmol, 0.68 pmol, 0.068 pmol and 0.0068 pmol) to create the standard curve. Each sample was diluted 1/2000, and each sample, standard and negative control were tested in duplicate. 10 μl of the 2× TaqMan mastermix and 1 μl of the 20× TaqMan assay were combined in a well of a 96 well fast thermal cycling plate for each sample. 9 μl of the 1/2000 diluted sample, standard or nuclease free water (negative control) were added to the plate and the qPCR was run on the ABI StepOnePlus™ machine (Cat: 4376600) using the following program:

















Stage
Temperature
Time





















Hold (UDG incubation)
50° C.
2
min



Hold (polymerase activation)
95° C.
20
sec



Cycle (40 cycles)
95° C.
1
sec




60° C.
20
sec










Samples were diluted to 100 pmol using TE and 10 μl of each sample pooled to either a DNA tube or RNA tube. To combine the DNA and RNA samples, a ratio of 80:20 DNA:RNA was used.


1.6 Template Preparation


The Ion One Touch™ 2 was initialized using the Ion S5 OT2 solutions and supplies*2 and 150 μl of breaking solution*2 was added to each recovery tube. The pooled RNA samples were diluted further in nuclease free water (8 μl of pooled sample with 92 μl of water) and an amplification mastermix was made using the Ion S5 reagent mix*2 along with nuclease free water, ION S5 enzyme mix*2, Ion sphere particles (ISPs)*2 and the diluted library. The mastermix was loaded into the adapter along with the reaction oil*2. The instrument was loaded with the amplification plate, recovery tubes, router and amplification adapter loaded with sample and amplification mastermix.


1.7 Enrichment


For the enrichment process, melt off was made using 280 μl of Tween*2 and 40 μl of 1M Sodium Hydroxide. Dynabeads® MyOne™ Streptavidin C1 (CAT: 65001) were washed with the OneTouch wash solution*2 using a magnet. The beads were suspended in 130 μl of MyOne bead capture solution*2. The ISPs were recovered by removing the supernatant, transferring to a new low bind tube and subsequently washed in 800 μl of nuclease free water. After centrifuging the sample and removing the supernatant of water, 20 μl of template positive ISPs remained. 80 μl of ISP resuspension solution*2 was added for a final volume of 100 μl.


A new tip, 0.2 ml tube and an 8 well strip was loaded on the OneTouch™ ES machine with the following:

    • Well 1: 100 μl of template positive ISPs
    • Well 2: 130 μl of washed Dynabeads® MyOne™ streptavidin C1 beads, resuspended in MyOne bead capture
    • Well 3: 300 μl of Ion OneTouch ES Wash solution*2
    • Well 4: 300 μl of Ion OneTouch ES Wash solution
    • Well 5: 300 μl of Ion OneTouch ES Wash solution
    • Well 6: Empty
    • Well 7: 300 μl of melt off
    • Well 8: Empty


Following the run which takes approximately 35 minutes, the enriched ISPs were centrifuged, the supernatant removed and washed with 200 μl of nuclease free water. Following a further centrifuge step and supernatant removal, 10 μl of ISPs remained. 90 μl of nuclease free water was added and the beads were resuspended.


1.8 Sequencing


The Ion S5 System™ (Cat: A27212) was Initialized Using the Ion S5 Reagent Cartridge, Ion S5 cleaning solution and Ion S5 wash solutions*2.


5 μl of Control ISPs*2 were added to the enriched sample and mixed well. The tube was centrifuged and the supernatant removed to leave the sample and control ISPs. 15 μl of Ion S5 annealing buffer*2 and 20 μl of sequencing primer*2 were added to the sample. The sample was loaded on the thermal cycler for primer annealing at 95° C. for 2 minutes and 37° C. for 2 minutes. Following thermal cycling, 10 μl of Ion S5 loading buffer*2 was added and the sample mixed.


50% annealing buffer was made using 500 μl of Ion S5 annealing buffer*2 and 500 μl of nuclease free water*2.


The entire sample was then loaded into the loading port of an Ion 540™ chip (Cat: A27766) and centrifuged in a chip centrifuge for 10 minutes.


Following this, 100 μl of foam (made using 49 μl of 50% annealing buffer and 1 μl of foaming solution*2) was injected into the port followed by 55 μl of 50% annealing buffer into the chip well, removing the excess liquid from the exit well. The chip was centrifuged for 30 seconds with the chip notch facing out. This foaming step was repeated.


The chip was flushed twice using 100 μl of flushing solution (made using 250 μl of isopropanol and 250 μl of Ion S5 annealing buffer) into the loading port, and excess liquid removed from the exit well. 3 flushes with 50% annealing buffer into the loading port were then performed. 60 μl of 50% annealing buffer was combined with 6 μl of Ion S5 sequencing polymerase*2. 65 μl of the polymerase mix was then loaded into the port, incubated for 5 minutes and loaded on the S5 instrument for sequencing which takes approximately 3 hours and 16 hours for data transfer.

    • *1 From the Ion Ampliseq™ library 2.0 (Cat: 4480441)
    • *2 From the Ion 540™ OT2 kit (Cat: A27753)


1.9 Data Analysis


1.9.1 DNA Cnv Analysis:


Copy number variations (CNVs) represent a class of variation in which segments of the genome have been duplicated (gains) or deleted (losses). Large, genomic copy number imbalances can range from sub-chromosomal regions to entire chromosomes.


Raw data were processed on the Ion S5 System and transferred to the Torrent Server for primary data analysis. The Baseline v2.0 plug-in is included in Torrent Suite Software, which comes with each Ion Torrent™ sequencer. Copy number amplification and deletion detection was performed using an algorithm based on a hidden Markov model (HMM). The algorithm uses read coverage across the genome to predict the copy-number.


Prior to copy number determination, read coverage is corrected for GC bias and compared to a preconfigured baseline.


The median of the absolute values of all pairwise differences (MAPD) score is reported per sample and is used to assess sample variability and define whether the data are useful for copy number analysis. MAPD is a per-sequencing run estimate of copy number variability, like standard deviation (SD). If one assumes the log 2 ratios are distributed normally with mean 0 against a reference a constant SD, then MAPD/0.67 is equal to SD. However, unlike SD, using MAPD is robust against high biological variability in log 2 ratios induced by known conditions such as cancer. Samples with an MAPD score above 0.5 should be carefully reviewed before validating CNV call.


The results from copy number analysis after normalisation can be visualised from the raw data.


Somatic CNV detection provides Confidence bounds for each Copy Number Segment. The Confidence is the estimated percent probability that Copy Number is less than the given Copy Number bound. A lower and upper percent and the respective Copy Number value bound are given for each CNV. Confidence intervals for each CNV are also stated, and amplifications of a copy number>6 with the 5% confidence value of ≥4 after normalization and deletions with 95% CI≤1 are classified as present.


DNA Hotspot Analysis:


Raw data were processed on the Ion S5 System and transferred to the Torrent Server for primary data analysis performed using the custom workflow. Mapping and alignment of the raw data to a reference genome is performed and then hotspot variants are annotated in accordance with the BED file. Coverage statistics and other related QC criteria are defined in a vcf file which includes annotation using a rich set of public sources. Filtering parameters can be applied to identify those variants passing QC thresholds and these variants can be visualised on IGV. In general, the rule of classifying variants with >10% alternate allele reads, and in >10 unique reads are classified as ‘detected’. Several in-silico tools are utilised to assess the pathogenicity of identified variants these include PhyloP, SIFT, Grantham, COSMIC and PolyPhen-2.


1.9.2 RNA Expression Analysis:


RNA Expression Analysis:


The custom bioinformatics workflow extracts sequencing data from the Ion Torrent server, this pipeline executes global normalisation, followed by the removal of libraries with <25,000 reads. The resulting data is normalised per million and the linear scale converted to a log scale transforming zeros to 0.5. stable control amplicons included in the panel design allow for further robust data normalisation. The pipeline includes a size factor calculation comparing the median difference for every sample compared to controls. The size factor is subtracted from all measurements in the original sequence data. The end point of this bioinformatics pipeline is a CSV file containing log 2 RPM per amplicon.


The bespoke BED file is a formatted to contain the nucleotide positions of each amplicon per transcript in the mapping reference. Reads aligning to the expected amplicon locations and meeting filtering criteria such as minimum alignment length are reported as percent “valid” reads. “Targets Detected” is defined as the number of amplicons detected (≥10 read counts) as a percentage of the total number of targets.


After mapping, alignment and normalization, the AnnpliSeqRNA plug-in provides data on QC metrics, visualization plots, and normalized counts per gene that corresponds to gene expression information that includes a link to a downloadable file detailing the read counts per gene in a tab delimited text file. The number of reads aligning to a given gene target represents an expression value referred to as “counts”. This Additional plug-in analyses include output for each barcode of the number of genes (amplicons) with at least 1, 10, 100, 1,000, and 10,000 counts to enable determination of the dynamic range and sensitivity per sample.


A summary table of the above information, including mapping statistics per barcode of total mapped reads, percentage on target, and percentage of panel genes detected (“Targets Detected”) is viewable in Torrent Suite Software to quickly evaluate run and library performance.


1.9.3 Fusion Analysis:


Raw data were processed on the Ion S5 System and transferred to the Torrent Server for primary data analysis performed using the custom workflow. For each sample the following 6 internal expression quality controls are also monitored: HMBS, ITGB7, MYC, LRP1, MRPL13 and TBP. The expression controls are spiked into each sample and confirm the assay is performing as expected for RNA analysis. The controls must be present with at least 15 reads.


The BED used contains details of the fusion break points and allows for accurate mapping of known fusion genes. The software automatically assesses each targeted fusion to check 70% of the Insert is covered by the read on both sides of the breakpoint. Within that 70% overlap, at least 66.66% exact matches are required. The software automatically fails for regions not meeting this criteria. The read counts for each targeted fusion event which passes the initial QC metrics is recorded and visible in the raw data. Targeted gene fusions (except EGFR VIII and MET exon 14 del) are reported when detected with >40 read counts and meeting the thresholds of assay specific internal RNA quality control with a sensitivity>99% and PPV of >99%.


In addition to these targeted events it is also possible to detect non-targeted fusions, which occur when the primers for a targeted fusion bind to and produce a product of two genes which are targeted but not in that particular configuration. Non-targeted gene fusions (including EGFR VIII and MET exon 14 del) are reported when detected with >1000 read counts and meeting the thresholds of assay specific internal RNA quality control with a sensitivity of >99% and PPV of >99%.


1.9.4 TMB Analysis


Raw data were processed on the Ion S5 System and transferred to the Torrent Server for data analysis performed using the Oncomine Tumor Mutation Load—w2.0—DNA—Single Sample workflow. To meet QC acceptance the sample must have an average coverage/mean depth of >300, uniformity of >80% and a deamination score of <30.


The following calculation is applied to sample which pass to QC to calculate the TMB figure:





Non-synonymous somatic mutations×106/total exonic bases with sufficient coverage

    • 1. If the pre-calibration figure is >25 then





Mutation load=(Pre calibration mutation load−25)×calibration slope+25

    • 2. If the pre calibration figure is <25 then no calibration required.


Example 2

Analysis of Tumour Mutational Burden.


2.0 DNA Measurement


DNA from a FFPE tumour sample was quantified post extraction following the protocol in section 1.3 above.


2.1 Library Preparation


DNA samples were diluted to 5 ng/μl and added to 5× Ion AmpliSeq Hifi (from the Ion AmpliSeq™ library kit plus (4488990)), nuclease free water and set up using two DNA primer pools (5 μl of pool 1 and 5 μl of pool 2) in a 96 well plate. The list of genes targeted for TMB analysis is shown in Table 5. The following program was run on the thermal cycler:


















Stage
Step
Temperature
Time






















Hold
Activate the enzyme
99° C.
2
min



Cycle
Denature
99° C.
15
sec



(15)
Anneal and extend
60° C.
16
min












Hold

10° C.
Hold










Following amplification, the amplicons were partially digested using 2 μl of LIB FuPa (From the Ion 540™ OT2 kit (Cat: A27753)), mixed well and placed on the thermal cycler on the following program:
















Temperature
Time









50° C.
20 min



55° C.
20 min



60° C.
20 min



10° C.
Hold (for up




to 1 hour)










4 μl of switch solution*3, 2 μl of diluted Ion XPRESS Barcodes 1-16 (Cat: 4471250) and 2 μl of LIB DNA ligase (From the Ion Ampliseq™ library kit plus (4488990)) were added to each sample, mixing thoroughly in between addition of each component. The following program was run on the thermal cycler:
















Temperature
Time









22° C.
30 min 



68° C.
5 min



72° C.
5 min



10° C.
Hold (for up




to 24 hour)










2.2 Purification


Libraries were purified as in section 1.3 using 45 μl of Agencourt AMPure XP (Biomeck Coulter cat: A63881).


2.3 q-PCR


The quantity of library was measured using the Ion Library TaqMan quantitation kit (cat: 4468802). Three 10-fold serial dilutions of the E. coli DH10B Ion control library were used (6.8 pmol, 0.68 pmol and 0.068 pmol) to create the standard curve. Each sample was diluted 1/500 and each sample, standard and negative control were tested in duplicate. 10 μl of the 2× TaqMan mastermix and 1 μl of the 20× TaqMan assay were combined in a well of a 96 well fast thermal cycling plate for each sample. 9 μl of the 1/500 diluted sample, standard or nuclease free water (negative control) were added to the plate and the qPCR was run on the ABI StepOnePlus™ machine (Cat: 4376600) using the program listed in section 1.5.


Samples were diluted to 100 pMol using the results from the q-PCR and pooled ready for template preparation. Following this, template preparation, enrichment of the sample and sequencing were performed as written in sections 1.6, 1.7 and 1.8, respectively.









TABLE 5





Genes targeted for analysis of Tumour Mutational Burden (TMB).






















ABL1
CCNE1
EPHB4
GPR124
MAF
NFKB2
PPARG
SSX1


ABL2
CD79A
EPHB6
GRM8
MAFB
NIN
PPP2R1A
STK11


ACVR2A
CD79B
ERBB2
GUCY1A2
MAGEA1
NKX2-1
PRDM1
STK36


ADAMTS20
CDC73
ERBB3
HCAR1
MAGI1
NLRP1
PRKAR1A
SUFU


AFF1
CDH1
ERBB4
HIF1A
MALT1
NOTCH1
PRKDC
SYK


AFF3
CDH11
ERCC1
HLF
MAML2
NOTCH2
PSIP1
SYNE1


AKAP9
CDH2
ERCC2
HNF1A
MAP2K1
NOTCH4
PTCH1
TAF1


AKT1
CDH20
ERCC3
HOOK3
MAP2K2
NPM1
PTEN
TAF1L


AKT2
CDH5
ERCC4
HRAS
MAP2K4
NRAS
PTGS2
TAL1


AKT3
CDK12
ERCC5
HSP90AA1
MAP3K7
NSD1
PTPN11
TBX22


ALK
CDK4
ERG
HSP90AB1
MAPK1
NTRK1
PTPRD
TCF12


APC
CDK6
ESR1
ICK
MAPK8
NTRK3
PTPRT
TCF3


AR
CDK8
ETS1
IDH1
MARK1
NUMA1
RAD50
TCF7L1


ARID1A
CDKN2A
ETV1
IDH2
MARK4
NUP214
RAF1
TCF7L2


ARID2
CDKN2B
ETV4
IGF1R
MBD1
NUP98
RALGDS
TCL1A


ARNT
CDKN2C
EXT1
IGF2
MCL1
PAK3
RARA
TET1


ASXL1
CEBPA
EXT2
IGF2R
MDM2
PALB2
RB1
TET2


ATF1
CHEK1
EZH2
IKBKB
MDM4
PARP1
RECQL4
TFE3


ATM
CHEK2
FAM123B
IKBKE
MEN1
PAX3
REL
TGFBR2


ATR
CIC
FANCA
IKZF1
MET
PAX5
RET
TGM7


ATRX
CKS1B
FANCC
IL2
MITF
PAX7
RHOH
THBS1


AURKA
CMPK1
FANCD2
IL21R
MLH1
PAX8
RNASEL
TIMP3


AURKB
COL1A1
FANCF
IL6ST
MLL
PBRM1
RNF2
TLR4


AURKC
CRBN
FANCG
IL7R
MLL2
PBX1
RNF213
TLX1


AXL
CREB1
FANCJ
ING4
MLL3
PDE4DIP
ROS1
TNFAIP3


BAI3
CREBBP
FAS
IRF4
MLLT10
PDGFB
RPS6KA2
TNFRSF14


BAP1
CRKL
FBXW7
IRS2
MMP2
PDGFRA
RRM1
TNK2


BCL10
CRTC1
FGFR1
ITGA10
MN1
PDGFRB
RUNX1
TOP1


BCL11A
CSF1R
FGFR2
ITGA9
MPL
PER1
RUNX1T1
TP53


BCL11B
CSMD3
FGFR3
ITGB2
MRE11A
PGAP3
SAMD9
TPR


BCL2
CTNNA1
FGFR4
ITGB3
MSH2
PHOX2B
SBDS
TRIM24


BCL2L1
CTNNB1
FH
JAK1
MSH6
PIK3C2B
SDHA
TRIM33


BCL2L2
CYLD
FLCN
JAK2
MTOR
PIK3CA
SDHB
TRIP11


BCL3
CYP2C19
FLI1
JAK3
MTR
PIK3CB
SDHC
TRRAP


BCL6
CYP2D6
FLT1
JUN
MTRR
PIK3CD
SDHD
TSC1


BCL9
DAXX
FLT3
KAT6A
MUC1
PIK3CG
Sep-09
TSC2


BCR
DCC
FLT4
KAT6B
MUTYH
PIK3R1
SETD2
TSHR


BIRC2
DDB2
FN1
KDM5C
MYB
PIK3R2
SF3B1
UBR5


BIRC3
DDIT3
FOXL2
KDM6A
MYC
PIM1
SGK1
UGT1A1


BIRC5
DDR2
FOXO1
KDR
MYCL1
PKHD1
SH2D1A
USP9X


BLM
DEK
FOXO3
KEAP1
MYCN
PLAG1
SMAD2
VHL


BLNK
DICER1
FOXP1
KIT
MYD88
PLCG1
SMAD4
WAS


BMPR1A
DNMT3A
FOXP4
KLF6
MYH11
PLEKHG5
SMARCA4
WHSC1


BRAF
DPYD
FZR1
KRAS
MYH9
PML
SMARCB1
WRN


BRD3
DST
G6PD
LAMP1
NBN
PMS1
SMO
WT1


BTK
EGFR
GATA1
LCK
NCOA1
PMS2
SMUG1
XPA


BUB1B
EML4
GATA2
LIFR
NCOA2
POT1
SOCS1
XPC


CARD11
EP300
GATA3
LPHN3
NCOA4
POU5F1
SOX11
XPO1


CASC5
EP400
GDNF
LPP
NF1

SOX2
XRCC2


CBL
EPHA3
GNA11
LRP1B
NF2

SRC
ZNF384


CCND1
EPHA7
GNAQ
LTF
NFE2L2


ZNF521


CCND2
EPHB1
GNAS
LTK
NFKB1









Example 3

Immunofocus® IHC Assay


The Immunofocus assay was validated for clinical use and accredited by CLIA and by UKAS (9376) in compliance with IS015189:2012. PD-L1 rabbit monoclonal antibody (clone E1L3N) was obtained from Cell Signalling (Cat No. 136845). Histological sections from a representative PWET block for each case were cut at 3 μm thickness and mounted on Super Frost glass slides (Leica, cat no). Section deparaffinization, antigen retrieval and immunohistochemical labelling were performed using the Bond III Autostainer and Bond Polymer Refine Detection Kit (Leica, Cat no. DS8900) according to the manufacturer's instructions. Primary antibody was applied for 20 minutes at 1/400 dilution. Assessment of PD-L1 immunostaining was performed by a qualified histopathologist in accordance with PD-L1 clinical reporting guidelines.


Results


PD-L1 IHC Expression Analysis


Using a cut point of a 10% tumour proportion score, elevated levels of PD-L1 expression were identified in 19.5% of cases as shown in Table 6. This information is presented in a pie chart format in FIG. 2.











TABLE 6





PD-L1 Tumour

% of samples


Proportion Score
Frequency
(n = 1099)

















<1 
671
61.1%


 1-10
214
19.5%


11-25
67
 6.1%


26-50
44
 4.0%


50+
103
 9.4%


Total
1099
 100%


 0-10
885
80.5%


11+
214
19.5%









DDR Gene Genomic Analysis of Variants


As shown in Table 7, DDR genomic variants were identified in 130 cases with PD-L1 expression levels with a tumour proportion score (TPS)>10%. Thirty of the 95 DDR genes (32%) analysed harboured genetic variants in conjunction with elevated (TPS>10%) PD-L1 expression levels. The DDR aberrant genes associated with high expression levels of PD-L1 comprises AKT1, TP53, ATM, BRCA2, FANCD2, MLH1, PTEN, NBN, PMS2, ATR, AKT2, MSH6, RB1, BRCA1, IDH1, IDH2, ARID1A, CHEK2, BAP1, CREBBP, SETD2, SLX4, RNF43, NF1, GNAS, NF2, NOTCH1, DDR2 and AXL.













TABLE 7







No DDR
DDR




variant
variant



detected
detected




















 <1
212
459
% unique samples with DDR genes
67.5%


 1-10
61
155
% of samples with PD-L1
19.5%





score greater than 10%


11-25
29
38
% of samples with DDR genes or
75.2%





PD-L1 score >10%


26-50
20
24
% of DDR samples with PD-L1
11.8%





above 10%


>50
36
68


Total
358
744









Pd-L1 Ngs mRNA Analysis:



FIG. 3 shows analytical validation of the quantitative measurements of mRNA levels by NGS in FFPE samples, consisting of PD-L1 expressing control cell lines, using PD-L1 expression as an example. PD-L1 mRNA expression levels are measured using next generation sequencing (NGS) analysis to provide a readout measured in RPM (Reads per million mapped reads). The RPM reads were first normalised and a log score generated to derive a nLRPM. The nLRPM counts are used as a surrogate measure of mRNA gene expression. Four cell line controls stably expressing variable levels of PD-L1 assessed by PD-L1 protein were selected representing tumour proportions score of 0%, 25%, 75% and 100% as assessed at the protein level by immunocytochemistry. The nLRPM counts are shown for two primer sets spanning exon/intron boundaries for the PD-L1 gene.


A) shows nLRPM counts from the two different amplicons targeting the PD-L1 gene.


B) shows PD-L1 nLRPM counts (mRNA) generated by the method of the present invention compared to PD-L1 protein expression assessed by IHC.


C) shows photomicrographs of four cell line controls immunohistochemically stained with an antibody against PD-L1 and expressing different levels of PD-L1 protein together with the observed tumour proportion score (TPS).



FIG. 4 shows a correlation of PD-L1 expression by IHC with PD-L1 mRNA expression by NGS as non-normalised RPM counts in nine formalin fixed, paraffin embedded samples of non small cell lung cancer (NSCLC)


A) shows RPM counts from the two different amplicons targeting the PD-L1 gene


B) shows PD-L1 RPM counts (mRNA) generated by the method of the present invention compared to PD-L1 protein expression assessed by IHC.


C) shows photomicrographs of a representative sample of NSCLC stained with hematoxylin and eosin and immunohistochemically stained with an antibody against PD-L1.


The data shows that the method of the present invention provides an accurate quantitative assessment of mRNA expression when applied to routine formalin fixed paraffin wax embedded samples. Notably the RPM shows a rapid increase in parallel with protein expression as measured by IHC across cut point values of 1%, 10%, 25% and 50%. These are the clinically important cut points defined by a number of approved IHC Cdx PD-L1 assays for the identification of responders to anti-PD-L1/PD-1 directed 10 immunotherapies (eg VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1).


Validation of Normalised Log of Reads Per Million (nLRPM) and Establishment of Cut-Offs



FIG. 5 shows normalised log reads per million (nLRPM) plotted against combined PD-L1 score [Combined PD-L1 expression score=tumour content×PD-L1 positive tumour cells+PIC score× PD-L1 positive ICs]. RPM counts were normalised against expression of housekeeping genes and chip coverage to account for run inter-variability. PD-L1 mRNA expression measured by NGS (nLRPM) was plotted against PD-L1 IHC combined PD-L1 expression score. PD-L1 expression combined score cut-offs of clinical relevance were established as follows: negative (<1%): <6 nLRPM; 1-10%: 6.1-7.1 nLRPM; 10-25%: 7.2-8.5 nLRPM; 25-50%: 8.6-10 nLRPM: >50%: >10 nLRPM.


Analysis of Tumour Mutational Burden.


Analysis of TMB was performed on 44 solid tumour samples. Fifteen cases were associated with DDR mutations and 29 cases showed aberration of DDR genes. Notably no significant difference was observed in tumour mutation burden (TMB) between the two groups (Table 8). This shows that TMB and DDR defects are two entirely independent mechanisms that can predict response to agents targeting the immune-checkpoint including components of the PD1/PD-L1 pathway, or alternatively agents targeting DDR signalling pathway including PARP inhibitors, DDR inhibitors (e.g. ATR) and cell cycle checkpoint inhibitors (e.g. Cdc7 inhibitors), or a combination of immune-checkpoint inhibitors and DDR inhibitors and that both these variables need to be assessed to accurately determine response to the above therapies or other therapeutic agents targeting the immune-checkpoint pathways









TABLE 8







Correlation of TMB and DDR status










DDR variant detected
No DDR variant detected



(n = 15)
(n = 29)













Average TMB
5.43
8.45


Mode TMB
0.84
2.51


Median TMB
4.18
4.99









PD-L1-DDR-TMB Immune Signature Algorithm


In the present invention, we have shown that a proportion of solid tumours are characterised not only by high PD-L1 mRNA and protein expression levels but also aberration of a specific set of DDR genes. Aberration of DDR genes results in genomic instability which results in increased expression of neoantigens which enhances the immune response against the tumour.


The quantitative assessment of NGS PD-L1 mRNA expression using nLRPM as a readout provides a more accurate assessment of PD-L1 immune status than microscopic scoring of PD-L1 IHC staining by a pathologist. This approach circumvents the problem of inter-observer variability associated with the reading of IHC immunostains by the pathologist and enables the analysis of immune-checkpoint and DDR biomarkers to be integrated into a combinatorial algorithm.


This molecular signature combining these elements can, therefore, help identify those patients most likely to respond to an agent, for example, targeting the immune-checkpoint including components of the PD1/PD-L1 pathway, or alternatively agents targeting DDR signalling pathway including PARP inhibitors, DDR inhibitors (e.g. ATR) and cell cycle checkpoint inhibitors (e.g. Cdc7 inhibitors), or a combination of immune-checkpoint inhibitors and DDR inhibitors and thereby circumvent the problems associated with the current goldstandard PD-L1 IHC assays [Ventana PD-L1 (SP263 & SP142), Dako PD-L1 IHC (28-8 & 22C3)].


The NGS signature platform enables all biomarkers of response to be run in a high throughput testing configuration in which PD-L1 expression can be integrated with genomic aberrations in DDR genes and TMB.


Example 4

Application of Polygenic Prediction Score (PPS) Algorithm to Results


Case 1. Results obtained from a tumour biopsy sample of a patient with Non-small Cell Lung Cancer. Assay results:

    • A. Tumour Type: Non-Small Cell Lung Cancer
    • B. PD-L1 nLRPM=2.2 (PPS=1)
    • C. DDR Status=BRCA1, SETD2 SNV hotspot mutations (PPS=2)
    • D. TMB=13 mut/MB DNA (PPS=1)


PPS Algorithm score=4


Indicative of moderate response to immunotherapy and DDR inhibitors

Claims
  • 1. A method for determining the susceptibility of a patient suffering from proliferative disease to treatment using an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, said method comprising determining tumour type, determining expression levels of PD-L1, determining tumour mutational burden, preparing a DNA damage and repair related genes analysis based on the tumour type and PD-L1 expression levels.
  • 2. A method according to claim 1 wherein the tumour type is selected from bladder, breast, cervical, colorectal, cancer of unknown primary, endometrial, gallbladder, gastric, glioblastoma, glioma, gastro oesophageal junction, head and neck, kidney, liver, lung, melanoma, mesothelioma, oesophageal, ovarian, pancreatic, prostrate, sarcoma, small bowel and thyroid.
  • 3. A method according to either claim 1 or 2 wherein the DNA damage and repair related genes analysis is prepared by using the tumour type and PDL-1 gene expression levels to select the core genes identified in Table A for analysis.
  • 4. A method according to any preceding claim wherein i) a score of ‘0’ is applied in the absence of PD-L1 expression;ii) a score of ‘1’ is applied in the presence <7 nLRPM but not 0 in relation to PD-L1 expression;iii) a score of ‘2’ is applied in the presence 7-10 nLRPM in relation to PD-L1 expression;iv) a score of ‘3’ is applied in the presence >10 nLRPM in relation to PD-L1 expression;v) a score of ‘0’ is applied if the tumour mutational burden is ‘low’;vi) a score of ‘1’ is applied if the tumour mutational burden is ‘high’;vii) a score of ‘0’ is applied if there are no aberrations in the DNA damage and repair related genes analysis;viii) a score of ‘1’ is applied if there is 1 aberration in the DNA damage and repair related genes analysis;xi) a score of ‘2’ is applied if there are 2 aberrations in the DNA damage and repair related genes analysis;x) a score of ‘3’ is applied if there are aberrations in the DNA damage and repair related genes analysis;wherein an overall score of 0 is indicative of no susceptibility to the target agent, an overall score of 1-2 indicates a weak response, an overall score of 3-4 indicates a moderate response, and an overall score of 5 to 7 indicates a strong response.
  • 5. A method according to claim 4 wherein the tumour mutational burden is designated ‘low’ if there are <10 mut/MB and the tumour mutational burden is designated ‘high’ if there are ≥1.0 mut/MB.
  • 6. A method according to any preceding claim further comprising administering to a patient found to have a moderate response, an effective amount of the target agent.
  • 7. A method for treating a patient suffering from proliferative disease, said method comprising carrying out a method according to claim 6 using a tumour sample from said patient, developing a customised recommendation for treatment or continued treatment, based upon the overall score, and administering a suitable target agent, therapy or treatment to said patient.
  • 8. A computer or machine-readable cassette programmed to implement the method according to any of the preceding claims.
  • 9. A system for identifying patients suffering from proliferative disease who would respond an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR/MMR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, said system comprising: a processor; anda memory that stores code of an algorithm that, when executed by the processor, causes the computer system to:receive data regarding tumour type of a sample;receive data regarding level of expression of PD-L1 in the sample;receive data regarding level of the tumour mutational burden in said sample;receive data regarding level of DNA damage and repair related genes analysis based on the tumour type and PD-L1 levels;analyse and transform the input levels via an algorithm to provide an output indicative of the level of susceptibility of said patient to treatment using the target agent;display the output on a graphical interface of the processor.
  • 10. A system according to claim 9 wherein instead of receiving the data the system, the memory further comprises code which allows at least one of the levels to be determined by the system.
  • 11. A system according to claims 9 and 10 wherein the memory further comprises code to provide a customised recommendation for the treatment of the patient, based upon the output.
  • 12. A system according to claim 11 wherein the customised recommendation is displayed on a graphical interface of the processor.
  • 13. A non-transitory computer-readable medium storing instructions that, when executed by a processor, cause a computer system to identify patients suffering from proliferative disease who would respond to treatment using an agent targeting a cell pathway or components thereof comprising an immune-checkpoint comprising components of the PD1/PD-L1 pathway, an agent targeting DDR signalling pathway comprising PARP inhibitors, DDR inhibitors and cell cycle checkpoint inhibitors, or a combination of thereof, by: receiving data regarding tumour type of a sample;receiving data regarding level of expression of PD-L1 in the sample;receiving data regarding level of the tumour mutational burden in said sample;receiving data regarding level of DNA damage and repair related genes analysis based on the tumour type and PD-L1 levels;analysing and transforming the input levels via an algorithm to provide an output indicative of the level of susceptibility of said patient to treatment using the target agent;displaying the output on a graphical interface of the processor.
  • 14. A non-transitory computer-readable medium according to claim 13 further storing instructions for developing a customised recommendation for treatment of the patient based upon the output and displaying the customized recommendation on a graphical interface of the processor.
Priority Claims (1)
Number Date Country Kind
2007218.7 May 2020 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2021/051176 5/14/2021 WO