1. Field of the Disclosure
This disclosure relates in general to Polycrystalline Diamond Compact drill bits, and in particular, to a method of and an apparatus for PDC bits with integrated sensors and methods for making such PDC bits.
2. The Related Art
Rotary drill bits are commonly used for drilling boreholes, or well bores, in earth formations. Rotary drill bits include two primary configurations and combinations thereof. One configuration is the roller cone bit, which typically includes three roller cones mounted on support legs that extend from a bit body. Each roller cone is configured to spin or rotate on a support leg. Teeth are provided on the outer surfaces of each roller cone for cutting rock and other earth formations.
A second primary configuration of a rotary drill bit is the fixed-cutter bit (often referred to as a “drag” bit), which conventionally includes a plurality of cutting elements secured to a face region of a bit body. Generally, the cutting elements of a fixed-cutter type drill bit have either a disk shape or a substantially cylindrical shape. A hard, superabrasive material, such as mutually bonded particles of polycrystalline diamond, may be provided on a substantially circular end surface of each cutting element to provide a cutting surface. Such cutting elements are often referred to as “polycrystalline diamond compact” (PDC) cutters. The cutting elements may be fabricated separately from the bit body and are secured within pockets formed in the outer surface of the bit body. A bonding material such as an adhesive or a braze alloy may be used to secure the cutting elements to the bit body. The fixed-cutter drill bit may be placed in a borehole such that the cutting elements abut against the earth formation to be drilled. As the drill bit is rotated, the cutting elements engage and shear away the surface of the underlying formation.
During drilling operations, it is common practice to use measurement while drilling (MWD) and logging while drilling (LWD) sensors to make measurements of drilling conditions or of formation and/or fluid properties and control the drilling operations using the MWD/LWD measurements. The tools are either housed in a bottom-hole assembly (BHA) or formed so as to be compatible with the drill stem. It is desirable to obtain information from the formation as close to the tip of the drill bit as is feasible.
The present disclosure is directed toward a drill bit having PDC cutting elements including integrated circuits configured to measure drilling conditions, properties of fluids in the borehole, properties of earth formations, and/or properties of fluids in earth formations. By having sensors on the drill bit, the time lag between the bit penetrating the formation and the time the MWD/LWD tool senses formation property or drilling condition is substantially eliminated. In addition, by having sensors at the drill bit, unsafe drilling conditions are more likely to be detected in time to take remedial action. In addition, pristine formation properties can be measured without any contamination or with reduced contamination from drilling fluids. For example, mud cake on the borehole wall prevents and/or distorts rock property measurements such as resistivity, nuclear, and acoustic measurements. Drilling fluid invasion into the formation contaminates the native fluid and gives erroneous results.
One embodiment of the disclosure is a rotary drill bit configured to be conveyed in a borehole and drill an earth formation. The rotary drill bit includes: at least one polycrystalline diamond compact (PDC) cutter including: (i) at least one cutting element, and (ii) at least one transducer configured to provide a signal indicative of at least one of: (I) an operating condition of the drill bit, and (II) a property of a fluid in the borehole, and (III) a property of the surrounding formation.
Another embodiment of the disclosure is a method of conducting drilling operations. The method includes: conveying a rotary drill bit into a borehole and drilling an earth formation; and using at least one transducer on a polycrystalline diamond compact (PDC) cutter coupled to a body of the rotary drill bit for providing a signal indicative of at least one of: (I) an operating condition of the drill bit, and (II) a property of a fluid in the borehole, and (III) a property of the formation.
Another embodiment of the disclosure is a method of forming a rotary drill bit. The method includes: making at least one polycrystalline diamond compact (PDC) cutter including: (i) at least one cutting element, (ii) at least one transducer configured to provide a signal indicative of at least one of: (I) an operating condition of the drill bit, and (II) a property of a fluid in the borehole, and (III) a property of the formation and (iii) a protective layer on a side of the at least one transducer opposite to the at least one cutting element; and using the protective layer for protecting a sensing layer including the at least one transducer from abrasion.
For a detailed understanding of the present disclosure, reference should be made to the following detailed description of the disclosure, taken in conjunction with the accompanying drawings:
An earth-boring rotary drill bit 10 that embodies teachings of the present disclosure is shown in
As shown in
The drill bit 10 may include a plurality of cutting elements on the face 18 thereof. By way of example and not limitation, a plurality of polycrystalline diamond compact (PDC) cutters 34 may be provided on each of the blades 30, as shown in
Turning now to
Layer 217 includes metal traces and patterns for the electrical circuitry associated with a sensor. Above the circuit layer is a layer or plurality of layers 219 that may include a piezoelectric element and a p-n-p transistor. These elements may be set up as a Wheatstone bridge for making measurements. The top layer 221 is a protective (passivation) layer that is conformal. The conformal layer 221 makes it possible to uniformly cover layer 217 and/or layer 219 with a protective layer. The layer 221 may be made of diamond-like carbon (DLC).
The sensing material shown above is a piezoelectric material. The use of the piezoelectric material makes it possible to measure the strain on the cutter 34 during drilling operations. This is not to be construed as a limitation and a variety of sensors may be incorporated into the layer 219. For example, an array of electrical pads to measure the electrical potential of the adjoining formation or to investigate high-frequency (HF) attenuation may be used. Alternatively, an array of ultrasonic transducers for acoustic imaging, acoustic velocity determination, acoustic attenuation determination, and shear wave propagation may be used.
Sensors for other physical properties may be used. These include accelerometers, gyroscopes and inclinometers. Micro-electro-mechanical-system (MEMS) or nano-electro-mechanical-system (NEMS) style sensors and related signal conditioning circuitry can be built directly inside the PDC or on the surface: These are examples of sensors for a physical condition of the cutter and drill stem.
Chemical sensors that can be incorporated include sensors for elemental analysis: carbon nanotube (CNT), complementary metal oxide semiconductor (CMOS) sensors to detect the presence of various trace elements based on the principle of a selectively gated field effect transistor (FET) or ion sensitive field effect transistor (ISFET) for pH, H2S and other ions; sensors for hydrocarbon analysis; CNT, DLC based sensors working on chemical electropotential; and sensors for carbon/oxygen analysis. These are examples of sensors for analysis of a fluid in the borehole.
Acoustic sensors for acoustic imaging of the rock may be provided. For the purposes of the present disclosure, all of these types of sensors may be referred to as “transducers.” The broad dictionary meaning of the term is intended: “a device actuated by power from one system and supplying power in the same or any other form to a second system.” This includes sensors that provide an electric signal in response to a measurement such as radiation, as well as a device that uses electric power to produce mechanical motion.
In one embodiment of the disclosure shown in
In one embodiment of the disclosure shown in
Referring to
Referring to
As shown in a detail of
Referring next to
A protective passivation layer 711 that is conformal is added, as shown in
The mounted PDC unit is transferred to a PDC loading unit 811 and goes to a PDC wafer transfer unit 813. The units are then transferred to the units or chambers identified as 815, 817 and 819. The metal processing chamber 815 which may include CVD, sputtering and evaporation. The thin-film deposition chamber 819 may include LPCVD, CVD, and plasma enhanced CVD. The DLC deposition chamber 817 may include CVD and ALD. Next, the fabrication of the array of
Referring now to
Such an assembly can be fabricated by building a sensing layer 903 on the substrate 905 and running traces 904 as shown in
Fabrication of the assembly shown in
Integrating temperature sensors in the assemblies of
Pressure sensors made of quartz crystals can be embedded in the substrate. Piezoelectric materials may be used. Resistivity and capacitive measurements can be performed through the diamond table by placing electrodes on the tungsten carbide substrate. Magnetic sensors can be integrated for failure magnetic surveys. Those versed in the art and having benefit of the present disclosure would recognize that magnetic material would have to be re-magnetized after integrating into the sensor assembly. Chemical sensors may also be used in the configuration of
Those versed in the art and having benefit of the present disclosure would recognize that the piezoelectric transducer could also be used to generate acoustic vibrations. Such ultrasonic transducers may be used to keep the face of the PDC element clean and to increase the drilling efficiency. Such a transducer may be referred to as a vibrator. In addition, the ability to generate elastic waves in the formation can provide much useful information. This is schematically illustrated in
The shear waves may be generated using an electromagnetic acoustic transducer (EMAT). U.S. Pat. No. 7,697,375 to Reiderman et al., having the same as in the as the present disclosure and the contents of which are incorporated herein by reference discloses a combined EMAT adapted to generate both SH and Lamb waves. Teachings such as those of Reiderman may be used in the present disclosure.
The acquisition and processing of measurements made by the transducer may be controlled at least in part by downhole electronics (not shown). Implicit in the control and processing of the data is the use of a computer program on a suitable machine readable-medium that enables the processors to perform the control and processing. The machine-readable medium may include ROMs, EPROMs, EEPROMs, Flash memories and optical discs. The term processor is intended to include devices such as a field programmable gate array (FPGA).
This application is a divisional of U.S. patent application Ser. No. 13/093,326, filed Apr. 25, 2011, now U.S. Pat. No. 8,695,729 issued Apr. 15, 2014, which claims priority from U.S. Provisional Patent Application Ser. No. 61/408,119, filed on Oct. 29, 2010; U.S. Provisional Patent Application Ser. No. 61/408,106, filed on Oct. 29, 2010; U.S. Provisional Patent Application Ser. No. 61/408,144, filed on Oct. 29, 2010; and U.S. Provisional Patent Application Ser. No. 61/328,782, filed on Apr. 28, 2010. The disclosure of U.S. patent application Ser. No. 13/093,326 is hereby incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4645977 | Kurokawa et al. | Feb 1987 | A |
4707384 | Schachner et al. | Nov 1987 | A |
4785894 | Davis et al. | Nov 1988 | A |
4785895 | Davis et al. | Nov 1988 | A |
4849945 | Widrow | Jul 1989 | A |
4862423 | Rector et al. | Aug 1989 | A |
4926391 | Rector et al. | May 1990 | A |
4927300 | Ramalingam | May 1990 | A |
4954998 | Rector et al. | Sep 1990 | A |
4964087 | Widrow | Oct 1990 | A |
4965774 | Ng et al. | Oct 1990 | A |
4976324 | Tibbitts | Dec 1990 | A |
5012453 | Katz | Apr 1991 | A |
5066938 | Kobashi et al. | Nov 1991 | A |
5109947 | Rector et al. | May 1992 | A |
5144591 | Hardage | Sep 1992 | A |
5176053 | Alvelid | Jan 1993 | A |
5317302 | Yamazaki et al. | May 1994 | A |
5337844 | Tibbitts | Aug 1994 | A |
5372207 | Naville et al. | Dec 1994 | A |
5438860 | Kawai et al. | Aug 1995 | A |
5467320 | Maki | Nov 1995 | A |
5511038 | Angeleri et al. | Apr 1996 | A |
5512873 | Saito et al. | Apr 1996 | A |
5523121 | Anthony et al. | Jun 1996 | A |
5585556 | Petersen et al. | Dec 1996 | A |
5706906 | Jurewicz et al. | Jan 1998 | A |
5881830 | Cooley | Mar 1999 | A |
5924499 | Birchak et al. | Jul 1999 | A |
6068070 | Scott | May 2000 | A |
6078868 | Dubinsky et al. | Jun 2000 | A |
6151554 | Rodney et al. | Nov 2000 | A |
6193001 | Eyre et al. | Feb 2001 | B1 |
6262941 | Naville | Jul 2001 | B1 |
6274403 | Klages et al. | Aug 2001 | B1 |
6315062 | Alft et al. | Nov 2001 | B1 |
6540033 | Sullivan et al. | Apr 2003 | B1 |
6564883 | Fredericks et al. | May 2003 | B2 |
6571886 | Sullivan et al. | Jun 2003 | B1 |
6626251 | Sullivan et al. | Sep 2003 | B1 |
6892836 | Eyre et al. | May 2005 | B1 |
7052215 | Fukano | May 2006 | B2 |
7066280 | Sullivan et al. | Jun 2006 | B2 |
7168506 | Boucher et al. | Jan 2007 | B2 |
7301223 | Rodney et al. | Nov 2007 | B2 |
7338202 | Kapat et al. | Mar 2008 | B1 |
7350568 | Mandal et al. | Apr 2008 | B2 |
7398837 | Hall et al. | Jul 2008 | B2 |
7451838 | Keshavan | Nov 2008 | B2 |
7697375 | Reiderman et al. | Apr 2010 | B2 |
7730967 | Ballantyne et al. | Jun 2010 | B2 |
7946357 | Trinh et al. | May 2011 | B2 |
8122980 | Hall et al. | Feb 2012 | B2 |
8210280 | Trinh et al. | Jul 2012 | B2 |
8215384 | Trinh et al. | Jul 2012 | B2 |
8250786 | Hall et al. | Aug 2012 | B2 |
8316964 | Hall et al. | Nov 2012 | B2 |
8695729 | Kumar | Apr 2014 | B2 |
20010054514 | Sullivan et al. | Dec 2001 | A1 |
20030146675 | Cuhat | Aug 2003 | A1 |
20030192721 | Singh et al. | Oct 2003 | A1 |
20040011567 | Singh et al. | Jan 2004 | A1 |
20040069539 | Sullivan et al. | Apr 2004 | A1 |
20040222018 | Sullivan et al. | Nov 2004 | A1 |
20040240320 | McDonald et al. | Dec 2004 | A1 |
20050067191 | Miyamoto | Mar 2005 | A1 |
20050230149 | Boucher et al. | Oct 2005 | A1 |
20050279532 | Ballantyne et al. | Dec 2005 | A1 |
20060018360 | Tai et al. | Jan 2006 | A1 |
20060065395 | Snell | Mar 2006 | A1 |
20060070770 | Marsh | Apr 2006 | A1 |
20060175057 | Mandal | Aug 2006 | A1 |
20070029116 | Keshavan | Feb 2007 | A1 |
20070056171 | Taryoto | Mar 2007 | A1 |
20070107938 | Cornish et al. | May 2007 | A1 |
20070114061 | Hall et al. | May 2007 | A1 |
20070114062 | Hall et al. | May 2007 | A1 |
20070148416 | Wolkin | Jun 2007 | A1 |
20070186639 | Spross et al. | Aug 2007 | A1 |
20070263488 | Clark | Nov 2007 | A1 |
20070272442 | Pastusek | Nov 2007 | A1 |
20070272552 | Jiang | Nov 2007 | A1 |
20080060848 | Pastusek | Mar 2008 | A1 |
20090057033 | Keshavan | Mar 2009 | A1 |
20090114628 | DiGiovanni | May 2009 | A1 |
20100024436 | DiFoggio | Feb 2010 | A1 |
20100038136 | Trinh et al. | Feb 2010 | A1 |
20100089645 | Trinh et al. | Apr 2010 | A1 |
20100101861 | Chang | Apr 2010 | A1 |
20100118657 | Trinh et al. | May 2010 | A1 |
20100155142 | Thambynayagam et al. | Jun 2010 | A1 |
20100259127 | Zaitsu | Oct 2010 | A1 |
20100307835 | Glasgow et al. | Dec 2010 | A1 |
20100315901 | Coman et al. | Dec 2010 | A1 |
20100319994 | Wiercigroch | Dec 2010 | A1 |
20100322020 | Kim | Dec 2010 | A1 |
20100326731 | Swietlik et al. | Dec 2010 | A1 |
20110100810 | Merz | May 2011 | A1 |
20110139507 | Krueger et al. | Jun 2011 | A1 |
20110168446 | Lemenager et al. | Jul 2011 | A1 |
20110253448 | Trinh et al. | Oct 2011 | A1 |
20110266054 | Kumar et al. | Nov 2011 | A1 |
20110266055 | DiGiovanni et al. | Nov 2011 | A1 |
20110266058 | Kumar et al. | Nov 2011 | A1 |
20120000707 | Hall et al. | Jan 2012 | A1 |
20120024600 | Bittar et al. | Feb 2012 | A1 |
20120037423 | Geerits et al. | Feb 2012 | A1 |
20120080229 | Kumar et al. | Apr 2012 | A1 |
20120103688 | Coman et al. | May 2012 | A1 |
20120132468 | Scott et al. | May 2012 | A1 |
20120279783 | Trinh et al. | Nov 2012 | A1 |
20120312598 | Cheng | Dec 2012 | A1 |
20120312599 | Trinh et al. | Dec 2012 | A1 |
20120325564 | Vaughn et al. | Dec 2012 | A1 |
20130068525 | DiGiovanni | Mar 2013 | A1 |
20130147633 | Sumrall et al. | Jun 2013 | A1 |
20130328191 | Meyer | Dec 2013 | A1 |
20140061729 | Koo | Mar 2014 | A1 |
20140224539 | Kumar | Aug 2014 | A1 |
20140246235 | Yao | Sep 2014 | A1 |
20160115740 | Chen | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2010001277 | Jan 2010 | BE |
2791245 | Mar 2006 | CN |
101581219 | Nov 2009 | CN |
559286 | Sep 1993 | EP |
11101091 | Apr 1999 | JP |
2000225511 | Aug 2000 | JP |
2008106022 | Apr 2008 | WO |
2010027839 | Mar 2010 | WO |
Entry |
---|
Battaglia et al., Estimation of Heat Fluxes During High-Speed Drilling, Int. Jnl. Adv. Manf. Technol., vol. 26, pp. 750-758 (2008). |
Zhang et al., Design, Fabrication, and Characterization of Metal Embedded Microphotonic Sensors, Jnl. Manuf. Sci. Eng., vol. 130, No. 3, 031104 (2008). |
Cheng et al. Development of Metal Embedded Microsensors by Diffusion Bonding and Testing in Milling Process, Jnl. Manuf. Sci. Eng., vol. 130, No. 6, 061010 (2008). |
International Search Report for International Application No. PCT/US2011/033959 dated Oct. 27, 2011, 6 pages. |
International Written Opinion for International Application No. PCT/US2011/033959 dated Oct. 27, 2011, 4 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/033959 dated Oct. 30, 2012, 5 pages. |
Chinese Office Action and Search Report for Chinese Application No. 201180026350 dated Apr. 2, 2014, 18 pages. |
Homstvedt et al., PDC—Bit Evaluation by Cutter Instrumentation and Computer Simulation, SPE 1989, abstract, 2 pages. |
European Search Report for European Application No. 11777913.2 dated Oct. 11, 2013, 4 pages. |
Canadian Office Action from Canadian Application No. 2,848,298, dated May 28, 2015, 3 pages. |
Canadian Second Office Action from Canadian Application No. 2,848,298, dated Mar. 20, 2016, 3 pages. |
Canadian Office Action from Canadian Application No. 2,797,673, dated Oct. 3, 2013, 3 pages. |
Canadian Second Office Action from Canadian Application No. 2,797,673, dated Jul. 10, 2014, 2 pages. |
Chinese Second Office Action for Chinese Application No. 201180026350 dated Sep. 17, 2014, 8 pages. |
Chinese Third Office Action for Chinese Application No. 201180026350 dated Apr. 24, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20140224539 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61408119 | Oct 2010 | US | |
61408106 | Oct 2010 | US | |
61408144 | Oct 2010 | US | |
61328782 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13093326 | Apr 2011 | US |
Child | 14252484 | US |