The present disclosure relates generally to apparatuses for and methods of processing peat moss.
The following paragraphs are not an admission that anything discussed in them is prior art or part of the knowledge of persons skilled in the art.
Canadian Patent No. 2,065,923 discloses an attachment mounted to an articulated boom of a carrier vehicle for harvesting and dewatering peat moss material. The attachment includes an apertured bucket for digging peat moss material and a ram movable with relation to the bucket between an extended position and a retracted position. The ram and the bucket define a variable volume press chamber which is contractible in response to movement of the ram member toward the extended position for expressing water from the load of peat moss material gathered in the bucket. A method for harvesting and dewatering peat moss material is also disclosed.
U.S. Pat. No. 8,353,118 discloses a peat moss harvesting apparatus including a conveyor mechanism and a cutting mechanism. The cutting mechanism is guided through a peat moss bed to cut a section of peat moss. The section of peat moss is progressively loaded onto the conveyor mechanism as the section of peat moss is being cut.
United States Publication No. 2013/0333253 discloses a peat moss harvesting apparatus including a supporting structure attachable to a carrier vehicle, and a conveyor mechanism mounted to the supporting structure. The conveyor mechanism includes first and second pulleys and a belt assembly. The belt assembly includes at least one flexible drive element, a plurality of transverse supports mounted to the drive element, and a plurality of cover members mounted to the transverse supports. The cover members define a support surface for conveying material. The transverse supports may be longitudinally spaced apart from one another along the drive element. Each of the cover members may be fixed to a respective one of the transverse supports.
The following is intended to introduce the reader to the detailed description that follows and not to define or limit the claimed subject matter.
In an aspect, an apparatus for processing peat moss is disclosed. The apparatus may include: a top portion including an inlet for receiving the peat moss; a middle portion underneath the top portion; a feeding mechanism configured to deliver the peat moss from the top portion to the middle portion; and a compression mechanism housed in the middle portion, the compression mechanism including at least one roller assembly for at least partially dewatering the peat moss.
In an aspect, a method of processing peat moss is disclosed. The method may include: receiving the peat moss at an inlet of a top portion of an apparatus; feeding the peat moss from the top portion to a middle portion of the apparatus; and in the middle portion, pressing the peat moss with at least one roller assembly to at least partially dewater the peat moss.
In an aspect, an apparatus is disclosed. The apparatus may include: an inlet for receiving peat moss; a flow regulator arranged below the inlet to receive the peat moss therefrom, the flow regulator including a plurality of bars and gaps arranged between the bars; a feed roller arranged below the flow regulator to receive the peat moss therefrom, the feed roller rotatable about its axis to deliver the peat moss downwardly, the feed roller including a plurality of teeth that are disposed about a periphery of the feed roller and extend outwardly therefrom, the teeth extending at least partially through the gaps between the bars of the flow regulator; a guide plate arranged below the feed roller to receive the peat moss therefrom, the guide plate sloping at an angle, the guide plate configured to vibrate and including a perforated surface to allow moisture to drain away from the peat moss; a roller assembly arranged below the guide plate to receive the peat moss therefrom, the roller assembly including an upper roller and a lower roller positioned relative to the upper roller so that peat moss passing between the upper and lower rollers is pressed to reduce moisture content of the peat moss, the lower roller including a plurality of perforations arranged over an exterior cylindrical surface, the perforations allowing moisture to drain away from the peat moss; and an outlet below the roller assembly for discharging the peat moss.
Other aspects and features of the teachings disclosed herein will become apparent, to those ordinarily skilled in the art, upon review of the following description of the specific examples of the present disclosure.
The drawings included herewith are for illustrating various examples of apparatuses and methods of the present disclosure and are not intended to limit the scope of what is taught in any way.
Various apparatuses or methods will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover apparatuses and methods that differ from those described below. The claimed inventions are not limited to apparatuses and methods having all of the features of any one apparatus or method described below, or to features common to multiple or all of the apparatuses or methods described below. It is possible that an apparatus or method described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or method described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicant(s), inventor(s) and/or owner(s) do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.
Referring to
The peat moss to be processed may be fed to the apparatus 10 through the top portion 12. In the example illustrated, the top portion 12 includes an inlet or first opening 20. The first opening 20 may receive the peat moss to be processed. For example, a tractor equipped with a screening bucket or other suitable loading device may deposit peat moss into the first opening 20. In the example illustrated, the bottom portion 18 includes an outlet or second opening 22. Processed peat moss may be discharged from the apparatus 10 through the second opening 22.
In the example illustrated, the apparatus 10 is upright, with its height being substantially greater than its width or depth. The apparatus 10 may have a height, for example and not intended to be limiting, between 4 to 20 feet. The apparatus 10 may be made of stainless steel, or coated carbon steel, mild steel or other suitable material. As illustrated, the apparatus 10 may have a generally rectangular cross section to minimize its footprint for a given interior volume, and to provide structural integrity and ease of manufacture. However, in other examples, the apparatus may have a generally circular or polygonal cross section.
In the example illustrated, the apparatus 10 is generally deeper at the top portion 12 and narrower at the bottom portion 18. As shown in
In the example illustrated, a flow regulator 28 is located at the bottom of the top portion 12. The top portion 12 with the flow regulator 28 may act as a hopper to regulate the flow of peat moss entering the apparatus 10. As shown in
In some examples, the flow regulator may be operated between a closed state in which peat moss is prevented from entering the apparatus and an open state in which peat moss is allowed to enter the apparatus. In such examples, a sliding gate (not shown) may be implemented and controlled to vary the size of the gaps and thus adjusted to vary the amount of peat moss accepted into the apparatus.
Referring to
The feed roller 34 is shown to include a plurality of teeth 36 that are disposed about the periphery of the feed roller 34 and extend outwardly therefrom. Referring to
Referring to
After passing through the feeding mechanism, the peat moss may then pass through a guiding mechanism. In some examples, the guiding mechanism includes one or more sloping guide plates which may be perforated to allow liquid to pass through while still supporting the peat moss so that at least some of the moisture in the peat moss may be drained away. In some examples, the guides may form an angle of that is between 10 and 45 degrees with the interior wall of the apparatus. In some examples, the guides may form an angle of about 15 degrees with the interior wall of the apparatus. In some examples, one or more of the guide plates may also be vibrated to further facilitate dewatering of the peat moss.
Referring to again to
In the example illustrated, the guide plates 38, 40 serve to direct the peat moss from the feed roller 34 to a compression mechanism. In
The rollers 42, 44 are positioned and configured to press the peat moss for dewatering. The speed of rotation of the rollers 42, 44 and/or the distance between the rollers 42, 44 may be controlled and adjustable to vary the extraction of moisture from the peat moss.
In some examples, the upper roller 42 may be made of a solid material and have a relatively smooth exterior cylindrical surface. In other examples, the upper roller 42 may have a corrugated or otherwise textured outer surface, which may assist in providing traction to move the peat moss.
In some examples, the lower roller 44 may include a plurality of perforations distributed over its exterior cylindrical surface. Referring to
As illustrated, the compression mechanism may further include a second roller assembly having an upper roller 46 and a lower roller 48. The rollers 46, 48 are arranged in the bottom portion 18 of the apparatus 10. The guide plate 50 is arranged to direct the peat moss between the rollers 46, 48. The rollers 46, 48 are also configured to press the peat moss for dewatering, and the speed of rotation and/or the distance between them may be controlled and adjustable.
In some examples, there may be no gap between the upper and lower rollers, i.e. they may be pressed together, and the upper roller may be biased towards the lower roller (e.g., spring loaded, or alternatively using an air bag system) to maintain pressure between the two rollers. In such examples, as the peat moss is forced between the rollers, the upper roller will move up, while still keeping a generally constant pressure on the peat moss passing between the two rollers.
The upper roller 46 may be have a relatively smooth outer surface or textured outer surface. The lower roller 48 may also include perforations, and a conduit (not shown) may be used to direct the liquid collected by the lower roller 48 to a reservoir (not shown). After passing through the rollers 46, 48, the processed peat moss may exit the apparatus 10 through the second opening 22.
The first and second roller assemblies may be adjustable and used in different ways to separate water from the peat moss. Depending on the moisture content of the peat moss being processed by the apparatus 10, and the desired moisture content after processing, it may be useful to configure the first roller assembly to remove approximately 20 to 50% of the moisture content from the peat moss, and configure the second roller assembly to remove approximately 60 to 90% of the moisture content from the peat moss.
In the example illustrated, the compression mechanism includes two roller assemblies. However, it will be appreciated that, in other examples, the compression mechanism may consist of a single roller assembly, or three or more roller assemblies. Also, each of the roller assemblies in the example illustrated consists of two rollers. It will be appreciated that other roller assembly configurations may be possible, in which there is a single roller and another stationary element, or other roller assemblies having three or more rollers therein. Various configurations are possible.
The apparatus may further include one or more fluid injection mechanisms (not shown). For example, a mechanism may be used to direct compressed air towards a top surface of the guide plates to urge the peat moss towards the roller assembly of the compression mechanism. A mechanism may also be used to blow compressed air through perforations of the guide plates, to clean them in the event that peat moss is clogging the perforations. Similarly, a fluid (such as compressed air or water) may be injected into the perforations of the lower roller to remove any debris that is blocking the perforations. This mechanism may be used to push the fluid from the inside of the lower roller outwardly. A fluid injection mechanism may also be configured to inject a fluid (such as water, air, or any other suitable fluid) into the peat moss that is entering the apparatus, or within the apparatus. This may be done, for example, using compressed air, to control movement of the peat moss through the feed mechanism. Alternatively or additionally, water may be injected to ensure that the peat moss entering or within the apparatus is uniformly moist, prior to dewatering by the compression mechanism.
Referring now to
Referring to
As shown in
Flow regulators may be located at the bottom portion of the top portion. In the example illustrated, feed rollers 73 are shown located in the middle portion 69 and extend upwards to the top portion 68. The feed rollers 73 may regulate the flow of peat moss moving from the top portion 68 and entering the middle portion 69 of the apparatus 70. The speed of rotation of the feed rollers 73 may be adjustable to vary the rate at which peat moss is directed to enter the middle portion 69. In some examples, a control system (not shown) may be used to control operation of the feed rollers 73.
In the example illustrated, the middle portion 69 of the apparatus 70 is divided into four separate chambers 75, each being under the top portion 68. In the example illustrated, each of the chambers 75 is upright, with its height being substantially greater than its width or depth. Each of the chambers 75 of the middle portion 69 may have a height, for example and not intended to be limiting, between 4 to 20 feet. As illustrated, each of the chambers 75 may have a generally rectangular cross section to minimize its footprint for a given interior volume, and to provide structural integrity and ease of manufacture. However, in other examples, the apparatus may have a generally circular or polygonal cross section.
Referring to
Referring to
The feed rollers 73 are shown to include a plurality of teeth. Referring to
Referring to
In the example illustrated, the guide plates 83, 84 serve to direct the peat moss from the feed roller 73 to a compression mechanism. The compression mechanism is shown to include a roller assembly having an upper roller 87 and a lower roller 88. The rollers 87, 88 are arranged in the middle portion 69 of the apparatus 70. The guide plate 83 serves to direct the peat moss to the upper roller 87, and the guide plate 84 is arranged to direct the peat moss to the lower roller 88.
The rollers 87, 88 are positioned and configured to press the peat moss for dewatering. The speed of rotation of the rollers 87, 88 and/or the distance between the rollers 87, 88 may be controlled and adjustable to vary the extraction of moisture from the peat moss.
In some examples, the upper roller 87 may be made of a solid material and have a relatively smooth exterior cylindrical surface. In other examples, the upper roller 87 may have a corrugated or otherwise textured outer surface, which may assist in providing traction to move the peat moss.
In some examples, the lower roller 88 may include a plurality of perforations distributed over its exterior cylindrical surface. Referring to
In some examples, there may be no gap between the upper and lower rollers, i.e. they may be pressed together, and the upper roller may be biased towards the lower roller (e.g., spring loaded, or alternatively using an air bag system) to maintain pressure between the two rollers. In such examples, as the peat moss is forced between the rollers, the upper roller will move up, while still keeping a generally constant pressure on the peat moss passing between the two rollers.
In the example illustrated, there is shown a reservoir 89 under the lower roller 88 for collecting liquid from the perforations of the lower roller 88. In the example illustrated, the reservoir 89 has a V shape, and may include an outlet for draining liquid from the apparatus 70. Coupled to and/or included within the lower roller 88, a conduit (not shown) may be used to direct liquid collected through the perforations 62 to the reservoir 89 for removal from the apparatus 70.
Referring to
Referring now to
While the above description provides examples of one or more apparatuses or methods, it will be appreciated that other apparatuses or methods may be within the scope of the accompanying claims.
This application claims priority to U.S. Provisional Application No. 62/589,026 filed on Nov. 21, 2017, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62589026 | Nov 2017 | US |