This application is based on Japanese Patent Application No. 2010-160489 filed on Jul. 15, 2010, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a pedal device.
2. Description of Related Art
JP-A-2007-299137 describes a pedal device to control an operation state of an engine of a vehicle in accordance with a force pressing a pedal arm of the pedal device. The pedal arm is rotatably attached to a housing and is biased by a spring in a direction opposite from a pressing direction of the pedal arm. If the pressing force is increased, the pedal arm is rotated in the pressing direction. If the pressing force is reduced, the pedal arm is rotated in the opposite direction by the biasing force of the spring.
A rotation angle of the pedal arm is detected by a rotation angle sensor that is arranged not to contact the pedal arm. A magnet is attached to the pedal arm, and generates a magnetic field. The rotation angle sensor detects a variation of magnetic flux density that is generated by a direction of the magnetic field. A signal of the detection is transmitted to an engine control unit (ECU) of the vehicle. The ECU controls a fuel injection amount or an air intake amount, for example, based on the detection signal representing the rotation angle of the pedal arm.
The pedal arm passes through an opening of the housing, and has a stopper. When a contact face of the stopper contacts an edge of the opening, the pedal arm is defined to be located at a totally-closed position. The contact face of the stopper is approximately parallel with a plane including a rotation axis of the pedal arm. Thereby, positions of the magnet and the rotation angle sensor are restricted from being deviated in a radial direction with respect to a rotation center of the pedal arm even if a manufacturing tolerance is generated in the edge of the housing and the contact face of the stopper. Therefore, a variation in the signal output from the rotation angle sensor can be reduced when the pedal arm is located at the totally-closed position.
Further, the pedal arm is secured to have play in the opening of the housing while the pedal arm is rotated in the pressing direction or the opposite direction. Therefore, the contact face of the stopper is located to be approximately perpendicular to a gravity direction when the pedal device is mounted to the vehicle. If a foreign matter such as sand is accumulated on the contact face, a gap is generated between the edge of the housing and the contact face of the stopper. In this case, the pedal arm cannot return to the totally-closed position even when a driver of the vehicle does not press the pedal arm.
While the vehicle is braked, if the pedal arm does not return to the totally-closed position, the signal indicating the totally-closed position is not output from the rotation angle sensor to the ECU. The ECU keeps the operation state of the engine in accordance with a rotation angle of the pedal arm. In this case, an unintentional controlling of the engine may be performed.
In view of the foregoing and other problems, it is an object of the present invention to provide a pedal device.
According to an example of the present invention, a pedal device includes a housing, a pedal arm, a biasing portion and a stopper. The housing is to be mounted to a vehicle. The pedal arm is rotatably supported by the housing and to be pressed by a driver of the vehicle in a pressing direction. The pedal arm passes through an opening of the housing. The biasing portion biases the pedal arm in an opposite direction opposite from the pressing direction. The stopper has a contact face to contact an edge of the opening of the housing, and limits a rotation of the pedal arm in the opposite direction. The stopper has a groove extending from the contact face and being inclined downward in a gravity direction, when the housing is mounted to the vehicle and when the contact face of the stopper contacts the edge of the housing.
A foreign matter adhering to the contact face can be fallen into the groove from the contact face. The foreign matter is not caught between the stopper and the housing, so that a gap is restricted from being generated between the contact face of the stopper and the edge of the housing. The pedal arm can return to a totally-closed position by a biasing force of the spring when the driver does not press the pedal arm. As a result, when the vehicle is braked, a signal indicating the totally-closed position is input into an ECU of the vehicle from a rotation angle sensor. The ECU can control appropriately the operation state of the engine, so as to brake the vehicle.
According to an example of the present invention, the groove has a first side opening in the contact face, and a second side opening in a wall face of the stopper, in the gravity direction. The wall face of the stopper is located outside of the stopper when the contact face contacts the edge. Therefore, a foreign matter falling into the groove from the contact face can be discharged through an opening of the groove located on the outer wall face of the stopper. The foreign matter is not accumulated in the groove. The first side and the second side may be defined in a groove extending direction extending from the contact face to the outer wall face.
According to an example of the present invention, the groove has a bottom face extending from the contact face to the outer wall face, and the bottom face is inclined downward in the gravity direction when the housing is mounted to the vehicle and when the contact face contacts the edge. Therefore, the foreign matter can be moved downward in the gravity direction, and is discharged out of the stopper.
According to an example of the present invention, the bottom face of the groove is defined on the same plane as an outer wall of the pedal arm. Therefore, it is unnecessary to define a groove in the pedal arm. The groove of the stopper can be defined in the stopper without decreasing a rigidity of the pedal arm.
According to an example of the present invention, the groove is defined to separate the contact face into a first part and a second part in a rotation axis direction of the pedal arm, and an area of the first part is approximately equal with an area of the second part. Therefore, when the pedal arm is totally closed, a load of the spring is equally applied to the first part and the second part. Thus, the pedal arm is restricted from being inclined with respect to the rotation axis, so that the totally-closed position of the pedal arm can be secured.
According to an example of the present invention, the contact face has a curved surface protruding toward the edge of the opening of the housing. Therefore, a foreign matter adhering to the contact face of the stopper can be easily fallen into the groove, compared with a case where the contact face has a flat shape. Thus, the foreign matter can be restricted from being caught between the contact face and the edge.
According to an example of the present invention, the groove has a bottom face, and the bottom face has a curved surface recessed toward the pedal arm. Therefore, a foreign matter can be easily moved along the bottom face, compared with a case where the bottom face has a flat shape. Thus, the foreign matter can be restricted from being caught between the contact face and the edge.
According to an example of the present invention, the groove has a first side opposing to the contact face and a second side opposing to a bottom face of the groove, and a width of the second side of the groove is narrower than a width of the first side of the groove. Therefore, an opening of the groove is made larger on the upper side adjacent to the contact face, so that a foreign matter adhering on the contact face of the stopper can be easily fallen into the groove. Further, the foreign matter falling into the groove can be gathered on the bottom face, and the gathered foreign matters move along the bottom face downward in the gravity direction, so that the foreign matter can be easily discharged out of the stopper.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
A pedal device 1 will be described with reference to
As shown in
As shown in
The pedal arm 20 is made of resin, and has a controlling portion 21 which receives a driver's pressing force. The controlling portion 21 is located outside of the housing 10. As shown in
The spring rotor 30 is arranged on an inner side of the cylinder part 22 in a radial direction. As shown in
As shown in
Another swash plate 26 is arranged on a side of a bottom 25 of the cylinder part 22 opposing to the spring rotor 30 in the axis direction. The swash plate 26 extends in the rotation direction of the rotor 30.
The spring rotor 30 and the pedal arm 20 are rotated together when the swash plate 32 of the spring rotor 30 and the swash plate 26 of the cylinder part 22 are engaged with each other. When the pedal arm 20 is rotated in the X direction or the Y direction in response to the driver's pressing force, the spring 40 applies an elastic force to the spring rotor 30 based on the rotation amount of the pedal arm 20.
The swash plate 32 of the spring rotor 30 and the awash plate 26 of the cylinder part 22 generate a force separating the spring rotor 30 and the pedal arm 20 from each other in the axis direction in response to a rotation force. A ring-shaped friction component 28 is disposed between a ring part 27 and an outer wall of the spring rotor 30 opposing to the plate 13. The ring part 27 extends inward from an inner wall of the cylinder part 22 in the radial direction. A frictional force generated between the spring rotor 30 and the friction component 28 and a frictional force generated between the ring part 27 and the friction component 28 are increased in accordance with the driver's pressing force and the elastic force of the spring 40. That is, the frictional forces are applied in a direction restricting the rotation of the pedal arm 20.
A pair of magnets 29 and a yoke (not shown) are inserted between the cylinder part 22 and the covering 12 in a molding time. The pair of magnets 29 oppose to each other in the radial direction. The rotation angle sensor 50 is disposed on inner side of the pair of magnets 29 and the yoke in the radial direction, and is not contact with the pair of magnets 29 and the yoke.
When the pedal arm 20 is rotated, a direction of a magnetic field generated by the pair of magnets 29 is changed, and a density of magnetic flux passing through a Hall element of the rotation angle sensor 50 is varied in a predetermined direction. The rotation angle sensor 50 outputs a voltage signal based on the density of magnetic flux. As shown in
As shown in
As shown in
When the housing 10 is mounted to the inner wall 2 of the vehicle and when the pedal arm 20 is totally closed, the bottom face 64 of the groove 62 extending from the contact face 61 to the outer wall face 63 is inclined downward in the gravity direction. Therefore, the stopper 60 is constructed by four walls having the approximately triangle cross-section. The number of the grooves 62 is not limited to the three, and the number of walls constructing the stopper 60 is not limited to the four.
Because the three grooves 62 are defined in the stopper 60, so that the contact face 61 of the stopper 60 is divided into four parts. Intervals between the three grooves 62 are approximately equal with each other, and areas of the four contact faces 61 of the stopper 60 are approximately equal with each other. That is, an area of a divided part of the contact face 61 located on a first (left) side of the groove 62 is approximately equal with an area of a divided part of the contact face 61 located on a second (right) side of the groove 62, in a direction corresponding to the rotation axis O of the pedal arm 20. Therefore, when the pedal arm 20 is totally closed, a load of the spring 40 is equally impressed on the four contact faces 61.
An operation of the pedal device 1 is explained. As shown in
In contrast, as the force of pressing the operation portion 21 of the pedal arm 20 is reduced, the pedal arm 20 is moved in the Y direction. At this time, the frictional force generated between the spring rotor 30 and the friction component 28 and the frictional force generated between the ring part 27 and the friction component 28 are decreased as the rotation angle of the pedal arm 20 is made small. In this case, the frictional forces are applied so as to reduce the biasing force of the spring 40. Therefore, when the pedal arm 20 is rotated in the Y direction, the driver's pressing force is smaller than the biasing force of the spring 40. As a result, a predetermined hysteresis characteristic is generated in the rotation of the pedal arm 20. The rotation angle sensor 50 outputs a signal to the ECU of the vehicle based on the rotation angle of the pedal arm 20.
At a time of braking the vehicle, if a pressing force is applied to a brake pedal (not shown) by the driver, the pedal arm 20 returns to the totally-closed position A by the elastic force of the spring 40. At this time, if a foreign matter such as sand is caught between the contact face 61 of the stopper 60 and the edge 171 of the housing 10, the pedal arm 20 cannot return to the totally-closed position A. In this case, the rotation angle sensor 50 does not output the signal representing the totally-closed position A to the ECU. Therefore, the ECU keeps the operation state of the engine based on the rotation angle of the pedal arm 20.
According to the first embodiment, the stopper 60 limits the rotation of the pedal arm 20 in the Y direction, and has the groove 62 extending from the contact face 61 in the state of being inclined downward in the gravity direction, when the pedal arm 20 is totally closed. Thereby, a foreign matter adhering to the contact face 61 can be fallen into the groove 62, be moved downward in the gravity direction along the bottom face 64 of the groove 62, and be discharged out of the stopper 60 from the lower end of the groove 62 defined between the outer wall faces 63.
Therefore, the foreign matter is not accumulated in the groove 62, so that a gap is restricted from being generated between the contact face 61 of the stopper 60 and the edge 171 of the housing 10. The pedal arm 20 can return to the totally-closed position A when the driver does not press the pedal arm 20. As a result, the totally-closed position A of the pedal arm 20 is secured, and the signal indicating the totally-closed position A is input into the ECU from the rotation angle sensor 50 with reliability. The ECU can control appropriately the operation state of the engine by controlling fuel injection amount and throttle opening, for example. Thus, unintentional movement of the vehicle is not generated while the vehicle is braked.
The areas of the four contact faces 61 are approximately equal with each other. Therefore, when the pedal arm 20 is totally closed, the load of the spring 40 is equally applied to the four contact faces 61. Thus, the pedal arm 20 is restricted from being inclined with respect to the rotation axis O, so that the totally-closed position A of the pedal arm 20 can be secured.
A second embodiment will be described with reference to
A third embodiment will be described with reference to
A fourth embodiment will be described with reference to
The pedal device 1 is used for operating an accelerator of the vehicle. Alternatively, the pedal device 1 may be used for operating a brake of the vehicle.
The stopper 60, 70, 80, 90 is not limited to have the approximately triangle cross-section. Alternatively, the stopper may have an approximately rectangular parallelepiped shape or cylinder shape.
Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-160489 | Jul 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5416295 | White et al. | May 1995 | A |
7011339 | Oono et al. | Mar 2006 | B2 |
20040149070 | Solta | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
9254821 | Sep 1997 | JP |
2007-299137 | Nov 2007 | JP |
Entry |
---|
Chinese Search Report issued for Chinese Patent Application No. 2011 1020 6172.0, dated Sep. 29, 2013 (with partial English translation). |
Number | Date | Country | |
---|---|---|---|
20120011958 A1 | Jan 2012 | US |