This application is based upon and claims the benefit of priority of Japanese Patent Application No. 2004-44460, filed on Feb. 20, 2004, the contents of which are incorporated herein by reference.
The present invention relates to a pedal module and, in particular, to a pedal module suitable for an accelerator for a vehicle.
In a conventional pedal module used for an accelerator for a vehicle, a pedal is turned forward by the action of a depressing force and is reversed by the urging force of a spring. Among the modules like this is a publicly known module that reverses the pedal from a forward position by the use of a double coil spring, as disclosed in Japanese patent document JP-A No. 2003-39970 (corresponding to U.S. Pat. No. 6,802,202).
In recent years, it is thought that a damping part 100 as shown in
Here, as for the respective inserting portions 101 of the damping part 100 shown in
An object of the invention is to provide a pedal module for preventing the occurrence of abnormal noises and the deterioration of feeling of depressing a pedal.
In accordance with one aspect of the invention, in the inserting portion, a middle portion in such a direction of width that crosses an axis in the radial direction of the double coil spring is protruded toward one end of the double coil spring as compared with a side end portion in the direction of width. For this reason, the side end portion in the direction of width of the inserting portion is hard to enter a gap between windings of an outside coil and hence the side end portion in the direction of width is hard to abut against the outside coil in the gap between the windings of the outside coil when the double coil spring is compressed. Alternatively, even if the side end portion in the direction of width of the inserting portion enters the gap between the windings of the outside coil, when the double coil spring is compressed, a portion between the side end portion in the direction of width and such a middle portion in the direction of width that protrudes as compared with the side end portion in the inserting portion abuts against the outside coil, thereby being guided inside the outside coil. With this, the side end portion in the direction of width is hard to abut against the outside coil in the gap between the windings of the outside coil.
In this manner, the side end portion in the direction of width of the inserting portion is prevented from abutting against the outside coil in the gap between the windings of the outside coil. Hence, it is possible to avoid a problem that the side end portion is detached from the outside coil after the side end portion abuts against the outside coil to cause impact. Therefore, it is possible to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the pedal, which are caused when the damping part interferes with the outside coil.
According to another aspect of the present invention, an angle formed by the slant surface portion, which connects a side end portion in the direction of width to such a middle portion in the direction of width that is protruded as compared with the side end portion in the inserting portion, and an axis in the direction of width of the inserting portion is made larger than an angle formed by a material center line of the outside coil and the axis in the direction of width of the inserting portion. For this reason, it is possible to prevent the side end portion in the direction of width from abutting against the outside coil when the double coil spring is compressed. Therefore, it is possible to improve an effect of preventing the occurrence of abnormal noises and the deterioration of feeling of depressing the pedal.
In this regard, the slant surface portion that connects the side end portion in the direction of width in the inserting portion and the middle portion in the direction of width that is protruded as compared with the side end portion may be formed in the shape of a curved surface.
According to yet another aspect of the present invention, in the inserting portion, the middle portion in the direction of width is protruded toward the outside coil as compared with the side end portion in the direction of width. For this reason, the side end portion in the direction of width is hard to enter a gap between the windings of the outside coil. With this, when the double coil spring is compressed, it is possible to sufficiently prevent the side end portion in the direction of width from abutting against the outside coil in the gap between the windings of the outside coil. Therefore, it is possible to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the pedal.
According to yet another aspect of the present invention, in the inserting portion, a middle portion in such a direction of width that crosses an axis in the radial direction of the double coil spring and in such a direction of width that is not parallel to the center axis of the double coil spring is protruded toward the outside coil as compared with a side end portion in the direction of width. For this reason, the side end portion is hard to enter the gap between the windings of the outside coil. With this, when the double coil spring is compressed, the side end portion in the direction of width is hard to abut against the outside coil in the gap between the windings of the outside coil. Hence, it is possible to avoid a problem that the side end portion is detached from the outside coil after the side end portion abuts against the outside coil to cause impact. Therefore, it is possible to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the pedal, which are caused when the damping part interferes with the outside coil.
According to yet another aspect of the present invention, a damping part is adopted which is constructed of two inserting portion facing each other across the inside coil and a retaining portion that connects the two inserting portions and is retained by the inside coil in a gap between windings of the inside coil. With this, it is possible to facilitate a work of arranging the two inserting portions and to improve an effect of preventing resonance with external vibration.
In the accelerator for a vehicle, there are cases where a double coil spring is used in order to increase an urging force applied to its accelerator pedal.
Another aspect of the present invention is used as an accelerator for a vehicle in which the pedal is an accelerator pedal. Hence, it is possible to increase an urging force applied to the accelerator pedal and to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the pedal which are caused by the damping part. Therefore, the invention is suitable for an accelerator for a vehicle.
Other features and advantages of the present invention will be appreciated, as well as methods of operation and the function of the related parts from a study of the following detailed description, appended claims, and drawings, all of which form a part of this application. In the drawings:
A plurality of preferred embodiments of the invention will now be described with reference to the drawings.
An accelerator 1 for a vehicle as a pedal module in accordance with the first embodiment of the invention is shown in
A housing 10 supporting the accelerator pedal 2 is formed of resin in the shape of a box having an opening 11. The bottom plate 12 of housing 10 is fixed to the vehicle by bolts or a similar fastening means. A first stopper 13 formed of elastic material such as rubber is fixed to an inner wall of the bottom plate 12. A fixing hole 15 shaped like a stepped circular cylinder, the diameter of which becomes smaller as its depth becomes larger, is formed in an inner wall of a top plate 14 facing the bottom plate 12 in the housing 10. A second stopper 16 is formed integrally with an edge portion forming the opening 11 in the top plate 14. A turn angle sensor (not shown) for detecting the turn angle of the accelerator pedal 2 is fixed to a side plate 17 in the housing 10 and a connector part 18 for electrically connecting the turn angle sensor to the ECU is provided on the outer wall of the side plate 17.
The accelerator pedal 2 is formed of resin and is extended in the shape of a letter V. One end in the direction of length of the accelerator pedal 2 is received in the housing 10 and the other end in the direction of length is extended through the opening 11 to the outside of the housing 10. The accelerator pedal 2 has a turning shaft 20 in a middle portion in the direction of length that is received in the housing 10. The turning shaft 20 is supported by the side plate 17 of the housing 10 and is arranged in such a way as to be freely rotated around its axis. For purposes of this description, a reference symbol X in
The accelerator pedal 2 has a depressing portion 21 at an end portion on a side extending from the housing 10. A driver depresses the depressing portion 21 to apply a depressing force to the depressing portion 21 for turning the accelerator pedal 2 forward.
The accelerator pedal 2 has an abutting portion 22 at a position between the turning shaft 20 and the depressing portion 21 in the direction of length thereof. The abutting portion 22 can abut against the second stopper 16.
The accelerator pedal 2 has a plate-shaped retaining portion 23 at an end portion on a side received in the housing 10. In the retaining portion 23, one plate surface 24 faces the bottom plate 12 and the other plate surface 25 faces the top plate 14. The plate surface 24 of the retaining portion 23 can abut against the first stopper 13. The retaining portion 23 has an integral protruding portion 26 protruding from the plate surface 25 toward the top plate 14. The protruding portion 26 is formed in the shape of a stepped circular column, the diameter of which becomes smaller as the position becomes closer to its protruding end side.
A double coil spring 30 is interposed between the top plate 14 and the retaining portion 23. The double coil spring 30 is constructed of a combination of two cylindrical compression springs having predetermined uniform diameters. In the double coil spring 30, an outside coil 31 has a larger diameter than an inside coil 32 and is wound in a direction opposite to the inside coil 32 and is coaxially arranged outside the inside coil 32. One end of the outside coil 31 is fixed to a large diameter portion 15a of the fixing hole 15 and the other end of the outside coil 31 is retained by a large diameter portion 26a of the protruding portion 26. One end of the inside coil 32 is fixed to a small diameter portion 15b of the fixing hole 15 and the other end of the outside coil 32 is retained by a small diameter portion 26b of the protruding portion 26. The outside coil 31 and the inside coil 32 produce a restoring force when they are axially compressed between the top plate 14 and the retaining portion 23. Further, in this embodiment, the outside coil 31 and the inside coil 32 are curved away from the turning shaft 20 to produce a supplemental restoring force. Hence, the double coil spring 30 applies a resultant force of the restoring forces, which are respectively produced by the outside coil 31 and the inside coil 32, as an urging force to the retaining portion 23. At this time, the urging force is applied to the retaining portion 23 in such a way as to turn the accelerator pedal 2 in the reverse direction.
In this manner, when the depressing force is applied to the depressing portion 21 of the accelerator pedal 2 to separate the retaining portion 23 and the abutting portion 22 from the first stopper 13 and the second stopper 16, respectively, the accelerator pedal 2 is allowed to be turned in forward and reverse directions. At this time, the double coil spring 30 is compressed in the axial direction in response to the turn angle of the accelerator pedal 2. In contrast to this, when the retaining portion 23 and the abutting portion 22 of the accelerator pedal 2 are turned in the reverse direction by the urging force of the double coil spring 30 to abut against the first stopper 13 and the second stopper 16, respectively, the accelerator pedal 2 is prohibited from being turned further in the reverse direction. At this time, the double coil spring 30 is brought into a state where it is most elongated in the axial direction.
A damping part 40 is attached to the double coil spring 30. The damping part 40 will be described below in detail.
In the damping part 40 attached to the double coil spring 30 in the above-described manner, the direction of width of the respective inserting portions 47 becomes a direction that crosses the radial axis 30a of the double coil spring 30 and is not parallel to the center axis 30b of the double coil spring 30, in particular, in this embodiment, a direction along the material center line 35 of the inside coil 32. In each of the inserting portions 47, the middle portion 41 in the direction of width is formed in a shape protruding toward the same one end of the double coil spring 30 from the side end portions 42, 43 on both sides in the direction of width. Further, in each of the inserting portions 47, an angle θ1 formed by the slant surface portion 44 (45) and the axis 48 in the direction of width is larger than an angle θ2 formed by the material centerline 36 of the outside coil 31 and a line L parallel to the axis 48. Here, in this embodiment, the angle θ2 is nearly equal to the sum of pitch angles of the outside coil 31 and the inside coil 32 which are wound in reverse directions with respect to each other. Further, each of the inserting portions 47 has a flat, planar radially inner surface 47a that is tangentially disposed with respect to the inside coil 32, the radial direction of the outside coil 31 is substantially perpendicular to the flat, planar radially inner surface 47a of the damping part 40 as shown in
In the state where the double coil spring 30 is elongated most as shown in
When the double coil spring 30 is compressed from a state shown in
According to the first embodiment described above, it is possible to prevent the side end portions 42 in the direction of width of the respective inserting portions 47 from abutting against the outside coil 31 in the gap 38 between the windings and further to prevent the side end portions 42 from detaching from the outside coil after abutting to cause impact. Hence, it is possible to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the accelerator pedal as in the case of the conventional accelerator pedal.
Further, according to the first embodiment, because two inserting portions 47 are inserted between the outside coil 31 and the inside coil 32, it is possible to prevent the occurrence of abnormal noises and the deterioration of feeling of depressing the accelerator pedal and at the same time to improve an effect of preventing resonance with external vibration. In addition, since the damping part 40 having two inserting portions 47 like this is formed of a single part, the respective inserting portions 47 can be arranged with ease.
A second embodiment of the present invention is a modification of the first embodiment and
The third embodiment of the invention is a modification of the first embodiment and
The fourth embodiment of the invention is a modification of the third embodiment and
The fifth embodiment of the invention is a modification of the first embodiment and
When the damping part 60 like this is bent in the shape of a letter U as is the case with the first embodiment and is attached to the double coil spring 30, there is provided a state shown in
As described above, in the state shown in
The sixth embodiment of the invention is a modification of the second embodiment and
When the damping part 64 like this is bent in the shape of a letter U as is the case with the first embodiment and is attached to the double coil spring 30, there is provided a state shown in
As described above, in the state shown in
The seventh embodiment of the invention is a modification of the first embodiment and
When the damping part 70 like this is bent in the shape of a letter U as is the case with the first embodiment and is attached to the double coil spring 30, there is provided a state shown in
Here, the distinctive construction of the seventh embodiment described above may be applied to the second to sixth embodiments described above.
The eighth embodiment of the invention is a modification of the seventh embodiment and
When the damping part 80 like this is bent in the shape of a letter U as is the case with the first embodiment and is attached to the double coil spring 30, there is provided a state shown in
While the plurality of preferred embodiments of the invention have been described above, it should not be understood that the invention is limited to the plurality of preferred embodiments.
For example, in the plurality of preferred embodiments is used one damping part of the type in which two inserting portions are connected to each other by the retaining portion. In contrast to this, it is also recommended to use two or more damping parts of the type in which two inserting portions are connected to each other by a retaining portion. Alternatively, it is also recommended to use a suitable number of damping parts of the type in which one inserting portion is connected to one retaining portion. Further, alternatively, it is also recommended to use a suitable number of damping parts having only an inserting portion, that is, damping parts that are not retained by the inside coil.
Further, in the embodiments described above, the middle portion located in the center in the direction of width is protruded as a middle portion in the direction of width of the inserting portion as compared with the side end portions on both sides in the direction of width, but it is also recommended that a middle portion shifted from the center in the direction of width of the inserting portion be protruded. Further, in any case, it is also possible to protrude a middle portion (center portion) in the direction of width with respect to only one side end portion in the direction of width.
Still further, in the plurality of embodiments described above, the double coil spring of a combination of two compression coil springs is used, but a double coil spring of a combination of two tension coil springs may be used. In any case, the outside coil and the inside coil may be wound in the same direction or in the opposite directions. Further, a suitable number of other coil springs may be further arranged inside the inside coil or outside the outside coil.
In addition, in the plurality of embodiments described above, examples have been described in which the invention is applied to the accelerator for a vehicle. However, the invention can be applied to a publicly known pedal module provided with a pedal that is turned in the forward direction by the operation of depressing force and is turned in the reverse direction by the operation of restoring force of the double coil spring.
Number | Date | Country | Kind |
---|---|---|---|
2004-044460 | Feb 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2565672 | Withall | Aug 1951 | A |
6360631 | Wortmann et al. | Mar 2002 | B1 |
6658963 | Yaddehige | Dec 2003 | B2 |
6758114 | Sundaresan et al. | Jul 2004 | B2 |
6802202 | Kato et al. | Oct 2004 | B2 |
7012423 | Hasegawa et al. | Mar 2006 | B2 |
7228758 | Fujiwara | Jun 2007 | B2 |
7357380 | Menzel et al. | Apr 2008 | B2 |
20020104665 | Wolf et al. | Aug 2002 | A1 |
20090071286 | Ueno et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
44 07 005 | Mar 1995 | DE |
195 00 569 | Jul 1996 | DE |
19517172 | Nov 1996 | DE |
100 21 532 | Nov 2001 | DE |
0 923 015 | Jun 1999 | EP |
1 602 852 | Dec 2005 | EP |
A-H4-128519 | Apr 1992 | JP |
2001-109532 | Apr 2001 | JP |
2002-114052 | Apr 2002 | JP |
2007-113525 | May 2007 | JP |
2009-169812 | Jul 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20050183535 A1 | Aug 2005 | US |