Pedal position and/or pedal change rate for use in control of an engine

Information

  • Patent Grant
  • RE44452
  • Patent Number
    RE44,452
  • Date Filed
    Wednesday, December 22, 2010
    14 years ago
  • Date Issued
    Tuesday, August 27, 2013
    11 years ago
Abstract
Systems and methods for using pedal position and/or pedal change rate in the fuel side and/or air side control of an engine. By knowing the pedal position and/or pedal rate, an engine controller may anticipate future fuel and/or air needs of the engine, and adjust the fuel profile and/or air profile to meet those anticipated needs. This may help improve the responsiveness, performance and emissions of the engine.
Description
TECHNICAL FIELD

The present invention generally relates to engines, and more particularly, to methods for using pedal position and/or pedal rate in controlling engines.


BACKGROUND

Spark ignition engines typically have a gas pedal that is connected to an air throttle that meters air into engine. Stepping on the gas pedal typically opens the air throttle, which allows more air into the engine. In some cases, a fuel injector controller adjusts the fuel that is provided to the engine to maintain a desired air/fuel ratio (AFR). The AFR is typically held close to a stoichiometric ratio to produce stoichiometric combustion, which helps minimizes engine emissions and allows three-way catalysts to simultaneously remove hydrocarbons, carbon monoxide, and oxides of nitrogen (NOX).


Compression ignition engines (e.g. diesel engines) typically do not operate at stoichiometric ratios, and thus greater emissions and different emission components often result. Because diesel engines are now making real headway into the car and light truck markets, federal regulations have been passed requiring more stringent emission levels for diesel engines.


Unlike spark ignition engines, the pedal of a diesel engine is typically not directly connected to an air throttle that meters air into engine. Instead, in diesel engines with electronic fuel injection (EFI), the pedal position is sensed by a pedal position sensor, and the sensed pedal position is used to control the fuel rate provided to the engine, which allows more or less fuel per fuel pump shot. In many modern diesel engines, the air to the engine is typically controlled by a turbocharger, often a Variable Nozzle Turbocharger (VNT) or waste-gate turbocharger.


In many diesel engines, there is a time delay, or “turbo-lag”, between when the operator moves the pedal—injecting more fuel—and when the turbocharger spins-up to provide the additional air required to produce the desired air-fuel ratio. This “turbo-lag” can reduce the responsiveness and performance of the engine, and can increase emissions from the engine.


There are typically no sensors in the exhaust stream of a diesel engine that are analogous to those emissions sensors found in spark ignition engines. One reason for this is that diesel engines typically operate at about twice as lean as spark so ignition engines. As such, the oxygen level in the exhaust of a diesel engine can be at a level where standard emission sensors do not provide useful information. At the same time, diesel engines typically burn too lean for conventional three-way catalysts. As such, control over combustion in a diesel engine is often performed in an “open-loop” manner, often relying on engine maps or the like to generate set points for the intake manifold parameters that are believed to be favorable for acceptable exhaust emissions.


In any event, after-treatment is often required to help clean up exhaust emissions in a diesel engine. In many cases, after-treatment includes a “flow through oxidation” catalyst system, which typically does not have any controls. Hydrocarbons, carbon monoxide and most significantly those hydrocarbons that are adsorbed on particulates can sometimes be cleaned up when the conditions are right. Some after-treatment systems include particulate filters. These particulate filters, however, must typically be periodically cleaned often by burning off the soot particulate which has been collected on the filter to “Regenerate” the filter surface. Increasing the exhaust gas temperature is the primary way to initiate Regeneration, and injecting additional fuel in-cylinder or into an exhaust burner is one method. The control of this type of after-treatment may be based on a pressure sensor or on distance traveled, often in an open loop manner.


SUMMARY

The present invention relates to systems and methods for using pedal position and/or pedal change rate in the fuel side and/or air side control of an engine. By knowing the pedal position and/or pedal rate, an engine controller may anticipate future fuel and/or air needs of the engine, and adjust the fuel profile and/or air profile to meet those anticipated needs. This may help improve the responsiveness, performance and emissions of the engine.


In one illustrative embodiment, the present invention may be adapted for use with an internal combustion engine. The engine may have a fueling profile that defines the fuel that is delivered to the engine. The engine may also have an air charge profile that, in some cases is measured or monitored using intake manifold MAP, MAF and/or MAT sensors, that defines the air that is provided to the engine. Typically, the fueling profile is at least partially controlled by the pedal position. In one illustrative embodiment, a pedal change rate of the pedal position is identified, and an engine controller controls the air profile based, at least in part, on the pedal change rate. The fueling profile may also be controlled based, at least in part, on the pedal change rate. In some cases, a current pedal change rate and/or pedal position may be used, and in other cases, a current and/or one or more past pedal change rate and/or pedal position values may be used, as desired.


In some embodiments, the engine may have a turbocharger that boosts the manifold air pressure (MAP). The boosted MAP may be used to help control the air profile that is provided to the engine. In some cases, the MAP may be controlled based, at least in part, on the pedal change rate and/or pedal position. For example, if the pedal change rate is positive and relatively large, the MAP set point may be increased with little or no delay to meet the anticipated near term air needs of the engine. Thus may help reduce the effects of turbo lag, and may help reduce engine emissions.


In some cases, the engine may also include an exhaust recirculation valve for providing a selected amount of exhaust recirculation to the air that is provided to the engine. It is contemplated that the amount of exhaust recirculation may be based, at least in part, on the pedal change rate and/or pedal position. This may help reduce the emissions of the engine, particularly under transient operating conditions.


In some cases, an air side controller may receive a fueling rate signal from a fuel side controller. A fuel change rate of the fueling rate may be determined. The air side controller may then adjust the air profile that is provide to the engine based, at least in part, on the rate of change in the fuel rate. In some cases, the fuel rate may be controlled, at least in part, on the pedal change rate and/or pedal position.


The above summary is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the Figures thereof and wherein:



FIG. 1 is a schematic view of an illustrative diesel engine system in accordance with the present invention;



FIG. 2 is a schematic view of an illustrative air-side controller for use with the illustrative diesel engine system of FIG. 1;



FIG. 3 is a schematic view of an illustrative model predictive controller in accordance with the present invention;



FIG. 4 is a schematic view of another illustrative diesel engine system in accordance with the present invention;



FIG. 5 is a schematic view of a prior art speed controller;



FIG. 6 is a schematic view of an illustrative speed controller in accordance with the present invention;



FIG. 7 is a schematic view of another illustrative speed controller in accordance with the present invention;



FIG. 8 is a chart showing an engine speed set point response of a speed controller that has a dynamic map versus a static map;



FIG. 9 is a schematic view of an illustrative engine controller in accordance with the present invention;



FIG. 10 is a schematic view of another illustrative engine controller in accordance with the present invention;



FIG. 11 is a schematic view of another illustrative diesel engine system in accordance with the present invention;



FIG. 12 is a schematic view of another illustrative air-side controller in accordance with the present invention;



FIG. 13 is a schematic view of another illustrative air-side controller in accordance with the present invention; and



FIG. 14 is a schematic view of another illustrative air-side controller in accordance with the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of an illustrative diesel engine system in accordance with the present invention. The illustrative diesel engine system is generally shown at 10, and includes a diesel engine 20 that has an intake manifold 22 and an exhaust manifold 24. In the illustrative embodiment, a fuel injector 28 provides fuel to the engine 20. The fuel injector 28 may be a single fuel injector, but more commonly may include a number of fuel injectors that are independently controllable. A fuel injector controller 26 is provided to control the fuel injector(s) 38 such that the fuel injector(s) 28 provide a desired fuel profile to the engine 20. The term fuel “profile”, as used herein, may include any number of fuel parameters or characteristics including, for example, fuel delivery rate, change in fuel delivery rate, fuel timing, fuel pre-injection event(s), fuel post-injection event(s), fuel pulses, and/or any other fuel delivery characteristics, as desired. One or more fuel side actuators may be used to control these and other fuel parameters, as desired.


The fuel injector controller 26 may receive and use any number of input signals to produce the desired fuel profile. For example, the illustrative fuel injector controller 26 receives a pedal position signal 66, an intake Manifold Air Flow (MAF) signal 50, an Engine Speed signal 68, and an Air-Fuel-Ratio (AFR) Low Limit signal 70. These signals are only illustrative. For example, and in some cases, the fuel injector controller 26 may receive one or more control signals from an air-side controller (see FIG. 2), but this is not required.


In the illustrative embodiment, exhaust from the engine 20 is provided to the exhaust manifold 24, which delivers the exhaust gas down an exhaust pipe 32. In the illustrative embodiment, a turbocharger 33 is provided downstream of the exhaust manifold 24. The illustrative turbocharger 33 includes a turbine 30, which is driven by the exhaust gas flow. In the illustrative embodiment, the rotating turbine 30 drives a compressor 34 through a mechanical coupling 36. The compressor receives ambient air through passageway 38, compresses the ambient air, and provides compressed air to the intake manifold 22, as shown.


The turbocharger 33 may be a variable nozzle turbine (VNT) turbocharger. However, it is contemplated that any suitable turbocharger may be used including, for example, a waste gated turbocharger, or a variable geometry inlet nozzle turbocharger (VGT) with an actuator to operate the waste gate or VGT vane set. The illustrative VNT turbocharger uses adjustable vanes inside an exhaust scroll to change the angle of attack of the incoming exhaust gasses as they strike the exhaust turbine 30. In the illustrative embodiment, the angle of attack of the vanes, and thus the amount of boost (MAP) pressure provided by the compressor 34, may be controlled by a VNT SET signal 42. In some cases, a VNT position signal 46 is provided to indicate the current vane position. A turbo speed signal 48 may also be provided to indicate the current turbine speed. In some cases, it may be desirable to limit the turbo speed to help prevent damage to the turbine 30.


To help reduce turbo lag, the turbine 30 may include an electrical motor assist (not explicitly shown). However, this is not required in all embodiments. The electric motor assist may help increase the speed of the turbine 30 and thus the boost pressure provided by the compressor 34 to the intake manifold 22. This may be particularly useful when the engine is at low engine RPMs and when higher boost pressure is desired, such as under high acceleration conditions. Under these conditions, the exhaust gas flow may be insufficient to generate the desired boost (MAP) pressure at the intake manifold 22. In the illustrative embodiment, an ETURBO signal may be provided to control the amount of electric motor assist that is provided.


It is contemplated that the compressor 34 may be a variable or non-variable compressor. For example, in some cases, the compressed air that is provided by the compressor 34 may be only a function of the speed at which the turbine 30 rotates the compressor 34. In other cases, the compressor 34 may be a variable geometry compressor (VGC), where in some cases, a VGC SET signal 67 is used to set the vane position at the outlet of the compressor to provide a controlled amount of compressed air to the intake manifold 22.


A compressed air cooler 40 may be provided to help cool the compressed air before the compressed air is provided to the intake manifold 22, as desired. In some embodiments, one or more compressed air cooler control signals 65 may be provided to the compressed air cooler 40 to help control the temperature of the compressed air that is ultimately provided to the intake manifold 22. In some cases, the one or more compressed air cooler control signals 65 may be provided by an air side controller (see FIG. 2), if desired.


In some cases, and to reduce the emissions of some diesel engines, an Exhaust Gas Recirculation (EGR) Valve 58 may be inserted between the exhaust manifold 24 and the intake manifold 22, as shown. In the illustrative embodiment, the EGR valve 58 accepts an EGR SET signal 60, which is used to set the desired amount of exhaust gas recirculation (EGR). An EGR POSITION output signal 62 may also be provided, if desired, which may indicate the current position of the EGR valve 58.


In some cases, an EGR cooler 64 may be provided either upstream or downstream of the EGR valve 58 to help cool the exhaust gas before it is provided to the intake manifold 22. In some embodiments, one or more EGR cooler control signals 69 may be provided to the EGR cooler 64 to help control the temperature of the recirculated exhaust gas. In some cases, the one or more EGR cooler control signals 69 may be provided by an air side controller (see FIG. 2), if desired.


A number of sensors may be provided for monitoring the operation of the engine 20. For example, an intake manifold air flow (MAF) sensor 50 may provide a measure of the intake manifold air flow (MAF). An intake manifold air pressure (MAP) sensor 52 may provide a measure of the intake manifold air pressure (MAP). A manifold air temperature (MAT) sensor 53 may provide a measure of the intake manifold air temperature (MAT). A NOX sensor 56 may provide a measure of the NOX concentration in the exhaust gas. Similarly, a Particular Matter (PM) sensor 54 may provide a measure of the particulate matter concentration in the exhaust gas. While the NOX sensor 56 and the PM sensor 54 are shown located at the exhaust manifold 24, it is contemplated that these sensors may be provided anywhere downstream of the engine 20, as desired. In addition, the sensors shown in FIG. 1 are only illustrative, and it is contemplated that more or less sensors may be provided, as desired.



FIG. 2 is a schematic view of an illustrative air-side controller for use with the illustrative diesel engine system of FIG. 1. The illustrative air-side controller is generally shown at 80, and receives a number of engine parameters to help provide air-side control to the engine 20. For example, and in one illustrative embodiment, the air-side controller 80 receives input signals such as the MAP sensor output 52, the MAF sensor output 50, the MAT sensor output 53, the turbo speed signal 48, the NOX sensor output 56 and/or the PM sensor output 54, all shown in FIG. 1. These input parameters are only illustrative, and it is contemplated that more or less input parameters may be received, depending on the application. For example, an in some illustrative embodiments, the air-side controller 80 may receive a pedal position signal 66 and/or a fuel profile signal as shown, but this is not required or even desired in some embodiments.


Based on the value of the received input parameters, the illustrative air-side controller 80 may provide a number of control outputs to help provide air-side control to the engine 20. For example, the air-side controller 80 may provide the VNT SET signal 42, the EGR SET signal 60, and in some cases, the COMP. COOLER SET signal, the EGR COOLER Set signal, and the ETURBO signal 44 shown in FIG. 1.


In some cases, the air-side controller may be a multivariable Model Predictive Controller (MPC). The MPC may include a model of the dynamic process of engine operation, and provide predictive control signals to the engine subject to constraints in control variables and measured output variables. The models may be static and/or dynamic, depending on the application. In some cases, the models produce one or more output signals y(t) from one or more input signals u(t). A dynamic model typically contains a static model plus information about the time response of the system. Thus, a dynamic model is often of higher fidelity than a static model.


In mathematical terms, a linear dynamic model has the form:

y(t)=B0*u(t)+B1*u(t−1)+ . . . +Bn*u(t−n)+A1*y(t−1)+ . . . +Am*y(t−m)

where B0 . . . Bn, and A1 . . . Am are constant matrices. In a dynamic model, y(t) which is the output at time t, is based on the current input u(t), one or more past inputs u(t−1), . . . , u(t−n), and also on one or more past outputs y(t−1) . . . y(t−m).


A static model is a special case where the matrices B1= . . . =Bn=0, and A1= . . . =Am=0, which is given by the simpler relationship:

y(t)=B0u(t)

A static model as shown is a simple matrix multiplier. A static model typically has no “memory” of the inputs u(t−1), u(t−2) . . . or outputs y(t−1) . . . etc. As a result, a static model can be simpler, but may be less powerful in modeling some dynamic system parameters.


For turbocharged diesel system, the system dynamics can be relatively complicated and several of the interactions may have characteristics known as “non-minimum phase”. This is a dynamic response where the output y(t), when exposed to a step in input u(t), will initially move in one direction, and then turn around and move towards its steady state in the opposite direction. The soot emission in a diesel engine is just one example. In some cases, these dynamics may be important for optimal operation of the control system. Thus, dynamic models are often preferred, at least when modeling some control parameters.


In one example, the MPC may include a multivariable model that models the effect of changes in one or more actuators of the engine (e.g. VNT SET, EGR SET, COMP COOLER SET, EGR COOLER SET, ETURBO SET, Fueling Rate, etc.) on each of two or more parameters (e.g. AFR, MAP, MAF, NOX, PM), and the multivariable controller may then control the actuators to produce a desired response in the two or more parameters. Likewise, the model may, in some cases, model the effects of simultaneous changes in two or more actuators on each of one or more engine parameters, and the multivariable controller may control the actuators to produce a desired response in each of the one or more parameters.


For example, an illustrative state-space model of a discrete time dynamical system may be represented using equations of the form:

x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t)

The model predictive algorithm involves solving the problem:

u(k)=arg min{J}

Where the function J is given by,






J
=





x
^



(


t
+

N
y


|
t

)


T


P







x
^



(


t
+

N
y


|
t

)



+






N
y

-
1



k
=
0




[





x
^



(


t
+
k

|
t

)


T


Q







x
^



(


t
+
k

|
t

)



+



u


(

t
+
k

)


T



Ru


(

t
+
k

)




]








Subject to Constraints

ymin≦ŷ(t+k|t)≦ymax
umin≦u(t+k)≦umax
x(t|t)=x(t)
{circumflex over (x)}(t+k+1|t)=A{circumflex over (x)}(t+k|t)+Bu(t+k)
ŷ(t+k|t)=C{circumflex over (x)}(t+k|t)

In some embodiments, this is transformed into a Quadratic Programming (QP) problem and solved with standard or customized tools.


The variable “y(k)” contains the sensor measurements (for the turbocharger problem, these include but are not limited to MAP, MAF, MAT, turbospeed, NOx emissions, PM emissions, etc). The variables ŷ(k+t|t) denote the outputs of the system predicted at time “t+k” when the measurements “y(t)” are available. They are used in the model predictive controller to choose the sequence of inputs which yields the “best” (according to performance index J) predicted sequence of outputs.


The variables “u(k)” are produced by optimizing J and, in some cases, are used for the actuator set points. For the turbocharger problem these include, but are not limited to, the VNT SET, EGR SET, COMP COOLER SET, EGR COOLER SET, ETURBO, etc. The variable “x(k)” is a variable representing an internal state of the dynamical state space model of the system. The variable {circumflex over (x)}(t+k|t) indicates the predicted version of the state variable k discrete time steps into the future and is used in the model predictive controller to optimize the future values of the system.


The variables ymin and ymax are constraints and indicate the minimum and maximum values that the system predicted measurements ŷ(k) are permitted to attain. These often correspond to hard limits on the closed-loop behavior in the control system. For example, a hard limit may be placed on the PM emissions such that they are not permitted to exceed a certain number of grams per second at some given time. In some cases, only a minimum ymin or maximum ymax constraint is provided. For example, a maximum PM emission constraint may be provided, while a minimum PM emission constraint may be unnecessary or undesirable.


The variables umin and umax are also constraints, and indicate the minimum and maximum values that the system actuators û(k) are permitted to attain, often corresponding to physical limitations on the actuators. For example, the EGR valve may have a minimum of zero corresponding to a fully closed valve position and a maximum value of one corresponding to the fully open valve position. Like above, in some cases and depending on the circumstances, only a minimum umin or maximum umax constraint may be provided. Also, some or all of the constraints (e.g. ymin, ymax, umin, umax) may vary in time, depending on the current operating conditions. The state and actuator constraints may be provided to the air-side controller 80 of FIG. 2 via interface 78, if desired.


The constant matrices P, Q, R are often positive definite matrices used to set a penalty on the optimization of the respective variables. These are used in practice to “tune” the closed-loop response of the system.



FIG. 3 is a schematic view of an illustrative model predictive controller in accordance with the present invention. In this embodiment, the MPC 80 includes a State Observer 82 and a MPC Controller 84. As described above, the MPC Controller 84 provides a number of control outputs “u” to actuators or the like of the engine 20. Illustrative control outputs include, for example, the VNT SET signal 42, the EGR SET signal 60, the COMP COOLER SET signal 65, the EGR COOLER SET signal 69, and the ETURBO SET signal 44, all shown in FIGS. 1 and 2. The MPC Controller 84 may include a memory for storing past values of the control outputs u(t), u(t−1), u(t−2), etc.


The State Observer 82 receives a number of inputs “y”, a number of control outputs “u”, and a number of internal variables “x”. Illustrative inputs “y” include, for example, the MAP sensor output 52, the MAF sensor output 50, a Manifold Air Temperature (MAT) signal 53, the turbo speed signal 48, the NOX sensor output 56, and/or the PM sensor output 54, shown and described above with respect to FIGS. 1 and 2. It is contemplated that the inputs “y” may be interrogated constantly, intermittently, or periodically, or at any other time, as desired. Also, these input parameters are only illustrative, and it is contemplated that more or less input signals may be provided, depending on the application. In some cases, the State Observer 82 may receive present and/or past values for each of the number of inputs “y”, the number of control outputs “u”, and a number of internal state variables “x”, depending on the application.


The State Observer 82 produces a current set of state variables “x”, which are then provided to the MPC Controller 84. The MPC Controller 84 then calculates new control outputs “u”, which are presented to actuators or the like on the engine 20. The control outputs “u” may be updated constantly, intermittently, or periodically, or at any other time, as desired. The engine 20 operates using the new control outputs “u”, and produces new inputs “y”.


In one illustrative embodiment, the MPC 80 is programmed using standard Quadratic Programming (QP) and/or Linear Programming (LP) techniques to predict values for the control outputs “u” so that the engine 20 produces inputs “y” that are at a desired target value, within a desired target range, and/or do not violate any predefined constraints. For example, by knowing the impact of the VNT SET position 42, the EGR SET position 60 and/or the ETURBO SET signal 44 on the NOX and/or PM emissions, the MPC 80 may predict values for the control outputs VNT SET position 42, EGR SET position 60 and/or the ETURBO SET signal 44 so that future values of the NOX 56 and/or PM emissions signals 54 are at or remain at a desired target value, within a desired target range, and/or do not violate current constraints. This prediction capability may be particularly useful since there is often a “turbo lag” (e.g. 1 second) from when a change in the VNT SET position 42, EGR SET position 60 and/or the ETURBO SET signal occurs and when the resulting change in the NOX and/or PM emissions signals 56 and 54 occurs. In some cases, the constraints may change, and may depend on the current operating conditions.


It is contemplated that the MPC 80 may be implemented in the form of online optimization and/or by using equivalent lookup tables computed with a hybrid multi-parametric algorithm. Hybrid multi-parametric algorithms may allow constraints on emission parameters as well as multiple system operating modes to be encoded into a lookup table which can be implemented in an Engine Control Unit (ECU) of a vehicle. The emission constraints can be time-varying signals which enter the lookup table as additional parameters. Hybrid multi-parametric algorithm are further described by F. Borrelli in “Constrained Optimal Control of Linear and Hybrid Systems”, volume 290 of Lecture Notes in Control and Information Sciences, Springer, 2003, which is incorporated herein by reference.


Alternatively, or in addition, the MPC 80 may include one or more Proportional-Integral-Derivative (PID) control loops, one or more predictive constrained control loops—such as a Smith predictor control loop, one or more multi-parametric control loops, one or more multivariable control loops, one or more dynamic matrix control loops, one or more statistical processes control loop, a knowledge based expert system, a neural network, fuzzy logic or any other suitable control mechanism, as desired. Also, it is contemplated that the MPC may provide commands and/or set points for lower-level controllers that are used to control the actuators of the engine. In some cases, the lower level controllers may be, for example, single-input-single-output (SISO) controllers such as PID controllers.



FIG. 4 is a schematic view of another illustrative diesel engine system in accordance with the present invention. This illustrative diesel engine system is generally shown at 100, and includes a diesel engine 102 that includes a variable nozzle turbine (VNT) turbocharger with electric motor assist and an Exhaust Gas Recirculation (EGR) Valve that is inserted between the engines' exhaust manifold and the intake manifold. A number of sensor outputs are provided for monitoring various parameters of the engine during operation. The illustrative sensor outputs include, for example, an engine speed parameter, an intake manifold air pressure (MAP) parameter, an intake manifold air flow (MAF) parameter, a turbo speed parameter, an NOX parameter and a PM parameter, as shown. These are only illustrative, and it is contemplated that more or less sensor outputs may be provided, depending on the application.


A fuel injector controller 106 is provided for controlling the fuel that is injected into the engine. The illustrative fuel injector controller 106 may include an air-fuel-ratio (AFR) estimator that receives the intake manifold air flow (MAF) parameter and a fuel rate parameter to estimate the air-fuel-ratio (AFR) going into the engine. In some cases, the air-fuel-ratio (AFR) estimator may keep the estimated AFR above a minimum AFR LOW LIMIT value, which if may help reduce smoke or other undesirable emissions that may occur at low AFR values.


The fuel injector controller 106 may control the fuel rate delivered by the fuel injectors to the engine. In some cases, a pedal position signal and an engine speed signal are used to calculate the desired amount of fuel for the engine. In some cases, stepping on the pedal increases the fuel flow in a manner dictated by one or more static and/or dynamic control maps.


In the illustrative embodiment, an air side controller 108 may also be provided. The air side controller 108 may receive a number of engine parameters to help provide air-side control to the engine 102. The term “air-side control” may include both intake air and exhaust or emission control. For example, and in the illustrative embodiment, the air-side controller 108 may receive input signals such as the MAP sensor output, the MAF sensor output, the MAT sensor output, the turbo speed signal, the NOX sensor output and the PM sensor output. These input parameters are only illustrative, and it is contemplated that more or less input signals may be received, depending on the application. Note that in this illustrative embodiment, the air side controller 108 does not receive a measure of the fueling profile 116 provided by the fuel injector controller 106. In other embodiments, however, such as those shown and described below with respect to FIGS. 11-14, the air side controller may receive a measure of the fueling profile as an input.


In any event, based on the value of the received input parameters, and in some cases on one or more past received input parameters, the illustrative air-side controller 108 may provide a number of control outputs to help provide air-side control to the engine 102. For example, the air-side controller 108 may provide a VNT SET signal, an EGR SET signal, a VGC SET signal, an ETURBO SET signal, a COMP COOLER SET signal, an EGR COOLER SET signal, etc. In some cases, the air side controller 108 may be similar to the air side controller 80 of FIG. 2.



FIG. 5 is a schematic view of a prior art speed controller 126 which is conventionally used for controlling the fuel rate delivered by the fuel injectors to an engine. The speed controller 126 receives a pedal position signal 127 and a measured engine speed signal 129, both of which are functions of time. A pedal position signal 127 may be provided to a static map 128, which is a table that relates the pedal position to an engine speed set point 130. The engine speed set point 130 is compared to the measured engine speed signal 129, and an offset signal 134 is provided to a speed control block 136. Using the offset signal, the speed control block 136 then provides a fueling rate signal 138 to one or more of the fuel injectors of the engine. The speed controller 136 may contain a fuel rate limiter designed to maintain the AFR>AFR LOW LIMIT.



FIG. 6 is a schematic view of a speed controller in accordance with one illustrative embodiment of the present invention. One difference between the speed controller 150 of FIG. 6 and the speed controller 126 of FIG. 5 is that the speed controller 150 may receive both a pedal position signal 152 and a pedal change rate signal 154. By knowing the pedal change rate in addition to the current pedal position, the speed controller 150 may anticipate future fuel and/or air needs of the engine, and may adjust the fuel profile and/or air profile to meet those anticipated needs.


For example, the speed controller 150 may provide a larger fueling rate for a given pedal position when the pedal change rate is positive and higher than when the pedal change rate is positive and smaller. Likewise, the speed controller 150 may provide a smaller fueling rate for a given pedal position when the pedal change rate is negative and higher than when the pedal change rate is negative and smaller. Similarly, the speed controller 150 may provide a larger turbo boost (MAP) for a given pedal position when the pedal change rate is positive and higher than when the pedal change rate is positive and smaller. Likewise, the speed controller 150 may provide a smaller turbo boost (MAP) for a given pedal position when the pedal change rate is negative and higher than when the pedal change rate is negative and smaller. EGR and other engine parameters may be controlled in a similar manner.


In some cases, the speed controller 150 may receive a brake position signal 156. Brake pedal sensing may be used to anticipate future fuel side needs of the engine. For example, when a driver removes pressure from a brake pedal, it may be reasonable to assume that pressure will soon be applied to the fuel pedal. The speed controller 150 may use the brake position signal 156 to help anticipate future fuel needs.



FIG. 7 is a schematic view of another illustrative speed controller in accordance with the present invention. In this illustrative embodiment, a pedal position signal 160 is provided to a first dynamic map 162. The first dynamic map 162 may translate the pedal position and a pedal change rate (and in some cases, further derivatives of the pedal position), and provide a corresponding engine speed set point 170. The first dynamic map 162 may help anticipate an acceleration of the engine and increase the current engine speed set point 170, when the pedal change rate is positive. Likewise, the first dynamic map 162 may anticipate a deceleration and decrease the current engine speed set point 170, when the pedal change rate is negative.


In the illustrative embodiment, the engine speed set point 170 is compared to a measured engine speed signal 172 via comparator 174, and an offset signal 175 is provided to a speed control block 176. Using the offset signal 175, the speed control block 176 provides a fueling rate signal 178 to one or more of the fuel injectors of the engine. In some embodiments, the speed controller 176 may also receive an AFR LOW LIMIT signal 180. As described above, the AFR LOW LIMIT signal 180 may be set to a value that if the estimated AFR of the engine falls below the AFR LOW LIMIT signal 180 value, smoke or other undesirable emissions may be expected to appear in the engine exhaust. To reduce emissions, and if the AFR falls below the AFR LOW LIMIT signal 180, the speed controller 176 may reduce the fuel rate 178 to at least temporarily increase the AFR provided to the engine.



FIG. 8 is a chart showing an engine speed set point response of a speed controller that has a dynamic map versus a static map. An input pedal position signal is shown at 214, which includes a step 214a that rises from a lower position to a higher position. When a static map 128 is used and as shown and described with reference to FIG. 5, the corresponding engine speed set point 130 produced by the static map 128 (see FIG. 5) may have a step 130a that corresponds to the step in the input pedal position signal 214, as shown in FIG. 8. However, the corresponding step 130a in the engine speed signal 130 is merely reactive, and does not include any information or anticipate future needs of the engine.


In contrast, when a dynamic map 162 is used as shown and described with reference to FIG. 6, the corresponding engine speed set point 170 may have a corresponding step 170a that has a higher initial amplitude than the step 130 produced by the static map, followed by a decay region 170b in the engine speed set point 170, eventually leveling out at a level that is similar to that produced by the static map 128 (see FIG. 8). When a dynamic map 162 is used, the engine speed set point 170 may include information and/or anticipate future needs of the engine, and produce an engine speed set point 170 that attempts to satisfy those future needs.


In some embodiments, it is contemplated that the dynamic map 162 may translate the pedal position and a pedal change rate (and in some cases, further derivatives of the pedal position), and provide a corresponding engine speed set point 170. By doing so, the dynamic map 162 may help anticipate an acceleration of the engine and/or a deceleration of the engine, and produce an engine speed set point 170 that attempts to satisfy the anticipated future needs of the engine. This may, for example, help increase the performance and/or reduce the emissions of the engine.


In some embodiments, a combination of dynamic maps and look up tables may be used. For example, and in one illustrative embodiment, a first dynamic map, followed by a look up table, followed by a second dynamic map may be used. The first dynamic map may function as, for example, a pre-filter for the signal(s) entering the look up table, and the second dynamic map may function as a post filter for the signal(s) leaving the look up table. In some cases, the first dynamic filter may be a Kalman filter, an extended Kalman filter or any state observer filter, and the second dynamic filter may be the identity filter.


The look up table may be computed using any suitable method, but in some cases, using optimal or sub-optimal multi-parametric hybrid algorithms discussed above. Consistent with the multi-parametric hybrid algorithms, the lookup table may encode constraints on emission parameters in multiple engine operating modes, and may generate one or more engine control signals that are adapted to keep the engine emission or other parameters within the assigned constraints for the designated engine operating modes. In some embodiments, the look up table may accept emission control constraints as input parameters. The emission control constraints can be static or time-varying, and can be computed offline for a given set of engine operating modes, or in real or near real time, depending on the application.



FIG. 9 is a schematic view of another illustrative engine controller in accordance with the present invention. The illustrative engine controller of FIG. 9 is the same as the illustrative embodiment shown in FIG. 7, but provides the pedal position to an air-side controller 204 of the engine.


In the illustrative embodiment, the pedal position signal 160 is provides to a second dynamic (or static) map 202, which relates information about the pedal position (e.g. pedal position, pedal change rate, etc.) to one or more air side control parameters. Using the output of the second dynamic map 202, the air side controller 204 may provide one or more control signals to help control the air side of the engine.


The air side control signals may include, for example, a VNT SET signal 206, an EGR SET signal 208, a VGC SET signal 218, an ETURBO SET signal 210, a COMP COOLER SET signal 220, EGR COOLER SET signal 222, and/or any other suitable signal, as desired. Like above, the air side controller 204 may receive a number of other input signals 212 such as a MAP signal, a MAF signal, a MAT signal, a turbo speed signal, a NOX signal, a PM signal, and/or any other suitable signal, as desired. By knowing, for example, the pedal position and/or pedal change rate (and in some cases, further derivatives of the pedal position), some or all of the air side control signals may be adjusted to anticipate needed changes to improve engine response time, performance and/or emissions.


For example, if the pedal change rate is relatively high, the air side controller 204 may anticipate that extra turbo boost will be necessary and may change the VNT SET signal 206 and/or VGC SET signal 218 to immediately begin providing the anticipated turbo boost with little or no delay. The EGR SET signal 208, ETURBO SET signal 210, COMP COOLER SET signal 220, EGR COOLER SET signal 222, and/or any other control signal provided by the air side controller 204 may likewise be adjusted to cancel or otherwise compensate for disrupting effects caused by changes in pedal position and/or pedal change rate. This may help improve the responsiveness, performance and/or emissions of the engine.


In some cases, the number of other input signals 212 may include a brake position signal. Brake pedal sensing may be used to anticipate future air side needs of the engine. For example, when a driver removes pressure from a brake pedal, it may be reasonable to assume that pressure will soon be applied to the fuel pedal. The air side controller 204 may use the brake position signal to help anticipate future air side needs.



FIG. 10 is a schematic view of another illustrative engine controller in accordance with the present invention. In this illustrative embodiment, the pedal position 240 is provided to a fuel side position and rate map 242 and an air side position and rate map 250. The rate maps 242 and 250 may be dynamic maps, static maps, or combinations thereof.


In the illustrative embodiment, the fuel side rate map 242 may translate the pedal position and/or pedal change rate (and in some cases, further derivatives of the pedal position) into one or more fuel side set points 243. A fuel side controller 244 receives the fuel side set points 243, along with a number of fuel side sensor outputs 246 such as engine speed, MAF, MAP, MAT, etc., and provides a fueling profile 248 to the fuel injectors of the engine.


The air side rate map 250 may translate the pedal position and/or pedal change rate (and in some cases, further derivatives of the pedal position) into one or more air side parameters. Another air side set point map 252 may receive a number of other engine parameters 254 such as, a brake parameter, a temperature parameter, an outside air pressure parameter, a humidity parameter and/or any other suitable parameters, and may provide one or more air side set points. The air side set point map 252 may be a dynamic or static map, as desired.


An air side controller 256 receives the one or more air side parameters from the air side rate map 250, and in some cases, the one or more air side set points from the air side set point map 252, along with one or more air side sensor output signals such as MAP, MAF, MAT, NOX, PM, turbo speed, VNT POS, EGR POS, etc., and provide one or more air side control signals, such as VNT SET, EGR SET, VGC SET, ETURBO SET, COMP COOLER SET, EGR COOLER SET, and/or any other suitable control signal, as desired.



FIG. 11 is a schematic view of another illustrative diesel engine system in accordance with the present invention. This illustrative diesel engine system is generally shown at 300, and includes a diesel engine 302 that includes a variable nozzle turbine (VNT) turbocharger with electric motor assist and an Exhaust Gas Recirculation (EGR) Valve that is inserted between the engines' exhaust manifold and the engine's intake manifold. The illustrative diesel engine 302 also includes a variable geometry compressor (VGC), where in some cases, a VGC SET signal is used to set the vane position at the outlet of the compressor to provide a controlled amount of compressed air to the intake manifold 22.


A number of sensor outputs are provided for monitoring various parameters of the engine during operation. The illustrative sensor outputs include an engine speed parameter, an intake manifold air pressure (MAP) parameter, an intake manifold air flow (MAF) parameter, a turbo speed parameter, an NOX parameter and a PM parameter, as shown. More or less sensor outputs may be provided, if desired.


A fuel injector controller 306 is provided for controlling the fuel that is injected into the engine. The illustrative fuel injector controller 306 may be similar to the fuel injector controller 106 described above with reference of FIG. 4. The illustrative fuel injector controller 306 may include an air-fuel-ratio (AFR) estimator that receives the intake manifold air flow (MAF) parameter and a fuel rate parameter to estimate the air-fuel-ratio (AFR) going into the engine. In some cases, the air-fuel-ratio (AFR) estimator may keep the estimated AFR above a minimum AFR LOW LIMIT value, which if may help reduce smoke or other undesirable emissions that may occur at low AFR values.


The fuel injector controller 306 may control the fuel rate delivered by the fuel injectors to the engine. In the illustrative embodiment, a pedal position signal, a pedal rate signal, and an engine speed signal are used to calculate the desired amount of fuel for the engine. In some cases, stepping on the pedal increases the fuel flow in a manner dictated by one or more static and/or dynamic control maps, as further described above.


In the illustrative embodiment, an air side controller 320 is also provided. The air side controller 320 receives a number of engine parameters to help provide air-side control to the engine 302. For example, and in the illustrative embodiment, the air-side controller 320 may receive input signals such as a MAP sensor output, a MAF sensor output, a turbo speed signal, a NOX sensor output and/or a PM sensor output, as shown. These input parameters are only illustrative, and it is contemplated that more or less input signals may be received, depending on the application.


In the illustrative embodiment, the air side controller 320 also receives one or more fuel profile signals 314, which provide information related to the fuel profile that is currently provided to the engine 302. Based on the value of the received input parameters, including the fuel profile signal(s) 314, the illustrative air-side controller 320 provides a number of control outputs to help provide air-side control to the engine 302. For example, the air-side controller 320 may provide a VNT SET signal 324, an VGC SET signal 330, an EGR SET signal 326, an ETURBO SET signal 328, a COMP COOLER SET signal 332 and/or an EGR COOLER SET signal 334. Other control signals may also be provided by the air side controller 320, if desired.


By knowing the impact of fueling rate and/or a change in fueling rate on various engine parameters, such as MAP, MAF, MAT, turbo speed, NOX emissions, PM emissions, etc., the air side controller 320 may adjust one or more control signals such as VNT SET signal 324, VGC SET signal 330, EGR SET signal 326, the ETURBO SET signal 328, the COMP COOLER SET signal 332 and/or the EGR COOLER SET signal 334, to cancel or mitigate disrupting effects on, for example, MAP, MAF, turbo speed, NOX emissions, PM emissions, etc. This may help improve the responsiveness, performance and/or emissions of the engine.



FIG. 12 is a schematic view of another illustrative air-side controller in accordance with the present invention. The illustrative air-side controller 340 receives a fuel profile signal 342 along with one or more other parameters 344. The fuel profile signal 342 may include any number of fuel characteristics such as fuel delivery rate, change in fuel delivery rate, fuel timing, fuel pre-injection event(s), fuel post-injection event(s), fuel pulses, and/or any other fuel delivery characteristic, as desired. The one or more other parameters 344 may include, for example, a MAP parameter, a MAF parameter, a turbo speed parameter, a NOX parameter, a PM parameter, an engine speed parameter, a VNT position parameter, an EGR position parameter, a brake position parameter, an outside temperature parameter, an outside air pressure parameter, a humidity parameter and/or any other parameter, as desired.


The illustrative air-side controller 340 then provides one or more air side control signals to an engine. For example, the air-side controller 340 may provide a VNT SET signal 346, a VGC SET signal 352, an EGR SET signal 348, an ETURBO SET signal 350, a COMP COOLER SET signal 354, an EGR COOLER SET signal 356 and/or any other air-side control signal, as desired.


It is contemplated that the air-side controller 340 may be implemented in the form of online optimization and/or by using equivalent lookup tables computed with a hybrid multi-parametric algorithm. Hybrid multi-parametric algorithms may allow constraints on emission parameters as well as multiple system operating modes to be encoded into a lookup table which can be implemented in an Engine Control Unit (ECU) of a vehicle. The emission constraints can be time-varying signals which enter the lookup table as additional parameters. Hybrid multi-parametric algorithm are further described by F. Borrelli in “Constrained Optimal Control of Linear and Hybrid Systems”, volume 290 of Lecture Notes in Control and Information Sciences, Springer, 2003, which is incorporated herein by reference.


Alternatively, or in addition, the air-side controller 340 may include one or more Proportional-Integral-Derivative (PID) control loops, one or more predictive constrained control loops—such as a Smith predictor control loop, one or more multiparametric control loops, one or more multivariable control loops, one or more dynamic matrix control loops, one or more statistical processes control loop, a knowledge based expert system, a neural network, fuzzy logic or any other suitable control mechanism, as desired. Also, it is contemplated that the air side controller 340 may provide commands and/or set points for lower-level controllers that are used to control the actuators of the engine. In some cases, the lower level controllers may be, for example, single-input-single-output (SISO) controllers such as PID controllers.



FIG. 13 is a schematic view of another illustrative air-side controller in accordance with the present invention. The illustrative air-side controller 360 receives a fuel profile signal 362. The fuel profile signal 362 may include any number of fuel characteristics such as fuel delivery rate, change in fuel delivery rate, fuel timing, fuel pre-injection event(s), fuel post-injection event(s), fuel pulses, and/or any other fuel delivery characteristic, as desired. The illustrative air-side controller 360 may also receive other engine parameters including, for example, a MAP parameter 364, a MAF parameter 366, a turbo speed parameter 368, a NOX parameter 370, a PM parameter 372 and/or any other parameter, as desired.


The illustrative air-side controller 360 then provides one or more air side control signals to an engine. For example, the air-side controller 360 may provide a VNT SET signal 374, a VGC SET signal 380, an EGR SET signal 376, an ETURBO SET signal 378, a COMP COOLER SET signal 382 and/or an EGR COOLER SET signal 384 and/or any other air-side control signal, as desired.


It is contemplated that the air-side controller 360 may be implemented in the form of online optimization and/or by using equivalent lookup tables computed with a hybrid multi-parametric algorithm. Hybrid multi-parametric algorithms may allow constraints on emission parameters as well as multiple system operating modes to be encoded into a lookup table which can be implemented in an Engine Control Unit (ECU) of a vehicle. The emission constraints can be time-varying signals which enter the lookup table as additional parameters. Hybrid multi-parametric algorithm are further described by F. Borrelli in “Constrained Optimal Control of Linear and Hybrid Systems”, volume 290 of Lecture Notes in Control and Information Sciences, Springer, 2003, which is incorporated herein by reference.


Alternatively, or in addition, the air-side controller 360 may include one or more Proportional-Integral-Derivative (PID) control loops, one or more predictive constrained control loops—such as a Smith predictor control loop, one or more multiparametric control loops, one or more multivariable control loops, one or more dynamic matrix control loops, one or more statistical processes control loop, a knowledge based expert system, a neural network, fuzzy logic or any other suitable control mechanism, as desired. Also, it is contemplated that the air side controller 360 may provide commands and/or set points for lower-level controllers that are used to control the actuators of the engine. In some cases, the lower level controllers may be, for example, single-input-single-output (SISO) controllers such as PID controllers.



FIG. 14 is a schematic view of another illustrative air-side controller in accordance with the present invention. The illustrative air-side controller is generally shown at 384. A pedal position signal 402 is provided to a Fuel Side Controller 406. The Fuel Side Controller 406 receives a number of input parameters such as an engine speed parameter, a MAF parameter, etc. via interface 408. Uses the pedal position signal 402 and the number of input parameters 408, the Fuel Side Controller 406 provides one or more fuel control signals 410 to one or more fuel side actuators, such as fuel injectors.


In the illustrative embodiment, one or more of the fuel control signals 410 are also provided to an Air Side Controller 414 as an input measured disturbance. The illustrative Air Side Controller 414 also receives a number of input signals from air side sensors via interface 420. The air side sensors may include, for example, a MAP sensor, a MAF sensor, a MAT sensor, a NOX sensor, a PM sensor, a turbo speed sensor, an engine speed sensor, and/or any other type of sensor, as desired. The illustrative Air Side Controller 414 may also receive a number of other air-side set points 417 from a Set Point Map 416. The Set Point Map 416 may translate one or more other engine parameters 418 into the one or more air side set points 417. The one or more other engine parameters may include, for example, a brake parameter, a temperature parameter, an outside air pressure parameter, a humidity parameter and/or any other desired engine parameter. The Set Point Map 416 may be a dynamic or static map, as desired.


Using the various input signals discussed above, the illustrative Air Side Controller 414 may provide one or more air side control signals 422. For example, the Air Side Controller 414 may provide a VNT SET signal, a VGC SET signal, an EGR SET signal, an ETURBO SET signal, a COMP COOLER SET signal, an EGR COOLER SET signal and/or any other air-side control signal, as desired. The illustrative embodiment may be capable of, for example, anticipating an acceleration and/or deceleration (e.g. via increased fuel rate 410), and then increase/decease the air delivery rate to the engine with little or no delay to help improve the responsiveness, performance and/or emissions of the engine.


Having thus described the preferred embodiments of the present invention, those of skill in the art will readily appreciated that the teachings found herein may be applied to yet other embodiments within the scope of the claims hereto attached.

Claims
  • 1. A method for controlling an internal combustion engine, the engine having an exhaust recirculation valve for providing a selected amount of exhaust gas to the intake air of the engine, the engine having a pedal position, the method comprising the steps of: identifying a pedal position;identifying a pedal change rate of the pedal position;providing a pedal position signal and a pedal change rate signal to at least one map of a controller; andcontrolling the amount of exhaust gas recirculation that is provided to the intake air of the engine based on the pedal position signal, and the pedal change rate signal provided to the at least one map, and one or more past pedal change rates.
  • 2. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: identifying a pedal change rate of the pedal position;controlling the air charge profile based on the pedal change rate;wherein said step of controlling the air charge profile based on the pedal change rate includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine; andwherein the controlling the air charge profile step uses one or more past pedal change rates.
  • 3. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: inputting a pedal position and a pedal change rate into at least one dynamic map;controlling the air charge profile based partially on the pedal position and based partially on the pedal change rate inputted to the at least one dynamic map; andwherein said step of controlling the air charge profile based partially on the pedal position and partially on the pedal change rate includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 4. The method of claim 3, wherein said at least one dynamic map includes: a first dynamic map adapted to provide an engine speed setpoint for controlling the fueling profile of fuel provided to the engine; anda second dynamic map adapted to provide one or more air-side control signals for controlling the air charge profile of air provided to the engine.
  • 5. The method of claim 3, further comprising the step of controlling the fueling profile based, at least in part, on the pedal change rate.
  • 6. The method of claim 3, further comprising the step of controlling the fueling profile based, at least in part, on the pedal position.
  • 7. The method of claim 3, wherein the engine includes a turbo charger for providing a turbo boost to the air that is provided to the engine, wherein the air charge profile includes the turbo boost.
  • 8. The method of claim 7, wherein the controlling step includes controlling the turbo boost based, at least in part, on the pedal change rate.
  • 9. The method of claim 3, wherein the controlling step uses a current pedal change rate.
  • 10. The method of claim 3, wherein the controlling step uses one or more past pedal change rates.
  • 11. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: identifying the pedal position;identifying a pedal change rate of the pedal position; andcontrolling the air charge profile based on the identified pedal position, and the pedal change rate, and one or more past pedal change rates;wherein said step of controlling the air charge profile based, on the pedal position, pedal change rate, and one or more past pedal change rates includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 12. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: inputting athe pedal position and a pedal change rate into at least one dynamic map;controlling the air charge profile based on the pedal position, and based on pedal change rate, and based on one or more past pedal change rates inputted to the at least one dynamic map; andwherein said step of controlling the air charge profile based on the pedal position, pedal change rate, and one or more past pedal change rates, includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 13. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: identifying a pedal change rate of the pedal position;controlling the air charge profile based, at least in part, on the pedal change rate;wherein said step of controlling the air charge profile based, at least in part, on the pedal change rate includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine;wherein the engine includes a turbo charger for providing a turbo boost to the air that is provided to the engine, wherein the air charge profile includes the turbo boost; andwherein the controlling step includes controlling the turbo charger for adjusting the amount of turbo boost based, at least in part, on one or more past pedal change rates.
  • 14. A method for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the method comprising the steps of: identifying the pedal position;identifying a pedal change rate of the pedal position;providing a pedal position signal and pedal change rate signal to at least one dynamic map of a controller; andcontrolling the air charge profile based on the pedal position signal and the pedal change rate signal provided to the at least one dynamic map;wherein said step of controlling the air charge profile based on the pedal position signal and pedal change rate signal includes the step of controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 15. The method of claim 14 further comprising: controlling the fueling profile based, at least in part, on the pedal change rate.
  • 16. The method of claim 15 further comprising the step of controlling the fueling profile based, at least in part, on the pedal position.
  • 17. The method of claim 14 further comprising the step of controlling the fueling profile based, at least in part, on the pedal position.
  • 18. The method of claim 14 wherein the engine includes a turbo charger for providing a turbo boost to the air that is provided to the engine, wherein the air charge profile includes the turbo boost.
  • 19. The method of claim 18 wherein the controlling step includes controlling the turbo boost based, at least in part, on the pedal change rate.
  • 20. The method of claim 14 wherein the controlling step uses a current pedal change rate.
  • 21. The method of claim 14 wherein the controlling step uses one or more past pedal change rates.
  • 22. The method of claim 14 wherein the controlling step uses one or more Proportional-Integral-Derivative (PID) control loops.
  • 23. The method of claim 14 wherein the controlling step uses one or more predictive constrained control loops.
  • 24. The method of claim 23 wherein at least one of the predictive constrained control loops includes a Smith predictor.
  • 25. The method of claim 14 wherein the controlling step uses one or more multiparametric control loops.
  • 26. The method of claim 14 wherein the controlling step uses one or more model based predictive control loops.
  • 27. The method of claim 14 wherein the controlling step uses one or more dynamic matrix control loops.
  • 28. The method of claim 14 wherein the controlling step uses one or more statistical processes control loop.
  • 29. The method of claim 14 wherein the controlling step uses a knowledge based expert system.
  • 30. The method of claim 14 wherein the controlling step uses a neural network.
  • 31. The method of claim 14 wherein the controlling step uses fuzzy logic.
  • 32. An engine controller for controlling an internal combustion engine, the engine having an exhaust recirculation valve for providing a selected amount of exhaust gas to the intake air of the engine, the engine having a pedal position, the engine controller comprising: an input for receiving one or more signals related to the pedal position;a controller that provides the pedal position and a pedal change rate to at least one map of the controller, and controls the amount of exhaust gas recirculation that is provided to the intake air of the engine based on the pedal position, the pedal change rate, and one or more past pedal change rates.
  • 33. An engine controller for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the engine controller comprising: an input for receiving one or more signals related to the pedal position;a controller that identifies a pedal change rate of the pedal position and controls the air charge profile based on the pedal change rate and/or one or more past pedal change rates, including controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 34. An engine controller for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, the fueling profile being at least partially controlled by a pedal position, the engine controller comprising: an input for receiving one or more signals related to the pedal position;a controller that provides a pedal position and a pedal change rate to at least one dynamic map of the controller and controls the air charge profile based at least in part on the pedal position and at least in part on the pedal change rate provided to the at least one dynamic map, including controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine.
  • 35. The engine controller of claim 34, wherein said at least one dynamic map of the controller includes: a first dynamic map for providing an engine speed setpoint for controlling the fueling profile of fuel provided to the engine; anda second dynamic map for providing one or more air-side control signals for controlling the air charge profile of air provided to the engine.
  • 36. The engine controller of claim 34, wherein the controller controls the fueling profile based, at least in part, on the pedal change rate.
  • 37. The engine controller of claim 34, wherein the controller controls the fueling profile based, at least in part, on the pedal position.
  • 38. The engine controller of claim 34, wherein the engine includes a turbo charger for providing a turbo boost to the air that is provided to the engine, wherein the air charge profile includes the turbo boost.
  • 39. The engine controller of claim 38, wherein the controller controls the turbo boost based, at least in part, on the pedal change rate.
  • 40. The engine controller of claim 34, wherein the controller controls the air charge profile based at least in part on a current pedal change rate.
  • 41. The engine controller of claim 34, wherein the controller controls the air charge profile based at least in part on one or more past pedal change rates.
  • 42. An engine controller for controlling an internal combustion engine, the engine having a fueling profile that defines the fuel that is provided to the engine, and an air charge profile that defines the air that is provided to the engine, wherein the engine includes a turbo charger for providing a turbo boost to the air that is provided to the engine, wherein the air charge profile includes the turbo boost, the fueling profile being at least partially controlled by a pedal position, the engine controller comprising: an input for receiving one or more signals related to the pedal position;a controller for controlling the air charge profile based, at least in part, on a pedal change rate and/or one or more past pedal change rates, including controlling an exhaust gas recirculation (EGR) valve to provide a selected amount of exhaust gas recirculation to the engine, and controlling the turbo charger to adjust the amount of turbo boost based, at least in part, on one or more past pedal change rates.
US Referenced Citations (354)
Number Name Date Kind
3744461 Davis Jul 1973 A
4005578 McInerney Feb 1977 A
4055158 Marsee Oct 1977 A
4206606 Yamada Jun 1980 A
4252098 Tomczak et al. Feb 1981 A
4359991 Stumpp et al. Nov 1982 A
4383441 Willis et al. May 1983 A
4426982 Lehner et al. Jan 1984 A
4438497 Willis et al. Mar 1984 A
4440140 Kawagoe et al. Apr 1984 A
4456883 Bullis et al. Jun 1984 A
4485794 Kimberley et al. Dec 1984 A
4601270 Kimberley et al. Jul 1986 A
4616308 Morshedi et al. Oct 1986 A
4653449 Kamei et al. Mar 1987 A
4671235 Hosaka Jun 1987 A
4677559 Van Bruck Jun 1987 A
4735181 Kaneko et al. Apr 1988 A
4947334 Massey et al. Aug 1990 A
4962570 Hosaka et al. Oct 1990 A
5044337 Williams Sep 1991 A
5076237 Hartman et al. Dec 1991 A
5089236 Clerc Feb 1992 A
5095874 Schnaibel et al. Mar 1992 A
5108716 Nishizawa Apr 1992 A
5123397 Richeson Jun 1992 A
5150289 Badavas Sep 1992 A
5186081 Richardson et al. Feb 1993 A
5233829 Komatsu Aug 1993 A
5273019 Matthews et al. Dec 1993 A
5282449 Takahashi et al. Feb 1994 A
5349816 Sanbayashi et al. Sep 1994 A
5365734 Takeshima Nov 1994 A
5398502 Watanabe Mar 1995 A
5431139 Grutter et al. Jul 1995 A
5452576 Hamburg et al. Sep 1995 A
5477840 Neumann Dec 1995 A
5560208 Halimi et al. Oct 1996 A
5570574 Yamashita et al. Nov 1996 A
5598825 Neumann Feb 1997 A
5609139 Ueda et al. Mar 1997 A
5611198 Lane et al. Mar 1997 A
5690086 Kawano et al. Nov 1997 A
5692478 Nogi et al. Dec 1997 A
5697339 Esposito Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5746183 Parke et al. May 1998 A
5765533 Nakajima Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5785030 Paas Jul 1998 A
5788004 Friedmann et al. Aug 1998 A
5842340 Bush et al. Dec 1998 A
5846157 Reinke et al. Dec 1998 A
5893092 Driscoll Apr 1999 A
5942195 Lecea et al. Aug 1999 A
5964199 Atago et al. Oct 1999 A
5970075 Wasada Oct 1999 A
5974788 Hepburn et al. Nov 1999 A
5995895 Watt et al. Nov 1999 A
6029626 Bruestle Feb 2000 A
6035640 Kolmanovsky et al. Mar 2000 A
6048620 Zhong Apr 2000 A
6048628 Zhong Apr 2000 A
6055810 Borland et al. May 2000 A
6058700 Yamashita et al. May 2000 A
6067800 Kolmanovsky et al. May 2000 A
6076353 Fruedenberg et al. Jun 2000 A
6105365 Deeba et al. Aug 2000 A
6122555 Lu Sep 2000 A
6134883 Kato et al. Oct 2000 A
6153159 Engeler et al. Nov 2000 A
6161528 Akao et al. Dec 2000 A
6170259 Boegner et al. Jan 2001 B1
6171556 Burk et al. Jan 2001 B1
6178743 Hirota et al. Jan 2001 B1
6178749 Kolmanovsky et al. Jan 2001 B1
6208914 Ward et al. Mar 2001 B1
6216083 Ulyanov et al. Apr 2001 B1
6233922 Maloney May 2001 B1
6236956 Mantooth et al. May 2001 B1
6237330 Takahashi et al. May 2001 B1
6242873 Drozdz et al. Jun 2001 B1
6263672 Roby et al. Jul 2001 B1
6273060 Cullen Aug 2001 B1
6279551 Iwano et al. Aug 2001 B1
6312538 Latypov et al. Nov 2001 B1
6314724 Kakuyama et al. Nov 2001 B1
6321538 Hasler Nov 2001 B2
6327361 Harshavardhana et al. Dec 2001 B1
6338245 Shimoda et al. Jan 2002 B1
6341487 Takahashi et al. Jan 2002 B1
6347619 Whiting et al. Feb 2002 B1
6360159 Miller et al. Mar 2002 B1
6360541 Waszkiewicz et al. Mar 2002 B2
6360732 Bailey et al. Mar 2002 B1
6363715 Bidner et al. Apr 2002 B1
6363907 Arai et al. Apr 2002 B1
6379281 Collins et al. Apr 2002 B1
6389803 Surnilla et al. May 2002 B1
6425371 Majima Jul 2002 B2
6427436 Allansson et al. Aug 2002 B1
6431160 Sugiyama et al. Aug 2002 B1
6445963 Blevins et al. Sep 2002 B1
6446430 Roth et al. Sep 2002 B1
6453308 Zhao et al. Sep 2002 B1
6463733 Asik et al. Oct 2002 B1
6463734 Tamura et al. Oct 2002 B1
6466893 Latwesen et al. Oct 2002 B1
6470682 Gray, Jr. Oct 2002 B2
6470866 Cook Oct 2002 B2
6470886 Jestrabek-Hart Oct 2002 B1
6494038 Kobayashi et al. Dec 2002 B2
6502391 Hirota et al. Jan 2003 B1
6510351 Blevins et al. Jan 2003 B1
6512974 Houston et al. Jan 2003 B2
6513495 Franke et al. Feb 2003 B1
6532433 Bharadwaj et al. Mar 2003 B2
6546329 Bellinger Apr 2003 B2
6553754 Meyer et al. Apr 2003 B2
6560528 Gitlin et al. May 2003 B1
6560960 Nishimura et al. May 2003 B2
6571191 York et al. May 2003 B1
6579206 Liu et al. Jun 2003 B2
6591605 Lewis Jul 2003 B2
6594990 Kuenstler et al. Jul 2003 B2
6601387 Zurawski et al. Aug 2003 B2
6612293 Schweinzer et al. Sep 2003 B2
6615584 Ostertag Sep 2003 B2
6625978 Eriksson et al. Sep 2003 B1
6629408 Murakami et al. Oct 2003 B1
6637382 Brehob et al. Oct 2003 B1
6644017 Takahashi et al. Nov 2003 B2
6647710 Nishiyama et al. Nov 2003 B2
6647971 Vaughan et al. Nov 2003 B2
6651614 Flamig-Vetter et al. Nov 2003 B2
6662058 Sanchez Dec 2003 B1
6666198 Mitsutani Dec 2003 B2
6671603 Cari et al. Dec 2003 B2
6672052 Taga et al. Jan 2004 B2
6672060 Buckland et al. Jan 2004 B1
6679050 Takahashi et al. Jan 2004 B1
6687597 Sulatisky et al. Feb 2004 B2
6688283 Jaye Feb 2004 B2
6694244 Meyer et al. Feb 2004 B2
6694724 Tanaka et al. Feb 2004 B2
6705084 Allen et al. Mar 2004 B2
6718254 Hashimoto et al. Apr 2004 B2
6718753 Bromberg et al. Apr 2004 B2
6722350 Volz et al. Apr 2004 B2
6736120 Surnilla May 2004 B2
6739122 Kitajima et al. May 2004 B2
6742330 Genderen Jun 2004 B2
6743352 Ando et al. Jun 2004 B2
6748936 Kinomura et al. Jun 2004 B2
6752131 Poola et al. Jun 2004 B2
6752135 McLaughlin et al. Jun 2004 B2
6758037 Terada et al. Jul 2004 B2
6760631 Berkowitz et al. Jul 2004 B1
6760657 Katoh Jul 2004 B2
6770009 Badillo et al. Aug 2004 B2
6772585 Iihoshi et al. Aug 2004 B2
6779344 Hartman et al. Aug 2004 B2
6779512 Mitsutani et al. Aug 2004 B2
6788072 Nagy et al. Sep 2004 B2
6789533 Hashimoto et al. Sep 2004 B1
6792927 Kobayashi Sep 2004 B2
6804618 Junk Oct 2004 B2
6805095 Sun et al. Oct 2004 B2
6814062 Esteghlal et al. Nov 2004 B2
6817171 Zhu Nov 2004 B2
6823667 Braun et al. Nov 2004 B2
6823675 Brunell et al. Nov 2004 B2
6826903 Yahata et al. Dec 2004 B2
6827060 Huh Dec 2004 B2
6827061 Nytomt et al. Dec 2004 B2
6827070 Fehl et al. Dec 2004 B2
6834497 Miyoshi et al. Dec 2004 B2
6839637 Moteki et al. Jan 2005 B2
6849030 Yamamoto et al. Feb 2005 B2
6874467 Hunt et al. Apr 2005 B2
6879906 Makki et al. Apr 2005 B2
6904751 Makki et al. Jun 2005 B2
6911414 Kimura et al. Jun 2005 B2
6915779 Sriprakash Jul 2005 B2
6920865 Lyon Jul 2005 B2
6925796 Nieuwstadt et al. Aug 2005 B2
6928362 Meaney Aug 2005 B2
6928817 Ahmad Aug 2005 B2
6931840 Strayer et al. Aug 2005 B2
6941744 Tanaka Sep 2005 B2
6945033 Sealy et al. Sep 2005 B2
6948310 Roberts, Jr. et al. Sep 2005 B2
6953024 Linna et al. Oct 2005 B2
6965826 Andres et al. Nov 2005 B2
6968677 Tamura Nov 2005 B2
6971258 Rhodes et al. Dec 2005 B2
6973382 Rodriguez et al. Dec 2005 B2
6978744 Fisher et al. Dec 2005 B2
6996975 Radhamohan et al. Feb 2006 B2
7000379 Makki et al. Feb 2006 B2
7013637 Yoshida et al. Mar 2006 B2
7016779 Bowyer Mar 2006 B2
7047938 Flynn et al. May 2006 B2
7052434 Makino et al. May 2006 B2
7055311 Beutel et al. Jun 2006 B2
7063080 Kitah et al. Jun 2006 B2
7082753 Dalla Betta et al. Aug 2006 B2
7085615 Persson et al. Aug 2006 B2
7106866 Astorino et al. Sep 2006 B2
7107978 Itoyama Sep 2006 B2
7111455 Okugawa et al. Sep 2006 B2
7149590 Martin et al. Dec 2006 B2
7151976 Lin Dec 2006 B2
7155334 Stewart et al. Dec 2006 B1
7165393 Betta et al. Jan 2007 B2
7165399 Stewart Jan 2007 B2
7182075 Shahed et al. Feb 2007 B2
7184992 Polyak et al. Feb 2007 B1
7194987 Mogi Mar 2007 B2
7200988 Yamashita Apr 2007 B2
7204079 Audoin Apr 2007 B2
7275374 Stewart et al. Oct 2007 B2
7275415 Rhodes et al. Oct 2007 B2
7302937 Ma et al. Dec 2007 B2
7321834 Chu et al. Jan 2008 B2
7328577 Stewart et al. Feb 2008 B2
7337022 Wojsznis et al. Feb 2008 B2
7349776 Spillane et al. Mar 2008 B2
7357125 Kolavennu Apr 2008 B2
7389773 Stewart et al. Jun 2008 B2
7392129 Hill et al. Jun 2008 B2
7400967 Ueno et al. Jul 2008 B2
7413583 Langer et al. Aug 2008 B2
7415389 Stewart et al. Aug 2008 B2
7418372 Nishira et al. Aug 2008 B2
7444191 Caldwell et al. Oct 2008 B2
7444193 Cutler Oct 2008 B2
7447554 Cutler Nov 2008 B2
7467614 Stewart et al. Dec 2008 B2
7469177 Samad et al. Dec 2008 B2
7493236 Mock et al. Feb 2009 B1
7515975 Stewart Apr 2009 B2
7542842 Hill et al. Jun 2009 B2
7577483 Fan et al. Aug 2009 B2
7591135 Stewart et al. Sep 2009 B2
7627843 Dozorets et al. Dec 2009 B2
7630868 Turner et al. Dec 2009 B2
7668704 Perchanok et al. Feb 2010 B2
7743606 Havlena et al. Jun 2010 B2
7752840 Stewart Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7798938 Matsubara et al. Sep 2010 B2
7826909 Attarwala Nov 2010 B2
7846299 Backstrom et al. Dec 2010 B2
7850104 Havlena et al. Dec 2010 B2
7856966 Saitoh Dec 2010 B2
7877239 Grichnik et al. Jan 2011 B2
7904280 Wood Mar 2011 B2
7958730 Stewart Jun 2011 B2
7996140 Stewart et al. Aug 2011 B2
8019911 Dressler et al. Sep 2011 B2
8265854 Stewart et al. Sep 2012 B2
8360040 Stewart et al. Jan 2013 B2
20010002591 Majima Jun 2001 A1
20020029564 Roth et al. Mar 2002 A1
20020056434 Flamig-Vetter et al. May 2002 A1
20020073696 Kuenstler et al. Jun 2002 A1
20020098975 Kimura et al. Jul 2002 A1
20020116104 Kawashima et al. Aug 2002 A1
20020170550 Mitsutani Nov 2002 A1
20020173919 Moteki et al. Nov 2002 A1
20020184879 Lewis Dec 2002 A1
20020194835 Bromberg et al. Dec 2002 A1
20030022752 Liu et al. Jan 2003 A1
20030041590 Kitajima et al. Mar 2003 A1
20030089101 Tanaka et al. May 2003 A1
20030089102 Colignon et al. May 2003 A1
20030101713 Dalla Betta et al. Jun 2003 A1
20030120410 Cari et al. Jun 2003 A1
20030143957 Lyon Jul 2003 A1
20030145837 Esteghlal et al. Aug 2003 A1
20030150422 Huh Aug 2003 A1
20030150961 Boelitz et al. Aug 2003 A1
20030172907 Nytomt et al. Sep 2003 A1
20030200016 Spillane et al. Oct 2003 A1
20030213465 Fehl et al. Nov 2003 A1
20030221679 Surnilla Dec 2003 A1
20030225507 Tamura Dec 2003 A1
20040006973 Makki et al. Jan 2004 A1
20040007211 Kobayashi Jan 2004 A1
20040007217 Poola et al. Jan 2004 A1
20040025837 Hunt et al. Feb 2004 A1
20040034460 Folkerts et al. Feb 2004 A1
20040040283 Yasui et al. Mar 2004 A1
20040040287 Beutel et al. Mar 2004 A1
20040050037 Betta et al. Mar 2004 A1
20040055278 Miyoshi et al. Mar 2004 A1
20040060284 Roberts, Jr. et al. Apr 2004 A1
20040074226 Tanaka Apr 2004 A1
20040086185 Sun May 2004 A1
20040089279 McLaughlin et al. May 2004 A1
20040112335 Makino et al. Jun 2004 A1
20040117766 Mehta et al. Jun 2004 A1
20040118107 Ament Jun 2004 A1
20040118117 Hartman et al. Jun 2004 A1
20040128058 Andres et al. Jul 2004 A1
20040129259 Mitsutani Jul 2004 A1
20040134464 Mogi Jul 2004 A1
20040135584 Nagy et al. Jul 2004 A1
20040139735 Zhu Jul 2004 A1
20040139951 Fisher et al. Jul 2004 A1
20040165781 Sun Aug 2004 A1
20040221889 Dreyer et al. Nov 2004 A1
20040226287 Edgar et al. Nov 2004 A1
20040249558 Meaney Dec 2004 A1
20050143952 Tomoyasu et al. Jun 2005 A1
20050171667 Morita Aug 2005 A1
20050171670 Yoshioka et al. Aug 2005 A1
20050178675 Hall Aug 2005 A1
20050187643 Sayyar-Rodsari et al. Aug 2005 A1
20050209714 Rawlings et al. Sep 2005 A1
20050210868 Funabashi Sep 2005 A1
20060168945 Samad et al. Aug 2006 A1
20060265203 Jenny et al. Nov 2006 A1
20060272315 Wang et al. Dec 2006 A1
20060282178 Das et al. Dec 2006 A1
20070142936 Denison et al. Jun 2007 A1
20070144149 Kolavennu et al. Jun 2007 A1
20070275471 Coward Nov 2007 A1
20080071395 Pachner Mar 2008 A1
20080097625 Vouzis et al. Apr 2008 A1
20080125875 Stewart et al. May 2008 A1
20080132178 Chatterjee et al. Jun 2008 A1
20080183311 MacArthur et al. Jul 2008 A1
20080208778 Sayyar-Rodsari et al. Aug 2008 A1
20080244449 Morrison et al. Oct 2008 A1
20080249697 Stewart et al. Oct 2008 A1
20090005889 Sayyar-Rodsari Jan 2009 A1
20090008351 Schneider et al. Jan 2009 A1
20090043546 Srinivasan et al. Feb 2009 A1
20090131216 Matsubara et al. May 2009 A1
20090182518 Chu et al. Jul 2009 A1
20090240480 Baramov Sep 2009 A1
20090254202 Pekar et al. Oct 2009 A1
20100017094 Stewart et al. Jan 2010 A1
20100038158 Whitney et al. Feb 2010 A1
20100050607 He et al. Mar 2010 A1
20100122523 Vosz May 2010 A1
20100300070 He et al. Dec 2010 A1
20100327090 Havlena et al. Dec 2010 A1
20110071653 Kihas Mar 2011 A1
20110087420 Stewart et al. Apr 2011 A1
20110167025 Danai et al. Jul 2011 A1
20110270505 Chaturvedi et al. Nov 2011 A1
Foreign Referenced Citations (22)
Number Date Country
2441686 Mar 2004 CA
19628796 Oct 1997 DE
10219382 Nov 2002 DE
10219832 Nov 2002 DE
0301527 Feb 1989 EP
0950803 Apr 1999 EP
1134368 Mar 2001 EP
1180583 Feb 2002 EP
1221544 Jul 2002 EP
1245811 Oct 2002 EP
1686251 Aug 2006 EP
59190443 Oct 1984 JP
2010282618 Dec 2010 JP
0232552 Apr 2002 WO
WO 02101208 Dec 2002 WO
03048533 Jun 2003 WO
03065135 Aug 2003 WO
WO 03065135 Aug 2003 WO
03078816 Sep 2003 WO
WO 2004027230 Apr 2004 WO
2008033800 Mar 2008 WO
2008115911 Sep 2008 WO
Non-Patent Literature Citations (81)
Entry
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976.
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints*,” Siam J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982.
U.S. Appl. No. 12/792,468, filed Jun. 2, 2010.
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to the filing date of the present application.
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002.
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002.
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995.
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to filing date of present application.
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003.
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003.
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to filing date of present application.
U.S. Appl. No. 12/973,704, filed Dec. 20, 2010.
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004.
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to filing date of present application.
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998.
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004.
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003.
Honeywell, “Profit Optimizer A Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to filing date of present application.
http://www.not2fast.wryday.com/turbo/glossary/turbo—glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004.
http://www.tai-cwv.com/sbl106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003.
Kolmanovsky, et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997.
Kulhavy, et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000.
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Corning Incorporated, 10 pages, prior to filing date of present application.
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001.
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004.
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control—Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002.
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000.
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997.
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000.
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000.
Storset, et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, printed prior to filing date of present application.
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to filing date of present application.
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004.
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation).
Zenlenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001.
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008.
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007.
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008.
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002.
Bemporad, “Model Predictive Control Based on Linear Programming—the Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002.
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006.
Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning”, Jun. 2001, Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 325-300.
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006.
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002.
Bunting, “Increased Urea Dosing Could Cut SCR Truck Running Costs”, http://www.automotiveworld.com/article/85897-increased-urea-dosing-could-cut-scr-truck-running-costs, Automotive World, 3 pages, Feb. 24, 2011, printed Mar. 2, 2011.
International Application Status Report for WO 2008/033800.
U.S. Appl. No. 13/236,217.
U.S. Appl. No. 13/290,012.
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006.
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007.
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles”, May 2009, World Electric Journal, vol. 3, ISSN 2032-6653.
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002.
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008.
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004.
Mayne et al., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, vol. 36, pp. 789-814, 2000.
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006.
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007.
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007.
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003.
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000.
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005.
Schutter et al. “Model Predictive Control for Max-Min-Plus-Scaling Systems”, Jun. 2001, Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 319-324.
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008.
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009.
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003.
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special:Book&bookcmd=download&collecton—id=641cd1b5da77cc22&writer=rl&return—to=Model predictive control, retrieved Nov. 20, 2012.
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008.
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008.
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002.
Search Report for Corresponding, Application No. 11167549.2 dated Nov. 27, 2012.
U.S. Appl. No. 13/290,025, filed Nov. 2011.
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993.
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001.
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010.
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007.
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009.
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrated complex powertrain systems,” 4 pages, printed prior to filing date of present application.
The MathWorks, “Model-Based Calibration Toolbox 2.1.1,” 2 pages, prior to filing date of present application.
Reissues (1)
Number Date Country
Parent 11025221 Dec 2004 US
Child 12976844 US