The present invention relates generally to a deck systems for use in constructing an elevated traffic-bearing surface, such as on the roof of a building, and more particularly, the invention relates to a height-adjustable pedestal and deck system.
Roof structures of many buildings are capable of supporting a substantially horizontal surface, or deck, enabling the construction of roof terraces, pedestrian walkways, roof gardens, plaza decks, sun decks, balconies, patios or the like. Such roof surfaces are often formed at a slight slope relative to horizontal for drainage purposes. Typically, the roof surface itself is not constructed of a material that provides a suitable traffic bearing surface nor is it aesthetically pleasing.
Examples of deck systems utilizing roof pavers, or ballast blocks, are disclosed by U.S. Pat. Nos. 5,887,397; 5,377,468; 5,442,882; and 6,604,330 B2 issued to Repasky. Also see U.S. Pat. Nos. 4,570,397 issued to Creske; and 5,588,264 and 6,332,292 B1 issued to Buzon.
While the rooftop ballast block deck systems disclosed in the above referenced patents may be satisfactory for their intended purposes, there is a need for a stable, readily adjustable pedestal for use in such systems. The system should permit proper drainage, for instance to an underlying roof surface, and should enable ready installation of bracing between adjacent pedestals. In addition, the pedestals should be capable of efficient manufacture and installation.
More specifically, the invention is a pedestal for supporting blocks, pavers, tiles, or panels a spaced distance above an underlying surface.
The pedestal for supporting blocks, pavers, tiles, or panels a spaced distance above an underlying surface, includes a support, a sound-deadening pad, and a bosses and recess arrangement positioned between the support plate and pad. The support includes a support plate having an upper surface and a plurality of upstanding walls that define quadrants on the support plate. The sound-deadening pad is positioned on the support plate and is non-movable within the support to prevent any relative movement between the support plate and the pad. The bosses and recess arrangement includes a plurality of bosses are received by the plurality of recesses.
The features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying drawings, in which:
Referring now to the drawings, a deck 10 is constructed of a plurality of separate, substantially-rectangular pavers, ballast blocks, or panels 12 (hereinafter referred to as blocks) that are arranged in a grid layout, or pattern, and that are supported a spaced distance above a surface, such as an exterior roof surface 14 of a building. The deck 10 provides a substantially level traffic-bearing surface 16 for pedestrians and an aesthetic appearance. It can be used to convert an otherwise unusable rooftop or like space into a useful area.
Each block 12 can be made of concrete, marble, granite, wood, rubber, plastic, composite materials, or like weight-bearing substance and is typically square, rectangle, or some other shape that can be positioned in uniform patterns. Thus, each block 12 will typically have corner portions 18, and the deck 10 will have intersection areas 20 in which corner portions 18 of adjacent blocks 12 extend. A separate pedestal 22 underlies each intersection area 20 and supports the corner portions 18 of the adjacent ballast blocks 12. Thus, the entire deck 10 is elevated from an underlying structure, such as exterior roof surface 14. The spacing provided between the blocks 12 and surface 14 and between the laterally positioned blocks 12 permits proper drainage of fluids, such as rain, through the deck 10.
As best illustrated in
In the illustrated embodiment, the support 24 includes a plate 28 with a substantially cylindrical post 30 depending therefrom. In use, the plate 28 is disposed in a substantially horizontal position thereby providing a surface on which the corner portions 18 of the blocks 12 can be supported. Preferably, a plurality of upstanding walls 32 project from the plate 28 and define separate quadrants 34 on the plate 28. Each quadrant 34 receives one corner portion 18 of a block 12. The walls 32 align the corner portions 18 on the pedestal 22 and define lateral spacing between adjacent blocks 12 to permit rain water and other fluids to drain through the deck 10 and around the outside of plate 28.
The upper surface of the plate 28 is provided with a surface that secures and stabilizes the block, paver, or panel on the pedestal 22. This surface functions to prevent and/or deaden noise that may otherwise be created when pedestrians walk on the blocks, pavers, or panels. In addition, the surface can provide a shock absorbing function and can increase friction between the block, paver, or panel and the pedestal 22. As an example, the surface can be provided by a pad 36 or by a coating, texture, or the like applied to an upper surface of the plate 28. As shown in
If a separately manufactured pad 36 is used, it can be made of rubber, an elastomeric material, or like material and secured on the upper surface of the plate 28. The rubber pad 36 deadens any noise that may otherwise be generated due to any slight movement between the contacting surfaces of the pedestal 22 and block 12 such as when pedestrians walk on the block. The pad 36 also increases friction between the block 12 and the pedestal 22 and can prevent damage to the upper surface of the pedestal 22 from placement of the block 12 thereon. The pad 36 can be provided as single pad or as multiple separate strips or sections.
The pad 36 can be mechanically and/or adhesively secured to the plate 28. For example, the engaging surfaces of the pad 36 and plate 28 can include a plurality of bosses 38 and recesses 40 that cooperate to provide a snap-fit connection. An adhesive can be applied between the surfaces before snap fitting the pad 36 to the plate 28.
In the illustrated embodiment, the base 26 includes a plate 42 with a substantially cylindrical, hollow post 44 projecting therefrom. In use, the plate 42 is disposed in a substantially horizontal position and the post 30 of the support 24 is received therein. Preferably, spiral threads 46 are located on an external surface of the post 30 of the support 24 and cooperating spiral threads 48 are located on the internal surface of the hollow post 44 of the base 26. The cooperating threads, 46 and 48, are sized to engage each other and permit the support 24 to be screwed into the base 26. The threads, 46 and 48, can be continuous or discontinuous. Rotation of the support 24 relative to the base 26 enables the overall height “H” of the pedestal 22 to be continuously adjustable. As an alternative arrangement, the post of the support can receive the post of the base, and the positioning of the threads can be reversed such that the support has internal threads and the base has external threads.
One or more couplers 50 can be assembled between the support 24 and base 26 to add further height to the pedestal 22. For example,
Each coupler 50 includes a flange, or collar 52, from which a substantially cylindrical, hollow post 54 projects and a substantially cylindrical post 56 depends. In this configuration, the flange 52 extends circumferentially about a mid-section of the coupler 50 and extends laterally therefrom. Continuous or discontinuous spiral threads 58 are provided on an inner surface of the hollow post 54 and are capable of cooperatively engaging the threads 46 on post 30 of the support 24. In addition, continuous or discontinuous spiral threads 60 are provided on an outer surface of the hollow post 56 and are capable of cooperatively engaging the threads 48 on post 44 of the base 26. Accordingly, the coupler 50 can be used to interconnect the support 24 to the base 26. Further, the couplers 50 are designed to interconnect to each other so that multiple couplers 50 can be interconnected between the support 24 and the base 26. Rotation of the couplers 50, support 24, and base 26 relative to each other can be used to adjust the overall height “H” of the pedestal 22.
Preferably, the flange 52 of each coupler 50 extends in a plane that is substantially parallel to the support plate 28 and base plate 42. See
The flange 52 preferably has a series of eyelets 62 extending therethrough. For instance, the eyelets 62 can be provided as apertures that are circumferentially spaced-apart about the mid-section of the coupler 50. In the illustrated embodiment, sixteen separate eyelets 62 are equally spaced-apart about the coupler 50. Fewer or more eyelets 62 can be provided on the annular flange 52. The eyelets 62 are used for securing the ends of bracing wires to the pedestal 22. The uniform distribution of closely-spaced eyelets 62 about the coupler ensures that an eyelet 62 will always be opposed to an eyelet 62 in an adjacent pedestal 22 thereby enabling ease of installation of the bracing. Thus, eyelets 62 should be readily available at most or substantially all locations about the coupler for ready coupling of bracing wires between pedestals. The bracing should not be required to be bent or the like due to the unavailability of eyelets and should not generate forces that may cause undesired rotation of any components of the pedestals 22.
The base 26 can also be provided with brace securement eyelets. For example, each base 26 can have a plurality of reinforcement walls 66 that extend radially-from an exterior 68 of the post 44. The walls 66 can be spaced-apart circumferentially about the post 44 and can extend integrally from both the plate 42 and post 44 of the base 26. Brace securement eyelets 64 can be provided in the walls 66. In the illustrated embodiment, the eyelets 64 are provided adjacent an area on the base 26 where the post 44 interconnects with the plate 42.
The deck system according to the present invention can include cross bracing that ties adjacent pedestals 22 together and restrains their movement relative to one another. See
As stated above, a possible location of the deck 10 is on a sloped underlying surface, such as the sloped roof 14 of a building. Of course, the deck 10 can also be formed as a terrace, pedestrian walkway, plaza, sun deck, balcony, patio or any type of elevated flooring. Some surfaces, such as the roof surface 14, are provided at a slope for drainage or other purposes. In this case, levelers 72 (shown in phantom in
It may be desired in some installations that the blocks 22 be mechanically tied to the pedestals 22. In this case, a corner cap 74 (shown in phantom in
The above-described deck system and pedestal assembly according to the present invention provides a stable elevated traffic bearing surface for pedestrians and the like on an existing structure, such as rooftop. The deck is easy to install and inexpensive to manufacture. The height of each pedestal can be adjusted by rotating the support relative to the base or by adding or subtracting couplers. Cross bracing can be installed coupler-to-coupler and base-to-coupler in a manner preventing unwanted rotation of various components of the pedestal assembly.
While a preferred ballast block deck system and pedestal assembly has been described in detail, various modifications, alterations, and changes may be made without departing from the spirit and scope of the ballast block deck system and pedestal assembly according to the present invention as defined in the appended claims.
The foregoing illustrates some of the possibilities for practicing the invention. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.
This application is a continuation application of application Ser. No. 12/417,927 filed on Apr. 3, 2009 now U.S. Pat. No. 7,918,059.
Number | Name | Date | Kind |
---|---|---|---|
4085557 | Tharp | Apr 1978 | A |
4277923 | Rebentisch et al. | Jul 1981 | A |
4558544 | Albrecht et al. | Dec 1985 | A |
4570397 | Creske | Feb 1986 | A |
4759162 | Wyse | Jul 1988 | A |
4901490 | Zinniel et al. | Feb 1990 | A |
4996804 | Naka et al. | Mar 1991 | A |
5333423 | Propst | Aug 1994 | A |
5377468 | Repasky | Jan 1995 | A |
5442882 | Repasky | Aug 1995 | A |
5479745 | Kawai et al. | Jan 1996 | A |
5588264 | Buzon | Dec 1996 | A |
5862635 | Linse et al. | Jan 1999 | A |
6332292 | Buzon | Dec 2001 | B1 |
6363685 | Kugler | Apr 2002 | B1 |
6520471 | Jones et al. | Feb 2003 | B2 |
6604330 | Repasky | Aug 2003 | B2 |
20020078638 | Huang | Jun 2002 | A1 |
20020148173 | Kugler | Oct 2002 | A1 |
20040035064 | Kugler et al. | Feb 2004 | A1 |
20040074170 | Huang | Apr 2004 | A1 |
20040261325 | Glynos | Dec 2004 | A1 |
20080053017 | Hockemeyer et al. | Mar 2008 | A1 |
20080053018 | Hockemeyer et al. | Mar 2008 | A1 |
20080222973 | Lee et al. | Sep 2008 | A1 |
Entry |
---|
Bison, “Bison Deck Supports ScrewJack B Series Specifications”, pp. 1-4, Oct. 6, 2005. |
Bison, “Bison ScrewJack B Series Pedestals”, pp. 1-2, Sep. 30, 2005. |
Elmich, “VersiJack ”, 9 pages, Oct. 9, 2006. |
Wausau Tile, “Pedestal/Roof Deck System Components”, (http://www.wausautile.com/paving/pedestalRoofDeckSystems.cfm) Apr. 3, 2009. |
Wausau Tile, “Terra System One Level Installation, Terr-Adjust System”, (http://www.wausautile.com), Apr. 3, 2009. |
Wausau Tile, Terra System One Level Installation (Terra-Stand System), (http://www.wausautile.com), Apr. 3, 2009. |
Westile, “Pedestals”, (http://www.westile.com/pedestal.asp?img=13&cat=comm&ped=acc), Apr. 3, 2009. |
Westile, Screwjack Pedestals, (http://www.westile.com), Dec. 2006. |
Number | Date | Country | |
---|---|---|---|
20110138703 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12417927 | Apr 2009 | US |
Child | 13032910 | US |