The present disclosure relates to cycle-type transportation, rehabilitation, therapy, and exercise devices with and without pedals. More particularly, the present disclosure relates to a pedestrian cycle without pedals that supports a user as the user walks or runs or ambulates in any gait and propels the cycle on a supporting surface.
Since the German patent of the Laufmachine in 1820 was issued in Baden, the idea of ambulation on a two or three-wheeled cycle without pedals has attracted riders. But, this invention, later called the Draiesenne in France, and others such as the American dandyhorse or the English Boneshaker were uncomfortable and undoubtedly painful to the crotch of the rider. As are modern bicycle seats, their very use is indictable as dangerous to the rider's perinea, its critical artery and its sensitive soft tissue, and are presently further indicted in the cause of erectile dysfunction in male bicyclists and loss of genital sensitivity in female bicyclists.
Bicycles having pedals created a successful paradigm of diverse rider positions that alleviated at least some of the excessive perineal pressure problems and provided a reasonable measure of comfort with the advent of now common suspension elements. But pedal cycles require capacities of balance and strength that many people, young and especially old, and certainly the disabled cannot muster without endangerment. Pedal cycles remain particularly useless to those disabled, handicapped, and recovering from injury. Additionally, for those using pedal cycles, especially outdoors, a great distance at reasonable speeds or a short distance at dangerous speeds is necessary to achieve desired exercise and aerobic goals that are easy to achieve running or walking for the less athletic.
Prior art is replete with examples of pedestrian cycles without pedals that fail to offer adequate steering control to the rider, comfortable suspension, and that fail to provide for ambulation in all human gaits with substantively little or even reasonable impact and jarring on the user's joints and organs both internal and external. Importantly, prior art cycles without pedals fail to avert dangerous seat or saddle pressure on the rider's perinea.
Some prior art pedestrian cycles support a small portion of a jogging rider's weight in a harness, alleviating perineal pressure, and slightly reducing joint impact. However, the harness straps of the invention dig into the rider's skin and musculature resulting in discomfort. Further, by transferring only a small portion of the rider's weight to the cycle through bungee cords, the Dandy invention remains unable reduce the impact of the rider contacting the ground substantially and jarring of external and internal organs and skeletal joints remains.
Individuals walking or running without a pedestrian cycle lacking pedals typically wear shoes having soft soles that help absorb the impact of each step. Even with the use of soft-soled or other special shoes, however, ambulation on any surface remains unsupportably jarring to joints and organs, ultimately contributing to health problems over time.
The following problems remain unresolved by prior art and are identified here:
1. The problems of ambulation and therapeutic exercise, especially outdoors and for long periods of time and of long distances remain for those individuals:
2. The problem of dangerous seat or saddle pressure on the sensitive perinea remains for male and female riders of all types of cycles who ride for any significant length of time.
3. The problem of providing for ambulation in all human gaits with substantively little impact on the user's skeletal joints and substantively little jarring of both internal and external organs.
4. The problem of achieving ambulatory, outdoor, aerobic exercise with substantively little impact on joints and organs of the body from the most disabled riders to the most athletic and fit.
Therefore, a pedestrian cycle is needed which supports a user in a seat or saddle that can avert dangerous pressure on the perinea, and that substantively mitigates the jarring effects of walking, running or ambulating in any gait as the able or disabled rider propels the cycle on a supporting surface.
The present disclosure is generally directed to a pedestrian cycle. An illustrative embodiment of the pedestrian cycle includes cycle frame, a front wheel and a rear wheel provided on the pedal-less cycle frame and an exemplary saddle assembly suspended from the cycle frame between the front wheel and the rear wheel.
The disclosure will now be made, by way of example, with reference to the accompanying drawings, in which:
Referring initially to
A rear wheel 10 and a front wheel 28 are provided on the rear frame member 3 and the front frame member 4, respectively, of the cycle frame 2. As illustrated in
A steering assembly 20 may be provided on the front frame member 4 of the cycle frame 2 to facilitate steering of the pedestrian cycle 1. In some embodiments, the steering assembly 20 may include a handlebar shaft receptacle 21 that is attached to the front frame member 4 such as through one or multiple attachment members 22 and/or other attachment technique that is known by those skilled in the art. The handlebar shaft receptacle 21 may extend in generally parallel relationship with respect to the front frame member 4. An elongated handlebar shaft 30 extends through and is rotatable with respect to the handlebar shaft receptacle 21. Handlebars 31 are provided on a first end of the handlebar shaft 30 in the frame interior 2a of the cycle frame 2. A second end of the handlebar shaft 30 engages the front wheel frame 26. Accordingly, rotation of the handlebar shaft 30 in the handlebar shaft receptacle 21 by gripping of the handlebars 31 facilitates turning of the front wheel frame 26 and the front wheel 28 to facilitate steering of the pedestrian cycle 1. In some embodiments the shape of the handlebar 31 may allow for the rider to run erect with the hands drawn to the body.
In some embodiments, a brake system 34 may engage the rear wheel 10 and/or the front wheel 28. The brake system 34 may include, for example, a pair of rear brake calipers 35 or other brake types known by those skilled in the art provided on the rear wheel frame 8 and adapted to engage the wheel rim 13 of the rear wheel 10. A rear brake handle 37 (
As further illustrated in
As illustrated in
A generally C-shaped brace 70 (shown in side view) is provided on the brace support portion 67b of the frame attachment sheath 67. The brace 70 may include a generally C-shaped brace frame 71, the convex surface 71a of which is attached to the brace support portion 67b of the frame attachment sheath 67. The concave surface 71b of the brace frame 71 faces the seat 68. A brace pad 72 may be provided on the brace frame 71. Accordingly, in typical application of the pedestrian cycle 1, a rider (not illustrated) sits on and straddles the seat 68 and faces the brace 70. While riding or turning the pedestrian cycle 1, the rider can lean into the concavity of the brace 70, which stabilizes the rider on the seat 68 and the rider can lean to the horizontal to drive uphill or away from the standing start.
Each front seat support strap 47 and each rear seat support strap 54 may be attached to the front frame member 4 and the rear frame member 3, respectively, of the cycle frame 2 according to any suitable technique which is known by those skilled in the art. As illustrated in
As illustrated in
Referring next to
Referring to
A rider (not illustrated) straddles the seat 68, with a clearance (not illustrated) between the seat 68 and the perineal cavity (not illustrated) of the rider. The rider's feet touch the supporting surface (not illustrated) to steady the pedestrian cycle 1 in a generally vertical or upright position. The rider grasps the handlebars 31 as he or she simulates an ambulatory gait such as running or walking with his or her feet against the supporting surface to self-propel the pedestrian cycle 1 in a forward motion along the supporting surface. During forward motion of the pedestrian cycle 1, the rider can also simulate a gliding motion by sitting on the saddle assembly 66, lifting his or her feet from the supporting surface and placing the feet upon the provided foot rest or dangling the feet in the air. The rider will balance the pedestrian cycle 1 in an upright position while moving forward by steering of the handlebars 31, as would the rider of any ordinary and existing cycle, and by placing a foot on the ground with each step during ambulation.
The practiced rider will rock the saddle assembly 66 forward and place their pelvic horns and their transverse abdominal muscle into the concave brace pad 70, allowing the rider to lean forward, place the legs behind himself or herself and accelerate or drive the pedestrian cycle from the start position or up a hill as if in low gear. Once accelerated from the start, and on level ground, the rider then rotates back in the saddle assembly 66 to a comfortable and level cruise position. The practiced rider will adjust the saddle assembly 66 to the highest position whereby the rider's toes only are in contact with the ground providing for the highest speeds over level ground, so called, high gear.
The rider can steer the pedestrian cycle 1 while gliding with the feet held of the ground by rotation of the handlebars to the left or right. While ambulating, those practiced in the art will note the rider's position will remain vertical as the saddle assembly 66 rotates around the straps 47 and 54 while the pedestrian cycle frame is leaned to the left or right independently of the rider allowing for very tight turning operations with a secure and vertical position for the rider. The rider can further turn the pedestrian cycle while stopped, 360 degrees or any part thereof within its own wheelbase by leaning the pedestrian cycle left or right, lifting the then weightless front wheel 14 and rotating the pedestrian cycle around the arc while turning the body by moving the feet as if spinning in a circle.
The rider can slow or stop the pedestrian cycle 1 typically by manual application of the rear brake handle 37 and/or the front brake handle 42 of the brake system 34 and/or by slowing with the feet as a runner without the pedestrian cycle would slow down and stop. In the case of an immanent loss of control or other accident, the rider may allow the pedestrian cycle to drop to the ground while the rider, who is already in contact with the ground or may place the feet on the ground rapidly, will slow down and stop as would a runner without the pedestrian cycle.
The pad 6 may be provided on the front frame member 4 to protect against chaffing of the neck and face when leaning forward when going uphill or during initial acceleration and to cushion occasional contact with the helmet of the rider. It will be appreciated by those skilled in the art that during the simulated ambulatory motion of the rider to propel the pedestrian cycle 1 in a forward motion, the saddle assembly 66 may support most or a large portion of the rider's weight upon each step and all of the riders weight between each step. Thus the rider does not ever catch his or her body weight at the forward end of each step, but lifts his leg from contact with the ground as the leg of a man on a scooter would, thereby reducing impact to the joints and organs substantively near zero impact. This contributes to a more comfortable and less jarring mode of exercise than walking, skipping, jogging or running for all users, and notably brings enhanced ambulatory potential to persons debilitated by age, disability or infirmity more than can be experienced by relevant prior art cited herein, or ambulation with the unassisted body.
From the descriptions above, a number of advantages of some embodiments of the pedestrian cycle become evident to those skilled in the art, as the pedestrian cycle will:
Thus it has been shown that at least one embodiment of the pedestrian cycle 1 provides enhanced ambulatory capacity in any human gait to users of all ages, capacities, disabilities and infirmities having widely differing abilities and capabilities. Also shown is the capacity of the pedestrian cycle 1 to allow ambulatory capacity with substantively little impact on the skeletal joints or jarring of internal and external organs of the user. It has been further shown that the saddle assembly 66 of the pedestrian cycle will avert harmful pressure on the sensitive and vulnerable perinea of the rider and thereby provides the comfort needed to remain aboard for long periods of time over long distances, whether aggressively exercising or casually ambling about.
Although the description above contains many specificities, these should not be construed as limitations on the scope of the invention, but as merely providing illustrations of some of the presently preferred embodiments. Many variations are possible, it should be noted. Accordingly, the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by these examples or embodiments herein described.
The present patent application is related to and claims the benefit of priority from U.S. Provisional Patent Application No. 60/993,680, filed on 12 Sep., 2007, entitled “GlydeCycle,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1518037 | Wilson | Dec 1924 | A |
1748183 | Montague | Feb 1930 | A |
3180678 | McCabe | Apr 1965 | A |
4619462 | Shaffer et al. | Oct 1986 | A |
4681332 | Malone | Jul 1987 | A |
4828251 | Schreiber | May 1989 | A |
5167597 | David | Dec 1992 | A |
5174590 | Kerley et al. | Dec 1992 | A |
5526893 | Higer | Jun 1996 | A |
5603677 | Sollo | Feb 1997 | A |
5667461 | Hall | Sep 1997 | A |
5732964 | Durham et al. | Mar 1998 | A |
5997017 | Tilley | Dec 1999 | A |
6102420 | Hoeksta | Aug 2000 | A |
6302828 | Martin et al. | Oct 2001 | B1 |
6578594 | Bowen et al. | Jun 2003 | B1 |
7341543 | Dandy | Mar 2008 | B2 |
20040063550 | Harris | Apr 2004 | A1 |
20050085349 | Dandy | Apr 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60993680 | Sep 2007 | US |