The disclosure is directed to the fields of small molecule therapies, cancer, and methods of treating rare cancer types, particularly in pediatric subjects.
There is a long-felt yet unmet need for effective treatments for certain cancers caused by genetic alterations or loss of function of subunits of the SWI/SNF chromatin remodeling complex that result in EZH2-dependent oncogenesis.
Some aspects of this disclosure provide methods, strategies, and dosage schedules for inhibiting EZH2 in a subject, e.g., in a human pediatric patient, by administering a therapeutically-effective amount of an enhancer of a zeste homolog 2 (EZH2) inhibitor to the subject. The methods, strategies, and dosage schedules provided herein are useful, for example, for treating cancer in pediatric patients.
Some aspects of this disclosure provide a method of treating a cancer, e.g., an INI1-deficient tumor, in a subject in need thereof comprising administering to the subject a therapeutically-effective amount of an enhancer of a zeste homolog 2 (EZH2) inhibitor. Methods of treating cancer, e.g., INI1-deficient tumors, provided herein may comprise preventing and/or inhibiting proliferation of a malignant cell, e.g., an INI1-deficient cell, or cell population.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
or a pharmaceutically-acceptable salt thereof.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
or a pharmaceutically acceptable salt thereof.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
In certain embodiments of the methods of the disclosure, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
EZH2 inhibitors of the disclosure may be administered orally. For example, the EZH2 inhibitor may be formulated as an oral tablet or suspension.
EZH2 inhibitors of the disclosure may be formulated for administration to cerebral spinal fluid (C SF) by any route. Exemplary routes of administration to the CSF include, but are not limited to, an intraspinal, an intracranial, an intrathecal or an intranasal route.
In certain embodiments, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral tablet, or as a suspension or solution, EZH2 inhibitors of the disclosure may be administered at a dose of between 10 mg/kg/day and 1600 mg/kg/day. EZH2 inhibitors of the disclosure may be administered at a dose of about 100, 200, 400, 800, or 1600 mg. EZH2 inhibitors of the disclosure may be administered at a dose of about 800 mg. EZH2 inhibitors of the disclosure may be administered once or twice per day (BID). In some embodiments, EZH2 inhibitors of the disclosure may be administered at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID. For example, in some embodiments, EZH2 inhibitors of the disclosure may be administered at a dose of 800 mg BID.
In some embodiments, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral tablet, suspension, or solution, and/or formulated for administration to the CSF by any route, the EZH2 inhibitor may be administered at a dose of between 10 mg/kg/day and 1600 mg/kg/day, e.g., at a dose of 10 mg/kg/day, 20 mg/kg/day, 25 mg/kg/day, 30 mg/kg/day, 40 mg/kg/day, 50 mg/kg/day, 60 mg/kg/day, 70 mg/kg/day, 75 mg/kg/day, 80 mg/kg/day, 90 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, 250 mg/kg/day, 300 mg/kg/day, 400 mg/kg/day, 500 mg/kg/day, 600 mg/kg/day, 700 mg/kg/day, 750 mg/kg/day, 800 mg/kg/day, 900 mg/kg/day, 1000 mg/kg/day, 1100 mg/kg/day, 1200 mg/kg/day, 1250 mg/kg/day, 1300 mg/kg/day, 1400 mg/kg/day, 1500 mg/kg/day, or 1600 mg/kg/day. For example, EZH2 inhibitors of the disclosure may be administered at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID. For example, EZH2 inhibitors of the disclosure may be administered at a dose of 800 mg BID.
In some embodiments, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral tablet, suspension, or solution, and/or formulated for administration to the CSF by any route, the EZH2 inhibitor may be administered at a dose of between 10 mg/m2/day and 1200 mg/m2/day, e.g., at a dose of 10 mg/m2/day, 20 mg/m2/day, 25 mg/m2/day, 30 mg/m2/day, 40 mg/m2/day, 50 mg/m2/day, 60 mg/m2/day, 70 mg/m2/day, 75 mg/m2/day, 80 mg/m2/day, 90 mg/m2/day, 100 mg/m2/day, 110 mg/m2/day, 120 mg/m2/day, 125 mg/m2/day, 130 mg/m2/day, 140 mg/m2/day, 150 mg/m2/day, 160 mg/m2/day, 170 mg/m2/day, 175 mg/m2/day, 180 mg/m2/day, 190 mg/m2/day, 200 mg/m2/day, 210 mg/m2/day, 220 mg/m2/day, 225 mg/m2/day, 230 mg/m2/day, 240 mg/m2/day, 250 mg/m2/day, 260 mg/m2/day, 270 mg/m2/day, 275 mg/m2/day, 280 mg/m2/day, 290 mg/m2/day, 300 mg/m2/day, 310 mg/m2/day, 320 mg/m2/day, 325 mg/m2/day, 330 mg/m2/day, 340 mg/m2/day, 350 mg/m2/day, 360 mg/m2/day, 370 mg/m2/day, 375 mg/m2/day, 380 mg/m2/day, 390 mg/m2/day, 400 mg/m2/day, 410 mg/m2/day, 420 mg/m2/day, 425 mg/m2/day, 430 mg/m2/day, 440 mg/m2/day, 450 mg/m2/day, 460 mg/m2/day, 470 mg/m2/day, 475 mg/m2/day, 480 mg/m2/day, 490 mg/m2/day, 500 mg/m2/day, 525 mg/m2/day, 550 mg/m2/day, 575 mg/m2/day, 600 mg/m2/day, 625 mg/m2/day, 650 mg/m2/day, 675 mg/m2/day, 700 mg/m2/day, 750 mg/m2/day, 800 mg/m2/day, 850 mg/m2/day, 900 mg/m2/day, or 1000 mg/m2/day. In some embodiments, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral tablet, suspension, or solution, and/or formulated for administration to the CSF by any route, the EZH2 inhibitor may be administered at a dose of between 10 mg/m2/day and 1200 mg/m2/day, e.g., between 100 and 300 mg/m2/day, between 200 and 300 mg/m2/day, between 200 and 400 mg/m2/day, between 250 and 500 mg/m2/day, between 150 and 400 mg/m2/day, between 150 and 300 mg/m2/day, between 300 and 600 mg/m2/day, between 350 and 400 mg/m2/day, between 350 and 700 mg/m2/day, or between 400 and 1200 mg/m2/day. For example, EZH2 inhibitors of the disclosure may be administered at a dose of between 10 mg/m2/day and 1200 mg/m2/day BID. For example, EZH2 inhibitors of the disclosure may be administered at a dose of 100, 120, 140, 150, 160, 200, 240, 250, 260, 300, 320, 350, 380, 400, or 600 mg/m2 BID.
In certain embodiments, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral tablet, or as a suspension or solution and/or formulated for administration to the CSF by any route, EZH2 inhibitors of the disclosure may be administered at a dose of 50%, 60%, 70%, 80%, 90%, or any percentage in between of a value of an area under the curve (AUC) of a steady state plasma and/or CSF concentration (AUCSS) of an EZH2 inhibitor, wherein the AUCSS is determined following administration of the EZH2 inhibitor to an adult subject at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID. In certain embodiments of the methods of the disclosure, including, but not limited to, those embodiments wherein the EZH2 inhibitor is formulated as an oral suspension and/or formulated to administration to the CSF by any route, EZH2 inhibitors of the disclosure may be administered at a dose of between 230 mg/m2 and 600 mg/m2, inclusive of the endpoints. EZH2 inhibitors of the disclosure may be administered at a dose of between 300 mg/m2 and 600 mg/m2. EZH2 inhibitors of the disclosure may be administered at a dose of between 230 mg/m2 and 305 mg/m2, inclusive of the endpoints. EZH2 inhibitors of the disclosure may be administered at a dose of 240 mg/m2. EZH2 inhibitors of the disclosure may be administered at a dose of 300 mg/m2. EZH2 inhibitors of the disclosure may be administered once or twice per day (BID). For example, EZH2 inhibitors of the disclosure may be administered at a dose of between 230 mg/m2 and 600 mg/m2 BID, inclusive of the endpoints.
For example, an EZH2 inhibitor of the disclosure may be administered at a dose of about 60% of the area under the curve (AUC) at steady state (AUCSS) following administration of 1600 mg twice a day to an adult subject. Accordingly, an EZH2 inhibitor of the disclosure administered at a dose of about 60% of the area under the curve (AUC) at steady state (AUCSS) following administration of 1600 mg twice a day to an adult subject, is administered at a dose of about 600 mg/m2 per day or at least 600 mg/m2 per day. In certain aspects of this example, the subject treated with the EZH2 inhibitor is a pediatric subject.
For example, an EZH2 inhibitor of the disclosure may be administered at a dose of about 80% of the area under the curve (AUC) at steady state (AUCS) following administration of 800 mg twice a day to an adult subject. Accordingly, an EZH2 inhibitor of the disclosure administered at a dose of about 80% of the area under the curve (AUC) at steady state (AUCSS) following administration of 800 mg twice a day to an adult subject, is administered at a dose of about 390 mg/m2 per day or at least 390 mg/m2 per day. In certain aspects of this example, the subject treated with the EZH2 inhibitor is a pediatric subject.
In some embodiment, the subject may be a pediatric subject. In some embodiments, a pediatric subject of the disclosure is between 6 months and 21 years of age, inclusive of the endpoints. For example, in some embodiments, a pediatric subject of the disclosure is between 1 year and 18 years of age, inclusive of the endpoints; 10 years of age or less; 5 years of age or less; between 6 months and 1 year of age, inclusive of the endpoints; between 1 year and 2 years of age, inclusive of the endpoints; between 2 years and 6 years of age, inclusive of the endpoints; between 6 years and 12 years of age, inclusive of the endpoints; or between 12 years and 18 years of age, inclusive of the endpoints. In some embodiments, a pediatric subject is about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, about 10 years, about 11 years, about 12 years, about 13 years, about 14 years, about 15 years, about 16 years, about 17 years, about 18 years, about 19 years, about 20 years, or about 21 years of age. In some embodiments, a pediatric subject is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 12 years of age, and not more than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ,15, 16, 17, 18, 19, 20, or 21 years of age, wherein every possible age range that can be formed with these values (e.g., at least 4 and not older than 12 years, or at least 10 and not older than 18 years, to provide two non-limiting examples) is embraced by the present disclosure.
In some embodiments, the disclosure provides a method of treating cancer, e.g., an INI1-deficient tumor, in a subject in need thereof comprising administering to the subject a therapeutically-effective amount of tazemetostat, wherein the therapeutically effective amount is at least 300 mg/m2 twice per day (BID), and wherein the subject is a pediatric subject, e.g., a subject between 6 months and 21 years of age, inclusive of the endpoints.
Some aspects of this disclosure provide methods, strategies, and dosing schedules for treating cancer in a subject by administering to the subject a therapeutically-effective amount of an enhancer of a zeste homolog 2 (EZH2) inhibitor. In some embodiments, the cancer is an INI1-deficient tumor. In some embodiments, methods of treating cancer, e.g., an INI1-deficient tumor, of the disclosure may comprise preventing and/or inhibiting proliferation of a malignant cell, e.g., of an INI1-deficient cell.
The disclosure provides a method for treating or alleviating a symptom of a SWI/SNF-associated cancer in a subject by administering to a subject in need thereof a therapeutically effective amount of an EZH2 inhibitor. For example, the SWPSNF-associated cancer is characterized by reduced expression and/or loss of function of the SWI/SNF complex or one or more components of the SWI/SNF complex. In a preferred embodiment, the cancer is an INI1-deficient tumor
The disclosure also provides a method of treating or alleviating a symptom of a SWPSNF-associated cancer in a subject in need thereof by (a) determining the expression level of at least one gene selected from the group consisting of differentiation genes, cell cycle inhibition genes and tumor suppressor genes in a sample obtained from the subject; (b) selecting the subject having a decreased expression level of at least one gene in step a; and (c) administering to the subject selected in step b an effective amount of an EZH2 inhibitor, thereby treating or alleviating a symptom of cancer in the subject. In a preferred embodiment, the cancer is an INI1-deficient tumor.
The disclosure further provides a method of treating or alleviating a symptom of a SWPSNF-associated cancer in a subject in need thereof by (a) determining the expression level of at least one gene selected from the group consisting of hedgehog pathway genes, myc pathway genes and histone methyltransferase genes in a sample obtained from the subject; (b) selecting the subject having an increased expression level of at least one gene in step a; and (c) administering to the subject selected in step b an effective amount of an EZH2 inhibitor, thereby treating or alleviating a symptom of cancer in the subject. In a preferred embodiment, the cancer is an INI1-deficient tumor.
For example, the differentiation gene is CD133, DOCK4, or PTPRK.
For example, the cell cycle inhibition gene is CKDN1A or CDKN2A.
For example, the tumor suppressor gene is BIN1.
For example, the hedgehog pathway gene is GLI1 or PTCH1.
For example, the myc pathway gene is MYC.
For example, the histone methyltransferase gene is EZH2.
The disclosure also provides a method of inducing differentiation, cell cycle inhibition or tumor suppression by contacting a cell with an EZH2 inhibitor. The EZH2 inhibitor may be in an amount sufficient to increase expression of at least one gene selected from the group consisting of CD133, DOCK4, PTPRK, CKDN1A, CDKN2A and BIN1.
The disclosure also provides a method of inhibiting hedgehog signaling by contacting a cell with an EZH2 inhibitor. The EZH2 inhibitor can be in an amount sufficient to reduce expression of GLI1 and/or PTCH1.
The disclosure also provides a method of inducing gene expression by contacting a cell with an EZH2 inhibitor. The EZH2 inhibitor can be in an amount sufficient to induce differentiation, cell cycle inhibition and/or tumor suppression. For example, the gene can be CD133, DOCK4, PTPRK, CKDN1A, CKDN2A or BIN1.
The disclosure also provides a method of inhibiting gene expression by contacting a cell with an EZH2 inhibitor. The EZH2 inhibitor is in an amount sufficient to inhibit hedgehog signaling. For example, the gene can be GLI1 or PTCH1.
For example, the cell may have loss of function of SNF5, ARID1A, ATRX, and/or a component of the SWI/SNF complex.
For example, the loss of function is caused by a deletion of SNF5.
For example, the cell is a cancer cell. Preferably, the cancer is an INI1-deficient cancer cell.
For example, the EZH2 inhibitor comprises
or a pharmaceutically-acceptable salt thereof.
For example, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
For example, the EZH2 inhibitor comprises
or a pharmaceutically acceptable salt thereof.
For example, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
For example, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
For example, the EZH2 inhibitor comprises
a stereoisomer, a pharmaceutically acceptable salt and/or a solvate thereof.
Human nucleic acid and amino acid sequence of components of the SWI/SNF complex have previously been described. See, e.g., GenBank Accession Nos NP_003064.2, NM_003073.3, NP_001007469.1, and NM_001007468.1 for SNF5, GenBank Accession Nos NM_000489.3, NP_000480.2, NM_138270.2, and NP_612114.1 for ATRX, GenBank Accession Nos NP_006006.3, NM_006015.4, NP_624361.1, and NM_139135.2 for ARID1A, each of which is incorporated herein by reference in its entirety.
Spectrum of hSNF5 somatic mutations in human has also been described in Sevenet et al., Human Molecular Genetics, 8: 2359-2368, 1999, which is incorporated herein by reference in its entirety.
A subject in need thereof may have reduced expression, haploinsufficiency, and/or loss of function of SNF5. For example, a subject can comprise a deletion of SNF5 in SNF5 polypeptide or a nucleic acid sequence encoding a SNF5 polypeptide.
Homo sapiens SWI/SNF related, matrix associated, actin dependent regulator of chromatin,
Homo sapiens SWI/SNF related, matrix associated, actin dependent regulator of chromatin,
A subject in need thereof may have reduced expression, haploinsufficiency, and/or loss of function of ATRX. For example, a subject can comprise a mutation selected from the group consisting of a substitution of asparagine (N) for the wild type residue lysine (K) at amino acid position 688 of SEQ ID NO: 5 (K688N), and a substitution of isoleucine (I) for the wild type residue methionine (M) at amino acid position 366 of SEQ ID NO: 5 (M366I).
Homo sapiens alpha thalassemia/mental retardation syndrome X-linked (ATRX) isoform 1
Homo sapiens alpha thalassemia/mental retardation syndrome X-linked (ATRX), transcript
Homo sapiens alpha thalassemia/mental retardation syndrome X-linked (ATRX) isoforrn 2
Homo sapiens alpha thalassemia/mental retardation syndrome X-linked (ATRX), transcript
A subject in need thereof may have reduced expression, haploinsufficiency, and/or loss of function of ARID1A. For example, a subject may comprise a mutation selected from the group consisting of a nonsense mutation for the wild type residue cysteine (C) at amino acid position 884 of SEQ ID NO: 11 (C884*), a substitution of lysine (K) for the wild type residue glutamic acid (E) at amino acid position 966 (E966K), a nonsense mutation for the wild type residue glutamine (Q) at amino acid position 1411 of SEQ ID NO: 11 (Q1411*), a frame shift mutation at the wild type residue phenylalanine (F) at amino acid position 1720 of SEQ ID NO: 11 (F1720fs), a frame shift mutation after the wild type residue glycine (G) at amino acid position 1847 of SEQ ID NO: 11 (G1847fs), a frame shift mutation at the wild type residue cysteine (C) at amino acid position 1874 of SEQ ID NO: 11 (C1874fs), a substitution of glutamic acid (E) for the wild type residue aspartic acid (D) at amino acid position 1957 (D1957E), a nonsense mutation for the wild type residue glutamine (Q) at amino acid position 1430 of SEQ ID NO: 11 (Q1430*), a frame shift mutation at the wild type residue arginine (R) at amino acid position 1721 of SEQ ID NO: 11 (R1721fs), a substitution of glutamic acid (E) for the wild type residue glycine (G) at amino acid position 1255 (G1255E), a frame shift mutation at the wild type residue glycine (G) at amino acid position 284 of SEQ ID NO: 11 (G284fs), a nonsense mutation for the wild type residue arginine (R) at amino acid position 1722 of SEQ ID NO: 11 (R1722*), a frame shift mutation at the wild type residue methionine (M) at amino acid position 274 of SEQ ID NO: 11 (M274fs), a frame shift mutation at the wild type residue glycine (G) at amino acid position 1847 of SEQ ID NO: 11 (G1847fs), a frame shift mutation at the wild type residue P at amino acid position 559 of SEQ ID NO: 11 (P559fs), a nonsense mutation for the wild type residue arginine (R) at amino acid position 1276 of SEQ ID NO: 11 (R1276*), a frame shift mutation at the wild type residue glutamine (Q) at amino acid position 2176 of SEQ ID NO: 11 (Q2176fs), a frame shift mutation at the wild type residue histidine (H) at amino acid position 203 of SEQ ID NO: 11 (H203fs), a frame shift mutation at the wild type residue alanine (A) at amino acid position 591 of SEQ ID NO: 11 (A591fs), a nonsense mutation for the wild type residue glutamine (Q) at amino acid position 1322 of SEQ ID NO: 11 (Q1322*), a nonsense mutation for the wild type residue serine (S) at amino acid position 2264 of SEQ ID NO: 11 (S2264*), a nonsense mutation for the wild type residue glutamine (Q) at amino acid position 586 of SEQ ID NO: 11 (Q586*), a frame shift mutation at the wild type residue glutamine (Q) at amino acid position 548 of SEQ ID NO: 11 (Q548fs), and a frame shift mutation at the wild type residue asparagine (N) at amino acid position 756 of SEQ ID NO: 11 (N756fs). “*” used herein refers to a stop codon. “fs” used herein refers to a frame shift.
Homo sapiens AT rich interactive domain 1A (SWI-like)(ARID1A), transcript variant 1,
Homo sapiens AT rich interactive domain 1A (SWI-like)(ARID1A), transcript variant 2,
The term “inducing differentiation” used herein refers to causing an immature or stem-like cell to develop into a more differentiated or terminally differentiated cell.
According to the methods of the disclosure, a “normal” cell may be used as a basis of comparison for one or more characteristics of a cancer cell, including expression and/or function of SNF5, ATRX, and/or ARID1A. As used herein, a “normal cell” is a cell that cannot be classified as part of a “cell proliferative disorder”. A normal cell lacks unregulated or abnormal growth, or both, that can lead to the development of an unwanted condition or disease. Preferably, a normal cell expresses a comparable amount of EZH2 as a cancer cell. Preferably a normal cell contains a wild type sequence for a SNF5, ATRX, and/or ARID1A gene, expresses a SNF5, ATRX, and/or ARID1A transcript without mutations, and expresses a SNF5, ATRX, and/or ARID1A protein without mutations that retains all functions a normal activity levels.
As used herein, “contacting a cell” refers to a condition in which a compound or other composition of matter is in direct contact with a cell, or is close enough to induce a desired biological effect in a cell.
As used herein, “treating” or “treat” describes the management and care of a subject for the purpose of combating a disease, condition, or disorder and includes the administration of an EZH2 inhibitor of the disclosure, or a pharmaceutically acceptable salt, prodrug, metabolite, polymorph or solvate thereof, to alleviate the symptoms or complications of cancer or to eliminate the cancer.
As used herein, the term “alleviate” is meant to describe a process by which the severity of a sign or symptom of cancer is decreased. Importantly, a sign or symptom can be alleviated without being eliminated. In a preferred embodiment, the administration of pharmaceutical compositions of the disclosure leads to the elimination of a sign or symptom, however, elimination is not required. Effective dosages are expected to decrease the severity of a sign or symptom. For instance, a sign or symptom of a disorder such as cancer, which can occur in multiple locations, is alleviated if the severity of the cancer is decreased within at least one of multiple locations.
As used herein, the term “severity” is meant to describe the potential of cancer to transform from a precancerous, or benign, state into a malignant state. Alternatively, or in addition, severity is meant to describe a cancer stage, for example, according to the TNM system (accepted by the International Union Against Cancer (UICC) and the American Joint Committee on Cancer (AJCC)) or by other art-recognized methods. Cancer stage refers to the extent or severity of the cancer, based on factors such as the location of the primary tumor, tumor size, number of tumors, and lymph node involvement (spread of cancer into lymph nodes). Alternatively, or in addition, severity is meant to describe the tumor grade by art-recognized methods (see, National Cancer Institute, www.cancer.gov). Tumor grade is a system used to classify cancer cells in terms of how abnormal they look under a microscope and how quickly the tumor is likely to grow and spread. Many factors are considered when determining tumor grade, including the structure and growth pattern of the cells. The specific factors used to determine tumor grade vary with each type of cancer. Severity also describes a histologic grade, also called differentiation, which refers to how much the tumor cells resemble normal cells of the same tissue type (see, National Cancer Institute, www.cancer.gov). Furthermore, severity describes a nuclear grade, which refers to the size and shape of the nucleus in tumor cells and the percentage of tumor cells that are dividing (see, National Cancer Institute, www.cancer.gov).
In another aspect of the disclosure, severity describes the degree to which a tumor has secreted growth factors, degraded the extracellular matrix, become vascularized, lost adhesion to juxtaposed tissues, or metastasized. Moreover, severity describes the number of locations to which a primary tumor has metastasized. Finally, severity includes the difficulty of treating tumors of varying types and locations. For example, inoperable tumors, those cancers which have greater access to multiple body systems (hematological and immunological tumors), and those which are the most resistant to traditional treatments are considered most severe. In these situations, prolonging the life expectancy of the subject and/or reducing pain, decreasing the proportion of cancerous cells or restricting cells to one system, and improving cancer stage/tumor grade/histological grade/nuclear grade are considered alleviating a sign or symptom of the cancer.
As used herein the term “symptom” is defined as an indication of disease, illness, injury, or that something is not right in the body. Symptoms are felt or noticed by the individual experiencing the symptom, but may not easily be noticed by others. Others are defined as non-health-care professionals.
As used herein the term “sign” is also defined as an indication that something is not right in the body. But signs are defined as things that can be seen by a doctor, nurse, or other health care professional.
Cancer is a group of diseases that may cause almost any sign or symptom. The signs and symptoms will depend on where the cancer is, the size of the cancer, and how much it affects the nearby organs or structures. If a cancer spreads (metastasizes), then symptoms may appear in different parts of the body.
As a cancer grows, it begins to push on nearby organs, blood vessels, and nerves. This pressure creates some of the signs and symptoms of cancer. Cancers may form in places where it does not cause any symptoms until the cancer has grown quite large.
Cancer may also cause symptoms such as fever, fatigue, or weight loss. This may be because cancer cells use up much of the body's energy supply or release substances that change the body's metabolism. Or the cancer may cause the immune system to react in ways that produce these symptoms. While the signs and symptoms listed above are the more common ones seen with cancer, there are many others that are less common and are not listed here. However, all art-recognized signs and symptoms of cancer are contemplated and encompassed by the disclosure.
Treating cancer may result in a reduction in size of a tumor. A reduction in size of a tumor may also be referred to as “tumor regression”. Preferably, after treatment according to the methods of the disclosure, tumor size is reduced by 5% or greater relative to its size prior to treatment; more preferably, tumor size is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75% or greater. Size of a tumor may be measured by any reproducible means of measurement. The size of a tumor may be measured as a diameter of the tumor.
Treating cancer may result in a reduction in tumor volume. Preferably, after treatment according to the methods of the disclosure, tumor volume is reduced by 5% or greater relative to its size prior to treatment; more preferably, tumor volume is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75% or greater. Tumor volume may be measured by any reproducible means of measurement.
Treating cancer may result in a decrease in number of tumors. Preferably, after treatment, tumor number is reduced by 5% or greater relative to number prior to treatment; more preferably, tumor number is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75%. Number of tumors may be measured by any reproducible means of measurement. The number of tumors may be measured by counting tumors visible to the naked eye or at a specified magnification. Preferably, the specified magnification is 2×, 3×, 4×, 5×, 10×, or 50×.
Treating cancer may result in a decrease in number of metastatic lesions in other tissues or organs distant from the primary tumor site. Preferably, after treatment according to the methods of the disclosure, the number of metastatic lesions is reduced by 5% or greater relative to number prior to treatment; more preferably, the number of metastatic lesions is reduced by 10% or greater; more preferably, reduced by 20% or greater; more preferably, reduced by 30% or greater; more preferably, reduced by 40% or greater; even more preferably, reduced by 50% or greater; and most preferably, reduced by greater than 75%. The number of metastatic lesions may be measured by any reproducible means of measurement. The number of metastatic lesions may be measured by counting metastatic lesions visible to the naked eye or at a specified magnification. Preferably, the specified magnification is 2×, 3×, 4×, 5×, 10×, or 50×.
An effective amount of an EZH2 inhibitor of the disclosure, or a pharmaceutically acceptable salt, prodrug, metabolite, polymorph or solvate thereof, is not significantly cytotoxic to normal cells. For example, a therapeutically effective amount of an EZH2 inhibitor of the disclosure is not significantly cytotoxic to normal cells if administration of the EZH2 inhibitor of the disclosure in a therapeutically effective amount does not induce cell death in greater than 10% of normal cells. A therapeutically effective amount of an EZH2 inhibitor of the disclosure does not significantly affect the viability of normal cells if administration of the compound in a therapeutically effective amount does not induce cell death in greater than 10% of normal cells.
Contacting a cell with an EZH2 inhibitor of the disclosure, or a pharmaceutically acceptable salt, prodrug, metabolite, polymorph or solvate thereof, can inhibit EZH2 activity selectively in cancer cells. Administering to a subject in need thereof an EZH2 inhibitor of the disclosure, or a pharmaceutically acceptable salt, prodrug, metabolite, polymorph or solvate thereof, can inhibit EZH2 activity selectively in cancer cells.
EZH2 inhibitors of the disclosure comprise tazemetostat (EPZ-6438):
or a pharmaceutically acceptable salt thereof.
Tazemetostat is also described in U.S. Pat. Nos. 8,410,088, 8,765,732, and 9,090,562 (the contents of which are each incorporated herein in their entireties).
Tazemetostat or a pharmaceutically acceptable salt thereof, as described herein, is potent in targeting both WT and mutant EZH2. Tazemetostat is orally bioavailable and has high selectivity to EZH2 compared with other histone methyltransferases (i.e. >20,000 fold selectivity by Ki). Importantly, tazemetostat has targeted methyl mark inhibition that results in the killing of genetically defined cancer cells in vitro. Animal models have also shown sustained in vivo efficacy following inhibition of the target methyl mark. Clinical trial results described herein also demonstrate the safety and efficacy of tazemetostat.
In one embodiment, tazemetostat or a pharmaceutically acceptable salt thereof is administered to the subject at a dose of approximately 100 mg to approximately 3200 mg daily, such as about 100 mg BID to about 1600 mg BID (e.g., 100 mg BID, 200 mg BID, 400 mg BID, 800 mg BID, or 1600 mg BID), for treating a NHL. On one embodiment the dose is 800 mg BID.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of:
or stereoisomers thereof or pharmaceutically acceptable salts and solvates thereof.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of Compound E:
or pharmaceutically acceptable salts thereof.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of GSK-126, having the following formula:
stereoisomers thereof, or pharmaceutically acceptable salts or solvates thereof.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of Compound F:
or stereoisomers thereof or pharmaceutically acceptable salts and solvates thereof.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of any one of Compounds Ga-Gc:
or a stereoisomer, pharmaceutically acceptable salt or solvate thereof.
EZH2 inhibitors of the disclosure may comprise, consist essentially of or consist of CPI-1205 or GSK343.
Additional suitable EZH2 inhibitors will be apparent to those skilled in the art. In some embodiments of the strategies, treatment modalities, methods, combinations, and compositions provided herein, the EZH2 inhibitor is an EZH2 inhibitor described in U.S. Pat. No. 8,536,179 (describing GSK-126 among other compounds and corresponding to WO 2011/140324), the entire contents of each of which are incorporated herein by reference.
In some embodiments of the strategies, treatment modalities, methods, combinations, and compositions provided herein, the EZH2 inhibitor is an EZH2 inhibitor described in PCT/US2014/015706, published as WO 2014/124418, in PCT/US2013/025639, published as WO 2013/120104, and in U.S. Ser. No. 14/839,273, published as US 2015/0368229, the entire contents of each of which are incorporated herein by reference
In one embodiment, the compound disclosed herein is the compound itself, i.e., the free base or “naked” molecule. In another embodiment, the compound is a salt thereof, e.g., a mono-HCl or tri-HCl salt, mono-HBr or tri-HBr salt of the naked molecule.
Compounds disclosed herein that contain nitrogens can be converted to N-oxides by treatment with an oxidizing agent (e.g., 3-chloroperoxybenzoic acid (mCPBA) and/or hydrogen peroxides) to afford other compounds suitable for any methods disclosed herein. Thus, all shown and claimed nitrogen-containing compounds are considered, when allowed by valency and structure, to include both the compound as shown and its N-oxide derivative (which can be designated as N→O or N+—O−). Furthermore, in other instances, the nitrogens in the compounds disclosed herein can be converted to N-hydroxy or N-alkoxy compounds. For example, N-hydroxy compounds can be prepared by oxidation of the parent amine by an oxidizing agent such as m-CPBA. All shown and claimed nitrogen-containing compounds are also considered, when allowed by valency and structure, to cover both the compound as shown and its N-hydroxy (i.e., N—OH) and N-alkoxy (i.e., N-OR, wherein R is substituted or unsubstituted C1-C6 alkyl, C1-C6 alkenyl, C1-C6 alkynyl, 3-14-membered carbocycle or 3-14-membered heterocycle) derivatives.
“Isomerism” means compounds that have identical molecular formulae but differ in the sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Stereoisomers that are not mirror images of one another are termed “diastereoisomers,” and stereoisomers that are non-superimposable mirror images of each other are termed “enantiomers” or sometimes optical isomers. A mixture containing equal amounts of individual enantiomeric forms of opposite chirality is termed a “racemic mixture.”
A carbon atom bonded to four nonidentical substituents is termed a “chiral center.”
“Chiral isomer” means a compound with at least one chiral center. Compounds with more than one chiral center may exist either as an individual diastereomer or as a mixture of diastereomers, termed “diastereomeric mixture.” When one chiral center is present, a stereoisomer may be characterized by the absolute configuration (R or S) of that chiral center. Absolute configuration refers to the arrangement in space of the substituents attached to the chiral center. The substituents attached to the chiral center under consideration are ranked in accordance with the Sequence Rule of Cahn, Ingold and Prelog. (Cahn et al., Angew. Chem. Inter. Edit. 1966, 5, 385; errata 511; Cahn et al., Angew. Chem. 1966, 78, 413; Cahn and Ingold, J. Chem. Soc. 1951 (London), 612; Cahn et al., Experientia 1956, 12, 81; Cahn, J. Chem. Educ. 1964, 41, 116).
“Geometric isomer” means the diastereomers that owe their existence to hindered rotation about double bonds or a cycloalkyl linker (e.g., 1,3-cyclobutyl). These configurations are differentiated in their names by the prefixes cis and trans, or Z and E, which indicate that the groups are on the same or opposite side of the double bond in the molecule according to the Cahn-Ingold-Prelog rules.
It is to be understood that the compounds disclosed herein may be depicted as different chiral isomers or geometric isomers. It should also be understood that when compounds have chiral isomeric or geometric isomeric forms, all isomeric forms are intended to be included in the scope of the disclosure, and the naming of the compounds does not exclude any isomeric forms.
Furthermore, the structures and other compounds discussed in this disclosure include all atropic isomers thereof “Atropic isomers” are a type of stereoisomer in which the atoms of two isomers are arranged differently in space. Atropic isomers owe their existence to a restricted rotation caused by hindrance of rotation of large groups about a central bond. Such atropic isomers typically exist as a mixture, however as a result of recent advances in chromatography techniques, it has been possible to separate mixtures of two atropic isomers in select cases.
“Tautomer” is one of two or more structural isomers that exist in equilibrium and is readily converted from one isomeric form to another. This conversion results in the formal migration of a hydrogen atom accompanied by a switch of adjacent conjugated double bonds. Tautomers exist as a mixture of a tautomeric set in solution. In solutions where tautomerization is possible, a chemical equilibrium of the tautomers will be reached. The exact ratio of the tautomers depends on several factors, including temperature, solvent and pH. The concept of tautomers that are interconvertable by tautomerizations is called tautomerism.
Of the various types of tautomerism that are possible, two are commonly observed. In keto-enol tautomerism a simultaneous shift of electrons and a hydrogen atom occurs. Ring-chain tautomerism arises as a result of the aldehyde group (—CHO) in a sugar chain molecule reacting with one of the hydroxy groups (—OH) in the same molecule to give it a cyclic (ring-shaped) form as exhibited by glucose.
Common tautomeric pairs are: ketone-enol, amide-nitrile, lactam-lactim, amide-imidic acid tautomerism in heterocyclic rings (e.g., in nucleobases such as guanine, thymine and cytosine), imine-enamine and enamine-enamine. An example of keto-enol equilibria is between pyridin-2(1H)-ones and the corresponding pyridin-2-ols, as shown below.
It is to be understood that the compounds disclosed herein may be depicted as different tautomers. It should also be understood that when compounds have tautomeric forms, all tautomeric forms are intended to be included in the scope of the disclosure, and the naming of the compounds does not exclude any tautomer form.
The compounds disclosed herein include the compounds themselves, as well as their salts and their solvates, if applicable. A salt, for example, can be formed between an anion and a positively charged group (e.g., amino) on an aryl- or heteroaryl-substituted benzene compound. Suitable anions include chloride, bromide, iodide, sulfate, bisulfate, sulfamate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, glutamate, glucuronate, glutarate, malate, maleate, succinate, fumarate, tartrate, tosylate, salicylate, lactate, naphthalenesulfonate, and acetate (e.g., trifluoroacetate). The term “pharmaceutically acceptable anion” refers to an anion suitable for forming a pharmaceutically acceptable salt. Likewise, a salt can also be formed between a cation and a negatively charged group (e.g., carboxylate) on an aryl- or heteroaryl-substituted benzene compound. Suitable cations include sodium ion, potassium ion, magnesium ion, calcium ion, and an ammonium cation such as tetramethylammonium ion. The aryl- or heteroaryl-substituted benzene compounds also include those salts containing quaternary nitrogen atoms. In the salt form, it is understood that the ratio of the compound to the cation or anion of the salt can be 1:1, or any ration other than 1:1, e.g., 3:1, 2:1, 1:2, or 1:3.
Additionally, the compounds disclosed herein, for example, the salts of the compounds, can exist in either hydrated or unhydrated (the anhydrous) form or as solvates with other solvent molecules. Nonlimiting examples of hydrates include monohydrates, dihydrates, etc. Nonlimiting examples of solvates include ethanol solvates, acetone solvates, etc.
“Solvate” means solvent addition forms that contain either stoichiometric or non stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water the solvate formed is a hydrate; and if the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one molecule of the substance in which the water retains its molecular state as H2O.
As used herein, the term “analog” refers to a chemical compound that is structurally similar to another but differs slightly in composition (as in the replacement of one atom by an atom of a different element or in the presence of a particular functional group, or the replacement of one functional group by another functional group). Thus, an analog is a compound that is similar or comparable in function and appearance, but not in structure or origin to the reference compound.
As used herein, the term “derivative” refers to compounds that have a common core structure, and are substituted with various groups as described herein. For example, all of the compounds represented by Formula (I) are aryl- or heteroaryl-substituted benzene compounds, and have Formula (I) as a common core.
The term “bioisostere” refers to a compound resulting from the exchange of an atom or of a group of atoms with another, broadly similar, atom or group of atoms. The objective of a bioisosteric replacement is to create a new compound with similar biological properties to the parent compound. The bioisosteric replacement may be physicochemically or topologically based. Examples of carboxylic acid bioisosteres include, but are not limited to, acyl sulfonimides, tetrazoles, sulfonates and phosphonates. See, e.g., Patani and LaVoie, Chem. Rev. 96, 3147-3176, 1996.
The present disclosure is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium, and isotopes of carbon include C-13 and C-14.
The present disclosure also provides pharmaceutical compositions comprising at least one EZH2 inhibitor described herein in combination with at least one pharmaceutically acceptable excipient or carrier.
A “pharmaceutical composition” is a formulation containing the EZH2 inhibitors of the present disclosure in a form suitable for administration to a subject. In one embodiment, the pharmaceutical composition is in bulk or in unit dosage form. The unit dosage form is any of a variety of forms, including, for example, a capsule, an IV bag, a tablet, a single pump on an aerosol inhaler or a vial. The quantity of active ingredient (e.g., a formulation of the disclosed compound or salt, hydrate, solvate or isomer thereof) in a unit dose of composition is an effective amount and is varied according to the particular treatment involved. One skilled in the art will appreciate that it is sometimes necessary to make routine variations to the dosage depending on the age and condition of the patient. The dosage will also depend on the route of administration. A variety of routes are contemplated, including oral, pulmonary, rectal, parenteral, transdermal, subcutaneous, intravenous, intramuscular, intraperitoneal, inhalational, buccal, sublingual, intrapleural, intrathecal, intranasal, and the like. Dosage forms for the topical or transdermal administration of a compound of this disclosure include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. In one embodiment, the active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers or propellants that are required.
As used herein, the phrase “pharmaceutically acceptable” refers to those compounds, materials, compositions, carriers, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
“Pharmaceutically acceptable excipient” means an excipient that is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipient that is acceptable for veterinary use as well as human pharmaceutical use. A “pharmaceutically acceptable excipient” as used in the disclosure includes both one and more than one such excipient. A pharmaceutical composition of the disclosure is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, (e.g., intravenous, intradermal, subcutaneous), and enteral routes (e.g.,oral, buccal, sublingual, sublabial), as well as administration by inhalation, transdermal (topical), and transmucosal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Suitable formulations for enteral application, e.g., for oral administration, include, for example, tablets, capsules, time-release or sustained-release tablets and capsules, powders or granules (e.g., for formulating a solution or suspension that is orally administered), syrups, solutions, or suspensions. Liquid formulations for oral administration may include one or more diluent, e.g., water, which may, in some embodiments, be sterile. Such liquid formulations for oral administration may also include a stabilizer, an antibacterial agent, an antioxidant, a chelating agent, a buffer, an agent for the adjustment of tonicity, and agents to control appearance and taste, such as a sweetener and/or a flavoring agent. Powders from which a solution or suspension can be reconstituted before oral administration may contain similar agents.
A compound or pharmaceutical composition of the disclosure can be administered to a subject in many of the well-known methods currently used for chemotherapeutic treatment. For example, for treatment of cancers, a compound of the disclosure may be injected directly into tumors, injected into the blood stream or body cavities or taken orally or applied through the skin with patches. The dose chosen should be sufficient to constitute effective treatment but not as high as to cause unacceptable side effects. The state of the disease condition (e.g., cancer, precancer, and the like) and the health of the patient should preferably be closely monitored during and for a reasonable period after treatment.
The term “therapeutically effective amount”, as used herein, refers to an amount of an EZH2 inhibitor, composition, or pharmaceutical composition thereof effective to treat, ameliorate, or prevent an identified disease or condition, or to exhibit a detectable therapeutic or inhibitory effect. The effect can be detected by any assay method known in the art. The precise effective amount for a subject will depend upon the subject's body weight, size, and health; the nature and extent of the condition; and the therapeutic or combination of therapeutics selected for administration. Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician. In a preferred aspect, the disease or condition to be treated is cancer, including but not limited to, an INI1-deficient tumor.
For any EZH2 inhibitor of the disclosure, the therapeutically effective amount can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually rats, mice, rabbits, dogs, or pigs. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. Therapeutic/prophylactic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The dosage may vary within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
Dosage and administration are adjusted to provide sufficient levels of the active agent(s) or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.
Some embodiments provide pharmaceutical compositions, dosage forms, and/or methods of using such compositions or dosage forms, wherein an EZH2 inhibitor is formulated as an oral tablet, or as a suspension or solution. In some such embodiments, the EZH2 inhibitor may be formulated for administration at a dose of between 10 mg/kg/day and 1600 mg/kg/day. In some embodiments, the pharmaceutical composition, or dosage form may be administered to a subject at a dose of about 100, 200, 400, 800, or 1600 mg. In some embodiments, an EZH2 inhibitor may be formulated for administration at a dose of about 800 mg. Such formulation may comprise one or multiple dosage forms, e.g., a single tablet or capsule, or a plurality of tablets or capsules, or a certain amount of powder, solution, or suspension comprising the EZH2 inhibitor. In some embodiments, pharmaceutical compositions or dosage forms are provided in which an EZH2 inhibitor is formulated for administration once or twice per day (BID). In some embodiments, pharmaceutical compositions or dosage forms are provided in which an EZH2 inhibitor is formulated for administration at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID. For example, in some embodiments, a pharmaceutical composition is provided that is suitable for administration of an EZH2 inhibitor at a dose of 800 mg BID.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is formulated for parenteral or enteral administration, for example, as an oral tablet, suspension, or solution, or as a solution or suspension for administration to the CSF by any route. In some such embodiments, the pharmaceutical composition or dosage form may be suitable for administration of the EZH2 inhibitor at a dose of between 10 mg/kg/day and 1600 mg/kg/day, e.g., at a dose of 10 mg/kg/day, 20 mg/kg/day, 25 mg/kg/day, 30 mg/kg/day, 40 mg/kg/day, 50 mg/kg/day, 60 mg/kg/day, 70 mg/kg/day, 75 mg/kg/day, 80 mg/kg/day, 90 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, 250 mg/kg/day, 300 mg/kg/day, 400 mg/kg/day, 500 mg/kg/day, 600 mg/kg/day, 700 mg/kg/day, 750 mg/kg/day, 800 mg/kg/day, 900 mg/kg/day, 1000 mg/kg/day, 1100 mg/kg/day, 1200 mg/kg/day, 1250 mg/kg/day, 1300 mg/kg/day, 1400 mg/kg/day, 1500 mg/kg/day, or 1600 mg/kg/day. For example, in some embodiments, a pharmaceutical composition or dosage form is provided that is suitable for administration of an EZH2 inhibitor at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID. For example, EZH2 inhibitors of the disclosure may be administered at a dose of 800 mg BID.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is formulated for parenteral or enteral administration, for example, as an oral tablet, suspension, or solution. In some such embodiments, the pharmaceutical composition or dosage form may be suitable for administration of the EZH2 inhibitor at a dose of between 10 mg/m2/day and 1200 mg/m2/day, e.g., at a dose of 10 mg/m2/day, 20 mg/m2/day, 25 mg/m2/day, 30 mg/m2/day, 40 mg/m2/day, 50 mg/m2/day, 60 mg/m2/day, 70 mg/m2/day, 75 mg/m2/day, 80 mg/m2/day, 90 mg/m2/day, 100 mg/m2/day, 110 mg/m2/day, 120 mg/m2/day, 125 mg/m2/day, 130 mg/m2/day, 140 mg/m2/day, 150 mg/m2/day, 160 mg/m2/day, 170 mg/m2/day, 175 mg/m2/day, 180 mg/m2/day, 190 mg/m2/day, 200 mg/m2/day, 210 mg/m2/day, 220 mg/m2/day, 225 mg/m2/day, 230 mg/m2/day, 240 mg/m2/day, 250 mg/m2/day, 260 mg/m2/day, 270 mg/m2/day, 275 mg/m2/day, 280 mg/m2/day, 290 mg/m2/day, 300 mg/m2/day, 310 mg/m2/day, 320 mg/m2/day, 325 mg/m2/day, 330 mg/m2/day, 340 mg/m2/day, 350 mg/m2/day, 360 mg/m2/day, 370 mg/m2/day, 375 mg/m2/day, 380 mg/m2/day, 390 mg/m2/day, 400 mg/m2/day, 410 mg/m2/day, 420 mg/m2/day, 425 mg/m2/day, 430 mg/m2/day, 440 mg/m2/day, 450 mg/m2/day, 460 mg/m2/day, 470 mg/m2/day, 475 mg/m2/day, 480 mg/m2/day, 490 mg/m2/day, 500 mg/m2/day, 525 mg/m2/day, 550 mg/m2/day, 575 mg/m2/day, 600 mg/m2/day, 625 mg/m2/day, 650 mg/m2/day, 675 mg/m2/day, 700 mg/m2/day, 750 mg/m2/day, 800 mg/m2/day, 850 mg/m2/day, 900 mg/m2/day, or 1000 mg/m2/day. For example, in some embodiments, a pharmaceutical composition or dosage form is provided that is suitable for administration of an EZH2 inhibitor at a dose of between 10 mg/m2/day and 1200 mg/m2/day, e.g., between 100 and 300 mg/m2/day, between 200 and 300 mg/m2/day, between 200 and 400 mg/m2/day, between 250 and 500 mg/m2/day, between 150 and 400 mg/m2/day, between 150 and 300 mg/m2/day, between 300 and 600 mg/m2/day, between 350 and 400 mg/m2/day, between 350 and 700 mg/m2/day, or between 400 and 1200 mg/m2/day. For example, in some embodiments, a pharmaceutical composition or dosage form is provided that is suitable for administration of an EZH2 inhibitor 10 mg/m2/day and 1200 mg/m2/day BID. For example, EZH2 inhibitors of the disclosure may be administered at a dose of 100, 120, 140, 150, 160, 200, 240, 250, 260, 300, 320, 350, 380, 400, or 600 mg/m2 BID.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is formulated for parenteral or enteral administration, for example, as an oral tablet, suspension, or solution. In some such embodiments, the pharmaceutical composition or dosage form may be suitable for administration of the EZH2 inhibitor at a dose of 50%, 60%, 70%, 80%, 90%, or any percentage in between of a value of an area under the curve (AUC) of a steady state plasma and/or CSF concentration (AUCSS) of an EZH2 inhibitor, wherein the AUCSS is determined following administration of the EZH2 inhibitor to an adult subject at a dose of between 10 mg/kg/day and 1600 mg/kg/day BID.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is formulated for parenteral or enteral administration, for example, as an oral tablet, suspension, or solution. In some such embodiments, the pharmaceutical composition or dosage form may be suitable for administration of the EZH2 inhibitor at a dose of between 230 mg/m2 and 600 mg/m2, inclusive of the endpoints. EZH2 inhibitors of the disclosure may be administered at a dose of between 300 mg/m2 and 600 mg/m2. EZH2 inhibitors of the disclosure may be administered at a dose of between 230 mg/m2 and 305 mg/m2, inclusive of the endpoints. EZH2 inhibitors of the disclosure may be administered at a dose of 240 mg/m2. EZH2 inhibitors of the disclosure may be administered at a dose of 300 mg/m2. EZH2 inhibitors of the disclosure may be administered once or twice per day (BID). For example, EZH2 inhibitors of the disclosure may be administered at a dose of between 230 mg/m2 and 600 mg/m2 BID, inclusive of the endpoints.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is suitable for administration of the EZH2 inhibitor at a dose of about 60% of the area under the curve (AUC) at steady state (AUCSS) following administration of 1600 mg twice a day to an adult subject. Accordingly, in some such embodiments, a pharmaceutical composition or dosage form is provided that is suitable for administration of the EZH2 inhibitor at a dose of about about 600 mg/m2 per day or at least 600 mg/m2 per day. In some embodiments, the pharmaceutical composition is suitable for administration to a pediatric subject.
In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is suitable for administration of the EZH2 inhibitor at a dose of about 80% of the area under the curve (AUC) at steady state (AUCSS) following administration of 800 mg twice a day to an adult subject. Accordingly, in some such embodiments, a pharmaceutical composition or dosage form is provided that is suitable for administration of the EZH2 inhibitor at a dose of about about 390 mg/m2 per day or at least 390 mg/m2 per day. In some embodiments, the pharmaceutical composition is suitable for administration to a pediatric subject.
In some embodiments, the present disclosure provides pharmaceutical compositions and dosage forms comprising an EZH2 inhibitor that are suitable for administration to a pediatric subject, e.g., a subject between 6 months and 21 years of age, inclusive of the endpoints; between 1 year and 18 years of age, inclusive of the endpoints; 10 years of age or less; 5 years of age or less; between 6 months and 1 year of age, inclusive of the endpoints; about 1 year of age; about 2 years of age; about 3 years of age; about 4 years of age; about 5 years of age; about 6 years of age; about 7 years of age; about 8 years of age; about 9 years of age; about 10 years of age; about 11 years of age; about 12 years of age; about 13 years of age; about 14 years of age; about 15 years of age; about 16 years of age; about 17 years of age; about 18 years of age; about 19 years of age; about 20 years of age; or about 21 years of age. In some embodiments, a pharmaceutical composition or dosage form comprising an EZH2 inhibitor is provided that is suitable for administration to a subject that is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 12 years of age, and not more than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ,15, 16, 17, 18, 19, 20, or 21 years of age, wherein every possible age range that can be formed with these values (e.g., at least 4 and not more than 12 years of age; or at least 10 and not more than 18 years of age).
The pharmaceutical compositions containing an EZH2 inhibitor of the present disclosure may be manufactured in a manner that is generally known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. Pharmaceutical compositions may be formulated in a conventional manner using one or more pharmaceutically acceptable carriers comprising excipients and/or auxiliaries that facilitate processing of the active compounds into preparations that can be used pharmaceutically. Of course, the appropriate formulation is dependent upon the route of administration chosen.
Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Compositions suitable for oral administration generally include an inert diluent or an edible pharmaceutically acceptable carrier. In some embodiments, they can be enclosed in capsules, e.g., in gelatin capsules, or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Compositions for oral administration can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser, which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
The active compounds (e.g., EZH2 inhibitors of the disclosure) can be prepared with pharmaceutically acceptable carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the disclosure are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved.
In therapeutic applications, the dosages of the pharmaceutical compositions used in accordance with the disclosure vary depending on the agent, the age, weight, and clinical condition of the recipient patient, and the experience and judgment of the clinician or practitioner administering the therapy, among other factors affecting the selected dosage. Generally, the dose should be sufficient to result in slowing, and preferably regressing, the growth of the tumors and also preferably causing complete regression of the cancer. An effective amount of a pharmaceutical agent is that which provides an objectively identifiable improvement as noted by the clinician or other qualified observer. For example, regression of a tumor in a patient may be measured with reference to the diameter of a tumor. Decrease in the diameter of a tumor indicates regression. Regression is also indicated by failure of tumors to reoccur after treatment has stopped. As used herein, the term “dosage effective manner” refers to amount of an active compound to produce the desired biological effect in a subject or cell.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
The compounds of the present disclosure are capable of further forming salts. All of these forms are also contemplated within the scope of the claimed disclosure.
As used herein, “pharmaceutically acceptable salts” refer to derivatives of the compounds of the present disclosure wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines, alkali or organic salts of acidic residues such as carboxylic acids, and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 2-acetoxybenzoic, 2-hydroxyethane sulfonic, acetic, ascorbic, benzene sulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, 1,2-ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methane sulfonic, napsylic, nitric, oxalic, pamoic, pantothenic, phenylacetic, phosphoric, polygalacturonic, propionic, salicyclic, stearic, subacetic, succinic, sulfamic, sulfanilic, sulfuric, tannic, tartaric, toluene sulfonic, and the commonly occurring amine acids, e.g., glycine, alanine, phenylalanine, arginine, etc.
Other examples of pharmaceutically acceptable salts include hexanoic acid, cyclopentane propionic acid, pyruvic acid, malonic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylbicyclo-[2.2.2]-oct-2-ene-1-carboxylic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, muconic acid, and the like. The present disclosure also encompasses salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic base such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.
It should be understood that all references to pharmaceutically acceptable salts include solvent addition forms (solvates) or crystal forms (polymorphs) as defined herein, of the same salt.
The EZH2 inhibitors of the present disclosure can also be prepared as esters, for example, pharmaceutically acceptable esters. For example, a carboxylic acid function group in a compound can be converted to its corresponding ester, e.g., a methyl, ethyl or other ester. Also, an alcohol group in a compound can be converted to its corresponding ester, e.g., an acetate, propionate or other ester.
The EZH2 inhibitors of the present disclosure can also be prepared as prodrugs, for example, pharmaceutically acceptable prodrugs. The terms “pro-drug” and “prodrug” are used interchangeably herein and refer to any compound which releases an active parent drug in vivo. Since prodrugs are known to enhance numerous desirable qualities of pharmaceuticals (e.g., solubility, bioavailability, manufacturing, etc.), the compounds of the present disclosure can be delivered in prodrug form. Thus, the present disclosure is intended to cover prodrugs of the presently claimed compounds, methods of delivering the same and compositions containing the same. “Prodrugs” are intended to include any covalently bonded carriers that release an active parent drug of the present disclosure in vivo when such prodrug is administered to a subject. Prodrugs in the present disclosure are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds of the present disclosure wherein a hydroxy, amino, sulfhydryl, carboxy or carbonyl group is bonded to any group that may be cleaved in vivo to form a free hydroxyl, free amino, free sulfhydryl, free carboxy or free carbonyl group, respectively.
Examples of prodrugs include, but are not limited to, esters (e.g., acetate, dialkylaminoacetates, formates, phosphates, sulfates and benzoate derivatives) and carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups, esters (e.g., ethyl esters, morpholinoethanol esters) of carboxyl functional groups, N-acyl derivatives (e.g., N-acetyl) N-Mannich bases, Schiff bases and enaminones of amino functional groups, oximes, acetals, ketals and enol esters of ketone and aldehyde functional groups in compounds of the disclosure, and the like, See Bundegaard, H., Design of Prodrugs, p1-92, Elesevier, New York-Oxford (1985).
The EZH2 inhibitors, or pharmaceutically acceptable salts, esters or prodrugs thereof, are administered orally, nasally, transdermally, pulmonary, inhalationally, buccally, sublingually, intraperintoneally, subcutaneously, intramuscularly, intravenously, rectally, intrapleurally, intrathecally and parenterally. In one embodiment, the compound is administered orally. One skilled in the art will recognize the advantages of certain routes of administration.
The dosage regimen utilizing the compounds is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed. An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.
The dosage regimen can be daily administration (e.g. every 24 hours) of a compound of the present disclosure. The dosage regimen can be daily administration for consecutive days, for example, at least two, at least three, at least four, at least five, at least six or at least seven consecutive days. Dosing can be more than one time daily, for example, twice, three times or four times daily (per a 24 hour period). The dosing regimen can be a daily administration followed by at least one day, at least two days, at least three days, at least four days, at least five days, or at least six days, without administration.
Techniques for formulation and administration of the disclosed compounds of the disclosure can be found in Remington: the Science and Practice of Pharmacy, 19th edition, Mack Publishing Co., Easton, Pa. (1995). In an embodiment, the compounds described herein, and the pharmaceutically acceptable salts thereof, are used in pharmaceutical preparations in combination with a pharmaceutically acceptable carrier or diluent. Suitable pharmaceutically acceptable carriers include inert solid fillers or diluents and sterile aqueous or organic solutions. The compounds will be present in such pharmaceutical compositions in amounts sufficient to provide the desired dosage amount in the range described herein.
All percentages and ratios used herein, unless otherwise indicated, are by weight.
Other features and advantages of the present disclosure are apparent from the different examples. The provided examples illustrate different components and methodology useful in practicing the present disclosure. The examples do not limit the claimed disclosure. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present disclosure.
In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the disclosure in any manner.
Medulloblastoma cells are treated with either a negative control (DMSO) or varying concentrations of tazemetostat (EPZ 6438): 0.5 μM, 2 μM and 6 μM. The total cells per milliliter of culture were counted each day for 10 days. While each tazemetostat treatment demonstrated a significant decrease on medulloblastoma cell growth compared to wild type (
When compared to the efficacy of other small molecule EZH2 inhibitors, including GSK-126 and UNC 1999, Tazemetostat demonstrated a superior ability to decrease medulloblastoma cell growth (
A 5 year old patient having medulloblastoma underwent surgery to remove a slice of tumor tissue for testing. The medulloblastoma slice was cultured ex vivo on tissue supporting inserts (
Tazemetostat pharmacokinetic (PK) data from the first in human phase 1 clinical trial study (CT.gov: NCT101897571), across a dose range of 100 mg (suspension) and 100, 200, 400, 800 and 1600 mg (tablet) p.o. twice daily (BID), together with in vitro data including plasma protein binding, blood partitioning, metabolic stability and P450 phenotyping were used to simulate adult exposures by physiologically-based pharmacokinetic (PBK) modeling (Gastroplus™ 8.5, Simulations Plus Inc.). A model fit for the adult exposures (n=24) adequately describes the time-concentration profiles of tazemetostat. This resulted in prediction of mean steady-state AUC0-t and oral clearance (CL/F) with ±30% of the observed results across the dose ranges. In addition, mean steady-state Cmax was predicted to ≤2-fold of the observed values, for both suspension and tablet formulations. The resultant model was used to simulate tazemetostat steady-state exposures in discrete pediatric age ranges of (6 month to 1 year (yr), >1-2 yrs, >2-6 yrs, >6-12 yrs, >12-18 yrs) following BID administration of the oral suspension. In addition to the pediatric physiology, the simulations accounted for ontogeny in hematocrit, plasma protein levels and CYP expression. Using this exposure-based analysis, pediatric doses which afforded the target AUC (80% of the adult steady-state AUCo-t at 800 mg or 300 mg/m2 BID) were identified. On the body surface area normalized basis, the projected doses were comparable across the age range (1 to 18 years) from 270 to 305 mg/m2 BID, with a slightly lower projected dose of 230 mg/m2 BID for the 6 months to 1 year old group. As the projected doses by the age were comparable, population simulations were performed to determine the corresponding exposures for each age range at a fixed 300 mg/m2 BID dose. At this dose, mean steady-state Cmax was projected to range between 895 ng/mL and 1550 ng/mL (110% to 190% of Cmax at 800 mg BID in adult), but within the safe and efficacious exposure range defined in adults at doses up to 1600 mg BID (
The time-concentration profiles of tazemetostat administered orally at doses 100-1600 mg BID in adults were well predicted using a PBPK model, resulting in prediction of mean steady-state AUC0-t and oral clearance (CL/F) within ±30% of the observed results across the dose range. Using this exposure-based analysis, pediatric starting doses which afforded AUCSS within the safe and efficacious exposure range defined in adults were identified. For children 1-18 years of age, the starting dose of 240 mg/m2 was predicted to result in 64% and 36% of the mean steady-state (AUCSS) observed for adults at 800 mg and 1600 mg doses, respectively. For children 6 months to 1 year of age, the starting dose of 240 mg/m2 was predicted to result in 80% and 45% of the mean AUCSS observed for adults at 800 mg and 1600 mg doses, respectively. The data demonstrated the prospective application of PBPK early in clinical development to support clinical trial design in pediatric patients (see Tables 1 and 2).
The details of one or more embodiments of the disclosure are set forth in the accompanying description above. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
All patents and publications cited in this specification are incorporated by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference. Citation of publications and patent documents is not intended as an admission that any is pertinent prior art, nor does it constitute any admission as to the contents or date of the same. The invention having now been described by way of written description, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments and that the foregoing description and examples below are for purposes of illustration and not limitation of the claims that follow. Where names of cell lines or genes are used, abbreviations and names conform to the nomenclature of the American Type Culture Collection (ATCC) or the National Center for Biotechnology Information (NCBI), unless otherwise noted or evident from the context.
The invention disclosed herein can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing description has been presented only for the purposes of illustration and is not intended to limit the invention to the precise form disclosed, but by the claims appended hereto, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
This application is a continuation of U.S. application Ser. No. 15/773,757, filed on May 4, 2018, which is a U.S. National Phase application, filed under 35 U.S.C. § 371, of International Application No. PCT/US2016/060852, filed on Nov. 7, 2016, which claims priority to, and the benefit of U.S. Provisional Application No. 62/252,190 filed Nov. 6, 2015 the contents of each of which are incorporated herein by reference in their entireties. su The contents of the text file named “EPIZ058N01US_ST25.txt,” which was created on Sep. 25, 2018 and is 140 KB in size, are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62252190 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15773757 | May 2018 | US |
Child | 16867717 | US |