Pediatric sepsis prediction: a machine learning solution for patient diversity

Information

  • Research Project
  • 9620967
  • ApplicationId
    9620967
  • Core Project Number
    R43HD096961
  • Full Project Number
    1R43HD096961-01
  • Serial Number
    096961
  • FOA Number
    PA-17-302
  • Sub Project Id
  • Project Start Date
    8/1/2018 - 7 years ago
  • Project End Date
    1/31/2019 - 6 years ago
  • Program Officer Name
    TAMBURRO, ROBERT F
  • Budget Start Date
    8/1/2018 - 7 years ago
  • Budget End Date
    1/31/2019 - 6 years ago
  • Fiscal Year
    2018
  • Support Year
    01
  • Suffix
  • Award Notice Date
    7/30/2018 - 7 years ago
Organizations

Pediatric sepsis prediction: a machine learning solution for patient diversity

Abstract  Significance:  In  this  SBIR  project,  we  propose  to  predict  and  detect  pediatric  severe  sepsis  by  developing  a  machine-­learning-­based  clinical  decision  support  system  for  electronic  health  record  (EHR)  pediatric  sepsis  screening. The pediatric population is underserved, with fundamental research and understanding of pediatric  sepsis  syndromes  lagging  behind  that  of  the  adult  population.  The  proposed  work  will  develop  machine  learning sepsis predictions on the highly heterogeneous pediatric population, by combining multi-­task learning  methods with expert clinical knowledge of how pediatric sepsis presentation is dependent on age and on pre-­ existing  conditions.  The  multi-­task  learning  approach  will  use  age  or  comorbidities  to  define  ?tasks,?  each  one  associated  with  prediction  on  a  particular  subpopulation,  and  then  link  the  learning  process  together  between  tasks. Research Questions: Which methods of using these task-­defining parameters are most effective? How  can  we  most  effectively  learn  the  degree  of  similarity  between  pediatric  subpopulations  and  leverage  this  to  improve classification performance? Prior Work: InSight was originally developed to predict sepsis and septic  shock from adult EHR data. After retraining on pediatric cases, in preliminary experiments with a retrospective  set  of  pediatric  (2-­17  yr)  inpatient  encounters  (n  =  11,127;?  103  [0.9%]  severely  septic),  at  the  University  of  California  San  Francisco  (UCSF),  InSight  achieved  an  AUROC  0.912  and  0.727  for  the  detection  and  4-­hour  pre-­onset  prediction  of  sepsis.  This  performance  can  be  improved  for  better  pediatric  sepsis  prediction.  Specific  Aims:  To  empirically  evaluate  different  learning  schemes  using  age  with  and  without  multi-­task  methods,  within  the  UCSF  pediatric  severe  sepsis  data  set  (Aim  1).  To  exploit  an  expert-­proposed  network  graph  structure  for  comorbidity-­described  pediatric  subpopulations  that  provides  superior  predictive  performance  over  naïve  methods  and  graphs,  both  for  the  overall  population  and  for  underserved  subpopulations  (Aim  2).  Methods:  We  propose  to  use  multi-­task  methods  that  penalize  deviations  between  classifiers  on  neighboring  tasks  and  that  iteratively  learn  the  strength  of  these  links.  These  methods  will  be  compared with total task independence, or passing age into classifier training as an ordinary input. Criteria for  Success:  Success  will  be  shown  by  4-­hour  pre-­onset  AUROC  gains  of  0.02  (overall  population)  and  0.03  for  the previously weakest of three age subpopulations (2-­5, 6-­12, and 13-­17 yrs;? 4-­hour pre-­onset prediction, p <  0.05, McNemar?s test, 4-­fold cross-­validation). The best structure for mapping similarities between comorbidity  tasks will improve the overall AUROC by 0.03 (p < 0.05) and by 0.07 for ? 2 comorbidity subpopulations of ? 100 patients (p < 0.05). Outcome: These improvements will enable InSight to deliver strong sepsis predictive  performance across the widely heterogeneous pediatric population.

IC Name
EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT
  • Activity
    R43
  • Administering IC
    HD
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    299999
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    865
  • Ed Inst. Type
  • Funding ICs
    NICHD:299999\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    DASCENA, INC.
  • Organization Department
  • Organization DUNS
    079457212
  • Organization City
    HAYWARD
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    945414399
  • Organization District
    UNITED STATES