Pedicle screw implant system

Information

  • Patent Grant
  • 7951173
  • Patent Number
    7,951,173
  • Date Filed
    Thursday, February 4, 2010
    14 years ago
  • Date Issued
    Tuesday, May 31, 2011
    13 years ago
Abstract
A pedicle screw fastening that can be made polyaxial, monoaxial, fixed, or provide a predefined monoaxial placement. The fastening system consists of an anchoring bone screw having threads on one end for use in anchoring to the screw to the spine and a spherical connector on the other end operating as a pivot point about which a U-shaped or side loading connecting assembly is used to secure to a connecting rod for use in stabilization of a spine. The connecting assembly, for receipt of a spinal connecting rod, includes a biased retainer ring for maintaining a positive tension between the connecting assembly and the anchored screw. The system allows for an improved manufacturing step wherein the threaded shank of a bone screws can be passed through a lower portion of the connecting assembly allowing a variety of bone screw sizes to be used with a common sized connector.
Description
FIELD OF THE INVENTION

This invention is directed to the field of pedicle screws, and in particular, to a pedicle screw implant system adapted for use as a polyaxial, mono-axial with range limiting or as a fixed spinal implant with top or side loading for a connector rod.


BACKGROUND OF THE INVENTION

The use of pedicle screw fasteners is well known for their use with spinal fixation systems. In the field of spinal pathologies, spinal fixation systems represent a major medical breakthrough. Surgically implanted fixation systems are commonly used to correct a variety of back structure problems, including those which occur as a result of trauma or improper development during growth. A commonly applied fixation system includes the use of one or more connecting rods aligned in a desired orientation with respect to a patient's spine for stabilization of the spine. The pedicle screw provides anchoring of the fixation system wherein a series of connectors are used to rigidly link rods and the anchors.


Common to all spinal implant systems is the necessity for proper anchoring to the bone so as to provide support for the aforementioned components. The use of a polyaxial design pedicle screw has proven very effective in allowing a surgeon the flexibility to secure an installation with minimal strain on the individual. However, one of the problems with a polyaxial pedicle screw is the lack of a stabilized angular placement position during installation. Once a polyaxial pedicle screw is inserted into the bone, the connector component portion has yet to receive a connecting rod leaving the connector assembly free to move around or fall over making it difficult for the surgeon to grasp while in the midst of surgery. This problem is compounded by the need to align multiple component heads for receipt of a connecting rod. Another problem with the prior art is the inability to use various size anchoring screws in combination with a common saddle larger saddle which leads to assembly integrity over a large range of installation considerations.


A conventional polyaxial bone screw typically consists of a single shaft with a coarse thread at one end for threading into the bone. A spherical ball is positioned at an opposite end for coupling to a connecting member. For example, a number of patents exist for bone screw anchoring assemblies that include a U-shaped connector element which acts as a saddle for attachment to an alignment rod. U.S. Pat. No. 5,133,717 sets forth a sacral screw with a saddle support. Disclosed is the use of an auxiliary angled screw to provide the necessary support in placing the screw in an angular position for improved anchoring.


U.S. Pat. No. 5,129,900 sets forth an attachment screw and connector member that is adjustably fastened to an alignment rod. An oblong area provided within each connector member allows minute displacement of the alignment rod.


U.S. Pat. No. 4,887,595 discloses a screw that has a first externally threaded portion for engagement with the bone and a second externally threaded portion for engagement with a locking nut. The disclosure illustrates the use of a singular fixed shaft.


U.S. Pat. No. 4,946,458 discloses a screw which employs a spherical portion which is adapted to receive a locking pin so as to allow one portion of the screw to rotate around the spherical portion. A problem with the screw is the need for the locking pin and the inability of the base screw to accommodate a threaded extension bolt.


U.S. Pat. No. 5,002,542 discloses a screw clamp wherein two horizontally disposed sections are adapted to receive the head of a pedicle screw for use in combination with a hook which holds a support rod at an adjustable distance.


U.S. Pat. No. 4,854,304 discloses the use of a screw with a top portion that is adaptable for use with a specially designed alignment rod to permit compression as well as distraction.


U.S. Pat. No. 4,887,596 discloses a pedicle screw for use in coupling an alignment rod to the spine wherein the screw includes a clamp permitting adjustment of the angle between the alignment rod and the screw.


U.S. Pat. No. 4,836,196 discloses a screw with an upper portion designed for threadingly engaging a semi-spherical cup for use with a specially designed alignment rod. The alignment rod includes spaced apart covertures for receipt of a spherical disc allowing a support rod to be placed at angular positions.


U.S. Pat. No. 5,800,435 sets forth a modular spinal plate assembly for use with polyaxial pedicle screw implant devices. The device includes compressible components that cooperatively lock the device along included rails.


U.S. Pat. No. 5,591,166 discloses an orthopedic bone bolt and bone plate construction including a bone plate member and a collection of fasteners. At least one of the fasteners allows for multi-angle mounting configurations. The fasteners also include threaded portions configured to engage a patient's bone tissue.


U.S. Pat. No. 5,569,247 discloses a multi-angle fastener usable for connecting a patient bone to other surgical implant components. The '247 device includes fastening bolts having spherical, multi-piece heads that allow for adjustment during installation of the device.


U.S. Pat. No. 5,716,357 discloses a spinal treatment and long bone fixation apparatus. The apparatus includes link members adapted to engage patient vertebrae. The link members may be attached in a chain-like fashion to connect bones in a non-linear arrangement. The apparatus also includes at least one multi-directional attachment member for joining the link members. This allows the apparatus to be used in forming a spinal implant fixation system.


Another type of spinal fixation system includes rigid screws that engage the posterior region of a patient's spine. The screws are designed with rod-engaging free ends to engage a support rod that has been formed into a desired spine-curvature-correcting orientation. Clamping members are often used to lock the rod in place with respect to the screws. Instead of clamping members, other fixation systems, such as that disclosed in U.S. Pat. No. 5,129,900 employs connectors that join the support rods and anchoring screws. The connectors eliminate unwanted relative motion between the rod and the screws, thereby maintaining the patient's spine in a corrected orientation.


Other spinal fixation systems employ adjustable components. For example, U.S. Pat. No. 5,549,608 includes anchoring screws that have pivoting free ends which attach to discrete rod-engaging couplers. As a result, the relative position of the anchoring screws and rods may be adjusted to achieve a proper fit, even after the screw has been anchored into a patient's spinal bone. This type of fixation system succeeds in easing the rod-and-screw-linking process. This adjustment capability allows the screws to accommodate several rod paths.


U.S. Pat. No. 7,445,627 discloses a fastener and a bone fixation assembly for internal fixation of vertebral bodies. According to one exemplary embodiment, a tulip assembly is employed; the tulip assembly includes a non-circular surface disposed on its outer surface. A fastener is coupled to the tulip assembly and positionable to retain the tulip assembly on the head of a screw. A cap having an outer surface and a plurality of inner protrusions mateably connects to the non-circular surface on the tulip body to compress the tulip assembly to secure a rod.


U.S. Publication No. 2008/0177322 discloses a spinal stabilization system that includes bone fastener assemblies that are coupled to vertebrae. Each bone fastener assembly includes a bone fastener and a collar. The bone fastener has a head portion having at least a first cross-sectional shape in a first plane, and a second cross-sectional shape in a second plane. The collar has a circular opening in the bottom, with a relief extending from the circular opening. The second cross-sectional shape of the bone fastener is keyed to the opening to permit insertion of the bone fastener into the collar assembly from the bottom. After insertion, the bone fastener is rotated to prohibit removal of the bone fastener from the collar. The collar can then be rotated and/or angulated relative to the bone fastener. An elongated member can be positioned in the collar and a closure member is then used to secure the elongated member to the collar.


U.S. Publication No. 2006/0241599 discloses a polyaxial fixation device having a shank with a spherical head formed on a proximal end thereof, and a receiver member having an axial passage formed therein that is adapted to polyaxially seat the spherical head of the shank. The polyaxial bone screw further includes an engagement member that is adapted to provide sufficient friction between the spherical head and the receiver member to enable the shank to be maintained in a desired angular orientation before locking the spherical head within the receiver member.


U.S. Publication No. 2006/0235392 discloses a system for connecting a fastener element (e.g., a pedicle screw) relative to a rod for the purposes of vertebral fixation. The system may permit multi-axial movement between the fastener element and the rod. Further, the system may permit the angular relationship between the fastener element and the rod to be held in a desired orientation.


U.S. Publication No. 2006/0155277 discloses an anchoring element for securing a rod on a vertebra, that comprises a retaining means for receiving the rod, a safety element placed on the retaining means, a securing element which can be placed on the body of the vertebra, and a clamping device which is arranged between the retaining means and the securing element. The clamping device includes a ring-shaped mount, a partially conical-segment shaped bearing and an intermediate element which is embedded in the mount and which engages the bearing, whereby the mounting is moveable in a removed state in relation to the bearing, whereas the mount is maintained in a clamped state on the bearing by means of the intermediate element. The mount is rigidly connected to the retaining means and the bearing is rigidly connected to the securing element.


U.S. Publication No. 2006/0149240 discloses a polyaxial bone screw assembly that includes a threaded shank body having an upper capture structure, a head and a multi-piece retainer, articulation structure. The geometry of the retainer structure pieces correspond and cooperate with the external geometry of the capture structure to frictionally envelope the retainer structure between the capture structure and an internal surface defining a cavity of the head. The head has a U-shaped cradle defining a channel for receiving a spinal fixation or stabilization longitudinal connecting member. The head channel communicates with the cavity and further with a restrictive opening that receives retainer pieces and the capture structure into the head but prevents passage of frictionally engaged retainer and capture structures out of the head. The retainer structure includes a substantially spherical surface that mates with the internal surface of the head, providing a ball joint, enabling the head to be disposed at an angle relative to the shank body.


U.S. Pat. No. 6,716,214 discloses a polyaxial bone screw having a bone implantable shank, a head and a retaining ring. The retaining ring includes an outer partial hemispherical surface and an inner bore with radially extending channels and partial capture recesses. The shank includes a bone implantable body with an external helical wound thread and an upwardly extending capture structure. The capture structure includes at least one spline which extends radially outward and has a wedged surface that faces radially outward therefrom. The capture structure operably passes through a central bore of the retaining ring while the spline passes through a suitably shaped channel so that the spline becomes positioned above the head, at which time the shank is rotated appropriately and the shank is drawn back downwardly so that the spline engages and seats in the capture recess. The head includes an internal cavity having a spherical shaped surface that mates with the ring surface and has a lower restrictive neck that prevents passage of the ring once the ring is seated in the cavity.


U.S. Pat. No. 6,565,567 discloses a pedicle screw assembly for use with a rod for the immobilization of bone segments. The assembly is comprised of a screw, a polyaxial housing for receiving the screw, a washer, a set screw, and a cup-shaped cap. The lower portion of the housing terminates in a reduced cross-sectional area, which engages the bottom of the screw head. When the screw is placed inside the polyaxial housing and the screw is secured into the bone, the polyaxial housing is pivotable with three degrees of freedom. The housing includes a top portion with a pair of upstanding internally threaded posts. A washer is inserted between the head of the screw and the rod. A cap, having a bottom, with a pair of posts accommodating openings and a lateral cross connector, is placed over the posts so that the cross connector engages the rod. The cross connector and washer have concave generally semi-cylindrical rod engaging surfaces to prevent the rod from rotating or sliding within the housing once the set screw is tightened. A set screw is threaded into the housing posts to secure the rod within the housing. The washer has a roughened lower surface which, in conjunction with the reduced cross-sectional area at the bottom of the housing, securely clamps and locks the housing to the screw head when the set screw is tightened.


U.S. Pat. No. 5,501,684 discloses an osteosynthetic fixation device which consists of a fixation element which has a conical head section and an anchoring element abutting it which is for attachment into the bone. The fixation device also consists of a spherically formed, layered, slotted clamping piece which has a conical borehole for installation of the conical head section, and which is meant for locking within a connecting piece equipped with a spherically shaped layered borehole. Fixation piece has an axially arrayed tension element, permitting axial displacement and wedging of conical head section in the borehole that corresponds with it. The fixation device is appropriate for use as a plate/screw system, an internal or external fixator, and in particular for spinal column fixation.


U.S. Pat. No. 4,693,240 discloses a bone pin clamp for external fracture fixation. The apparatus comprises rotation, slide and housing elements nested one within the next, each such element having an aperture to receive a pin therethrough, and the rotation and slide elements respectively affording pin adjustment in azimuth and zenith, and in height, relative to the housing element. A locking mechanism including a common actuator member is operable simultaneously to lock the pin and rotation and slide elements in the housing element. In a preferred form, the housing element serves as a cylinder with the slide element as a keyed piston therein, and the rotation element is a disc located between a screw and annular thrust members engaged in the piston, the piston and disc being split respectively to lock by expansion and compaction under screw action towards the thrust members.


U.S. Pat. No. 4,483,334 discloses an external fixation device for holding bone segments in known relation to each other. The device includes a pair of bone clamp assemblies each secured to bone pins extending from the bone segments, a bridge extending between the pin clamp assemblies, and a specialized high friction universal assembly connecting the bridge to each of the pin clamp assemblies.


U.S. Pat. No. 4,273,116 discloses an external fixation device for reducing fractures and realigning bones that includes sliding universal articulated couplings for enabling easy adjustment and subsequent locking of connections between Steinmann pins and tubular tie-rods. The couplings each include a split, spherical adapter sleeve which is embraced by the matching inner surface of an open ring portion of a coupling locking clamp having clamp lugs tightenable against a block by means of a nut-and-bolt assembly. Further nut-and-bolt assemblies are disposed in elongated slots in the blocks and cooperate with associated clamping members to clamp the Steinmann pins to the blocks after adjustment in two orthogonal directions and optional resilient bending of the pins.


U.S. Pat. No. 6,672,788 discloses a ball and socket joint incorporating a detent mechanism that provides positive biasing toward a desired position. The ball and socket joint can be used in flexible supports that hold and support items such as lamps, tools and faucets. The detent mechanism comprises two corresponding parts, one in the ball portion and the second in the socket portion of the joint. The first detent part is a protrusion of some type and the second detent part is a groove or indentation that is adapted to accept and engage the protrusion. If the ball contains the detent protrusion, then the socket contains the detent indentation. And conversely, if the socket contains the detent protrusion, then the ball contains the detent indentation. The detent tensioning force can be provided by a spring or a spring band, the characteristics of the material from which the joint is made, or by some other similar tensioning device.


U.S. Publication No. 2003/0118395 discloses a ball and socket joint, which has a housing, a ball pivot mounted pivotably in the housing, and a sealing bellows, which is fastened to the housing and is mounted on the ball pivot slidably via a sealing ring provided with two legs. A first leg of the two legs is in contact with the ball pivot under tension and the second leg meshes with the wall of the sealing bellows. The second leg is, furthermore, fastened in an anchoring ring arranged at least partially in the wall of the sealing bellows.


U.S. Pat. No. 4,708,510 discloses a ball joint coupling assembly that permits universal movement and positioning of an object with respect to a vertical support shaft. Quick release/lock action is provided by a ball joint assembly having a housing in which a ball and piston are movably coupled. The ball is captured between annular jaw portions of the housing and piston, with locking action being provided by gripping engagement of the piston jaw portion and the housing jaw portion. The ball member is gripped in line-contact, compressive engagement by the annular edges of the piston jaw and housing jaw on opposite sides of the ball. The piston is constrained for axial movement within the housing with locking engagement and release being effected by rotation of a threaded actuator shaft.


U.S. Pat. No. 3,433,510 discloses a swivel structure for rigidly joining first and second parts together. A first member is connected to the first part and a second member is connected to the second part. An intermediate hollow member interconnects the first and second members together. An enlarged outer end portion is provided on the first member and includes a plurality of locking means thereon. Means are provided on the second member for engaging one of the locking means. Means are provided for threadably joining the hollow member and the second member together. A slot is provided in the hollow member and includes an enlarged entrance which passes the enlarged outer end portion and which also includes a restricted opening opposite the threaded joining of the hollow member and the second member together. The portion surrounding the restricted opening opposes the forces imparted against the outer end portion as the second member is threadably joined to the hollow portion and bears against the outer end portion.


U.S. Patent Publication No. 2008/0269809 discloses a bottom loading pedicle screw assembly. The device includes a pedicle screw and a connector member. The pedicle screw includes a threaded lower portion while the upper portion includes a groove sized to accept a clip member. The clip member includes a spherical outer surface. In operation the clip is placed within the groove and the assembly is pressed through the opening in the bottom of the connector member. While the device is bottom loading, the device will separate when the pedicle screw is aligned with the connector member. The construction of the clip member allows the clip to collapse sufficiently to pass back through the opening when the screw is positioned in alignment with the connector, requiring the connection to bone be placed at an angle with respect to the connector for proper operation.


Various attempts have also been made for placing of a connecting rod along a side entry chamber. U.S. Pat. Nos. 5,669,911; 5,817,094 and 5,690,630 discloses a polyaxial pedicle screw having a side loading channel with an external nut fastened to the connector for securing a rod to the screw.


U.S. Pat. No. 6,063,090 discloses a device for connecting a longitudinal support to a pedicle screw. One embodiment including a sidewardly open channel for receipt of a longitudinal support; the device employs a clamping element having a hollow truncated cone shape with a plurality of slots, the element used in securing the fastener in the tapered opening.


U.S. Pat. No. 7,022,122 discloses a device for connecting a longitudinal bar to a pedicle screw. The device including an adjusting nut for securing the spherical head of a pedicle screw with the longitudinal bar.


Thus, what is needed is a pedicle screw system that can be adapted for use in a spinal fixation system that includes a thread thru assembly allowing different sized anchoring screws to be coupled to a single size connector, and an assembly that maintains the connector member in position to assist a surgeon during installation. The pedicle screw system to include a polyaxial and monoaxial configuration, as well as fixed angular positioning therebetween. In addition, the pedicle screw system to include side loading and top loading.


SUMMARY OF THE INVENTION

The present invention is a pedicle screw system that allows for securement to a bone screw in either a polyaxial, monoaxial, fixed or range limiting attachment. In the preferred embodiment the threads of a pedicle screw can pass thru a lower section of a connecting member during manufacturing which permits the manufacturer to use a range of different size shanks and threads while using a common connector member to lower inventory costs. The system also provides for using oversized pedicle screws for a given connector member to provide a low profile assembly. In addition, the system includes a means for applying tension to the pedicle screw anchoring member that allows the connector to be desirably positioned relative to the screw to assist in surgical assembly of the system.


The bone screw has a threaded shank extending outwardly from a spherical ball for use in anchoring to the spine and a connector member that includes a socket constructed and arranged to accept the spherical ball. In the disclosed embodiment, the connector member is illustrated as a U-shaped or side loading connector member having a lower receptacle that operates as a socket for housing a retainer ring. The socket is receptive to the spherical ball which is inserted through the top of the connector during a manufacturing step. The retainer ring is biased against an upper component of the connector member and engages the spherical ball so as to keep the connector member in position during installation and prior to installation of the connector rod. A surgeon can easily move the connector member into a preferred position and the biasing member keeps sufficient tension on the retainer ring so as to maintain the connector in a position for proper placement of the connecting rod. This facilitates easier installation of the connecting rod by maintaining the proper angle of the saddle also allowing the surgeon to align additional screws on adjacent vertebra and/or bone structures.


The retaining ring may have a concave spherical shape that cooperates with a spherical head portion on the bone screw allowing the bone screw to operate in a polyaxial manner. Alternatively the retaining ring may include a partial spherical cavity shaped to cooperate with a partially spherical head portion to cause the bone screw to operate in a monoaxial range of motion or further include angular construction so as to limit the range of motion to a reduced or fixed angular displacement. Alternatively, the head portion of the bone screw may be shaped to cause range limitation in accordance with the shape of the retaining ring.


A fastener member, such as a set screw or nut, is utilized to press the retaining ring into contact with the spherical or partially spherical head while simultaneously causing the lower split ring to engage a lower portion of the ball as it wedges between the ball and the inner surface of the connector member immobilizing the connection.


The connector members are substantially rigid structures adapted to link an associated anchoring assembly with one of the stabilizing rods. The stabilizing rods may be rigid or dynamic members shaped to form a spine-curvature-correcting and/or immobilizing path. Attaching each anchoring assembly, via connectors, to a stabilizing rod forces a patient's back into a surgeon-chosen shape. Stabilizing rods may be used singly, or in pairs, depending upon the type of correction required. The rods vary in size, but typically extend between at least two vertebrae.


Accordingly, it is an objective of the present invention to teach the use of a pedicle screw system for posterior fixation having a common connector for use with different sized threaded shanks and thread types, which lowers inventory requirements and provides the surgeon with a uniform connector.


It is another objective of the present invention to disclose the use of a pedicle screw having a biasing member to supply a tension between the anchoring member and the connector member, the tension facilitates installation by maintaining the connector component in an angular placement position as desired by the surgeon prior to assembly of the rod member.


It is another objective of the present invention to teach the use of a bone screw assembly having a connector assembly that provides a thread through lower portion and a heavy side-walled upper portion that does not include thread through to provide a greater safety factor when a set screw fastener is employed to avoiding splaying.


Another objective of the present invention to teach the use of a polyaxial bone screw assembly that is adapted to utilize multiple connector rod member diameters.


Still another objective of the present invention to teach the use of a retainer ring member for use in conjunction with a U-shaped saddle or side loading saddle to obtain a three point fixation between a fastener set screw and the saddle.


Yet another objective of the present invention to teach the use of a polyaxial bone screw assembly that allows 60 degrees of conical polyaxial motion.


It is yet another objective of the present invention to provide a simple spinal fixation system having only a few components for use in assembly and limiting component parts needed during assembly by use of a common connector.


Still another objective of the invention is to teach a motion limiting pedicle screw assembly.


Still yet another objective of the present invention is to teach a pedicle screw assembly that utilizes a cooperating retaining ring and bone screw head to provide a pedicle screw that can be fixed, monoaxial or polyaxial in movement.


Still yet another objective of the present invention is to teach a pedicle screw assembly that that utilizes a cooperating retaining ring and bone screw head to provide a pedicle screw having a fixed or predetermined angular displacement.


Still another object of the invention to teach the use of a bone screw assembly having a connector assembly that provides a pass through non threaded lower portion with at least one groove on the spherical seat surface to provide improved friction gripping between the spherical seat surface and the spherical head of the pedicle screw.


Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is depiction of the instant invention having a U-shaped connector with a polyaxial assembly;



FIG. 2 is depiction of the instant invention having a U-shaped connector with a monoaxial assembly;



FIG. 3 is side view depiction of the range of motion for instant invention having a U-shaped connector with either a polyaxial or monoaxial assembly;



FIG. 4 is depiction of the instant invention having a side loading connector with a polyaxial assembly;



FIG. 5 is depiction of the instant invention having a side loading connector with a monoaxial assembly;



FIG. 6 is side view depiction of the range of motion for instant invention having a side loading connector with either a polyaxial or monoaxial assembly;



FIG. 7 is a perspective view of the pedicle screw apparatus without a rod or set screw;



FIG. 8 is a cross section view of the thread thru pedicle screw apparatus;



FIG. 9 is a cross sectional side view in an exploded manner depicting a bone screw with a thread thru lower element of a connector;



FIG. 10 is a cross sectional side view of a bone screw partially threaded into a lower element of a connector;



FIG. 11 is a cross section side view of a bone screw threaded into a lower element of a connector;



FIG. 12 is an exploded cross section view of the U-shaped pedicle screw apparatus;



FIG. 13 is a perspective view of the biasing spring;



FIG. 14 is a top perspective view of the retainer ring element;



FIG. 15 is a bottom perspective view of the retainer ring element;



FIG. 16 is a perspective view of the set screw;



FIG. 17 is a cross section view of the assembled connector for a polyaxial assembly;



FIG. 18 is a top perspective view of the limiting retainer ring element;



FIG. 19 is a bottom perspective view of the limiting retainer ring element;



FIG. 20 is a pictorial view depicting monoaxial range of motion;



FIG. 21 is a side view of a monoaxial bone screw and retaining ring;



FIG. 22 is a perspective view of a monoaxial bone screw and retaining ring;



FIG. 23 is a perspective view of a monoaxial bone screw;



FIG. 24 is a perspective view of a monoaxial bone screw and retaining ring of an alternative embodiment;



FIG. 25 is a bottom perspective view of a limiting retainer ring element;



FIG. 26 is a side view of a limiting retainer ring element;



FIG. 27 is a perspective view of a monoaxial bone screw;



FIG. 28 is a perspective view of a monoaxial bone screw and retaining ring of an alternative embodiment;



FIG. 29 is a bottom perspective view of a limiting retainer ring element;



FIG. 30 is a perspective view of a monoaxial bone screw and retaining ring of an alternative embodiment;



FIG. 31 is a side view of a monoaxial bone screw and retaining ring of an alternative embodiment;



FIG. 32 is a side view of a limiting retainer ring element;



FIG. 33 is a perspective view of a monoaxial bone screw;



FIG. 34 is a pictorial view depicting monoaxial range of motion;



FIG. 35 is a cross section view of the assembled connector for a monoaxial assembly;



FIG. 36 is a side view of a side loading connector;



FIG. 37 is a pictorial view depicting side loading polyaxial range of motion;



FIG. 38 is a cross sectional side view of a polyaxial side loading connector;



FIG. 39 is a pictorial view depicting side loading monoaxial range of motion;



FIG. 40 is a cross sectional side view of a polyaxial side loading connector.



FIG. 41 is a perspective view showing the range of various sized pedicle screws and tulip heads including lumber thoracic spine sizing and cervical-thoracic spine sizing.



FIG. 42 is a cross sectional view of a polyaxial screw having a groove formed in the spherical seat surface.



FIG. 43 is an enlarged detailed view of the spherical seat surface shown in FIG. 42 as detail A.



FIG. 44 is a perspective view of the spherical seat surface having a single gripping groove.



FIG. 45 is a perspective view of the spherical seat surface having two gripping grooves.



FIGS. 46 and 47 are perspective views of the spherical seat surface having three gripping grooves.



FIG. 48 is a cross sectional view of a monoaxial screw having a spherical seating surface with a gripping groove formed therein.



FIG. 49 is a cross sectional view of the screw shown in FIG. 48 rotated ninety degrees.



FIG. 50 is a diagrammatic representation of the monoaxial path of the screw shown in FIGS. 47 and 48.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.


Referring generally to the Figures, disclosed is an exemplary embodiment of the thread thru polyaxial pedicle screw system for use in a spinal fixation system. The pedicle screw system (10) is based on an anchoring member formed from a bone screw (12) including a shank (14) with at least one helical thread (16) formed along the length thereof. It is important to note that the proportions of the bone screw depicted are for illustrative purposes only and variations in the length of the shank, diameter of the screw, thread pitch, thread length, number of thread leads, shank induced compression and the like may be varied without departing from the scope of the invention. As will be further described later in this specification, unique to invention is the ability to use various shank widths and thread sizes with the same connector which reduces the manufacturing inventory. At the upper end (20) of the shank (14) is a ball shaped spherical connector (18) having a predetermined diameter. The diameter of the spherical connector (18) and the width of the shank (20) control the angular positioning (A) of about 60 degrees that the shank has of conical polyaxial motion in relation to the connector assembly (30).



FIG. 1 depicts a connector assembly (30) that is U-shaped and includes an upper connector member (31) and a lower connector member (33) having a polyaxial bone screw with movement depicted throughout a radius (R) which is controlled by a retainer ring construction (42), described in detail later in this specification, or by construction of the ball shaped connector (18). The angular positioning of the bone screw having a predetermined angular displacement (A).



FIG. 2 depicts a monoaxial bone screw having a mono angular predetermined angular displacement (A). FIG. 3 depicts a side view of either FIG. 1 or FIG. 2 wherein the predetermined angular displacement (A) is controlled by a retainer ring construction (42) or by construction of the ball shaped connector (18), described in detail later in this specification.



FIG. 4 depicts a connector assembly (130) that allows for side loading and includes an upper connector member (131) and a lower connector member (133) having a polyaxial bone screw with movement depicted throughout a radius (R) which is controlled by a retainer ring construction (42), described in detail later in this specification, or by construction of the ball shaped connector (18). The angular positioning of the bone screw having a predetermined angular displacement (A). The connector (131) is in receipt of a connecting rod 70.



FIG. 5 depicts a monoaxial bone screw having a mono angular predetermined angular displacement (A). FIG. 6 depicts a side view of either FIG. 4 or FIG. 5 wherein the predetermined angular displacement (A) is controlled by a retainer ring construction (42) or by construction of the ball shaped connector (18), described in detail later in this specification.


As shown in FIGS. 7, 8 and 12, the U-shaped connector 30 has an upper connector member (31) with a substantially circular side wall (32) divided by a pair of U-shaped openings (49) forming an upstanding first interior side wall (34) and second interior side wall (36). A portion of each said side wall is threaded (54) for receipt of a set screw used in securing a rod within the connector. The connector assembly is sized to cooperate with the retaining ring (42) for receipt of various sized rods, as well as limiting the range of motion of between the connector (30) and the screw (12). A driver receptacle (22) is located along the upper end (20) of the spherical connector for use in installing the bone screw. It should be noted that the driving receptacle may be any shape, male or female, suitable for cooperation with a driving tool to rotate the bone screw into its final position.


The upper connector member (31) preferably includes a shoulder (92) on the bottom surface thereof for location of the lower connector member (33) forming a socket area (44) for receipt of a retainer ring (42) there between. The socket area (44) is constructed and arranged to cooperate with the spherical ball connector on the bone screw and is further designed to prevent rotation of the retainer ring (42) thereby maintaining the saddle surface area in alignment with the U-shaped opening. Alignment is maintained by inset side walls (45, 46) which operate in conjunction with side walls (43, 48) of the retainer ring (42).


The lower connector member (33) also includes a shoulder (96) that is constructed and arranged to cooperate with shoulder (92) to maintain alignment of the two components. The lower connector member (33) includes a substantially spherical shaped receptacle (38) which operates in conjunction with the upper component member to house the retainer ring (42) used to engage the spherical ball (18). The shoulders (92) and (96) are utilized to align the components and the upper and lower connector members, once assembled the connector members are laser welded together. It should be noted that other suitable methods or techniques of attaching the upper and lower connector members together may be utilized without departing from the scope of the invention, such methods may include, but should not be limited to spot welding, threads, adhesives, pins swaging, solder, interference fits and suitable combinations thereof.


The retainer ring (42) is positioned within the lower receptacle (38) with an upper edge (52) positionable within the cavity formed by side wall (41); the retaining ring side wall (43) cooperates with side wall (41) of the cavity to prevent rotation of the retaining ring. The inner surface (56) of the retaining ring has a spherical diameter and provides for self centering by engaging of the outer surface of the spherical connector (18). The upper surface (53) of the retaining ring (42) includes a concave cylindrical surface for cooperation with the connecting rod (70). The cylindrical surface provides additional surface area for contact with the connecting rod and may include a knurled or otherwise modified surface finish adapted to enhance gripping power between the rod and the connecting assembly (30). The retaining ring (42) includes a biasing member to cause a tension from the retaining ring (42) to the spherical ball (18). In the preferred embodiment the biasing member is coil springs (102) that are located to cooperate with spring pockets (100) positioned in the upper connector member to locate and contain coil springs (102). The spring members bias the retaining ring toward the opening (50) of the lower receptacle. It should be noted that while springs are depicted, the biasing member can be a polymer or any other resilient material that can be use to apply a light pressure onto the retaining device to maintain a separation. Once the anchoring member is secured to the bone, a rod placed within the connector assembly fits within the U-shaped saddle (49) and is placed on the surface (53) of the retainer ring. The set screw (80) is threaded onto the threads (54) of the upper connector (31) wherein the rod forces the retainer ring (42) onto the spherical ball connector (18) locking the assembly into a fixed position. Alternatively the upper connector member can include the use of the well know faster type wherein the upper connector member had an external thread and the fastener element would be a nut having internal threads.


The surface (53) of the retainer ring (42) includes a clamp angle that provides positive contact with the rod connection member along multiple points with the exact point position dependant upon the diameter of the connecting rod. A third point is supplied by the bottom of the set screw (80) creating three point securement when used with any diameter rod. A driver receptacle (83) is located along the upper end of the set screw (80) for use in installing, the driving receptacle may be any shape, male or female, suitable for cooperation with a driving tool to rotate the set screw into its final position.


The pedicle screw system (10) is a pass through along a portion of the device allowing a larger bone screw to be used without increasing the size of the connector. FIGS. 9-11 depict the steps of selecting an anchoring member having a threaded shank (16) of an elected size for a particular installation. The shank may be small or large, the threads may be small or large, or any combination therebetween. The threaded shank) is inserted into the opening (50) of the lower connector member (33), the lower connector member having a centrally disposed aperture which is constructed and arranged to allow the threaded shank to pass through. The lower connector member (33) includes a pass through thread (103) which allows the larger threaded shanks to pass through by matching the threaded shank with the pass through thread. In operation, an oversized bone screw can be installed by use of a helical rotation (107) wherein the bone screw is threaded through the member (33). The pass through thread (103) having a helical assembly groove to match the bone screw threads. The connector remains the same size and is situated in the socket (96), the design allowing a variety of anchor screws to be inventoried yet only one size connector assembly needs to be inventoried. It should be noted that the spherical head (20) of the bone screw engages the thread of the lower connector in a uniform manner wherein the edge of the thread provide a superior edge for gripping of the head.


Once the anchoring screw is positioned, the retainer ring is placed in the socket (96), the retainer ring (42) having a lower spherical surface (56) positionable along an upper surface of the spherical connector (18), the upper surface (53) of the retainer ring constructed and arranged to receive a connecting rod. A clearance aperture (61) allows passage of a driver for use in securing to the bone screw fastener (22). The spring member (102) is attached to the upper connector (31) having the spring pockets (100). The upper connector member is then coupled, or welded as previously mentioned, to the lower connector member engaging the springs to bias the retainer ring against the anchoring member.


Now referring to FIGS. 18-35 set forth is an embodiment of the limiting retainer ring element (142) for limiting the movement of an anchoring screw in a monoaxial direction. A first embodiment employs a shaped cavity within the retainer ring; a second embodiment employs a shaped spherical head on an anchoring screw. It will be obvious to one skilled in the art that either embodiment accomplishes the inventor's goals, as would a combination of the embodiments. The retainer ring (142) includes an upper wall (144) for use in cooperating with the side wall of a connector cavity to prevent rotation of the retaining ring. The inner surface (156) of the retaining ring has a spherical diameter and provides for self centering by engaging of the outer surface of the spherical connector (160). The upper surface (153) of the retaining ring (142) includes a concave cylindrical surface for cooperation with a connecting rod. The cylindrical surface provides additional surface area for contact with the connecting rod and may include a knurled or otherwise modified surface finish adapted to enhance gripping power between the rod and the connecting assembly. A lower portion (147) of the retaining ring (142) includes a shape adapted for placement over a shaped spherical connector (160) which in a first embodiment includes a recessed area (162) having a substantially flat abutment surface (164). The lower portion (147) of the retaining ring limiting range of monoaxial movement in accordance with the angle of the lower portion (147) in respect to the flat abutment surface (164).


In an alternative embodiment the lower portion (147) of the retaining ring (142) includes a shape adapted for placement over a shaped spherical connector (170) which in this embodiment includes a recessed area (172) having a substantially flat abutment surface (174). The lower portion (147) of the retaining ring limiting range of movement to and angle set by B which in this embodiment is zero, however, changing of angle B on the retainer ring or the spherical head would allow for monoaxial range of motion.


As previously mentioned, the spherical head of the bone screw may include a variation of the above embodiments. FIGS. 29-23 depict the lower portion (177) of the retaining ring (178) to include a shape adapted for placement over a shaped spherical connector (180) which in this embodiment includes a recessed area (172) having an angled abutment surface (184). The lower portion (177) of the retaining ring limiting range of movement to and angle set by C which in this embodiment is zero, however, changing of angle C on the retainer ring or the spherical head would allow for monoaxial range of motion.


As shown in FIG. 35, the U-shaped connector 230 has an upper connector member (231) and a lower connector member (233). A portion of each said side wall is threaded (254) for receipt of a set screw (260) used in securing a rod (262) within the connector. The connector assembly is sized to cooperate with the retaining ring (142) for receipt of various sized rods, as well as limiting the range of motion of between the connector (230) and the screw (212). The screw (212) includes recessed areas for receipt of the retainer ring (142) for limiting the range of motion in a monoaxial direction and with a limit as to displacement by surface (147). Biasing springs (102) place a constant pressure upon the retainer ring which frictionally engages the head of the spherical screw.



FIG. 36 is a side view of a side loading connector assembly (300) depicting the placement of rod (302). The insertion of the rod (302) along the side allowing for certain advantages in various surgeries. The strength of the connector has been found to be the same as a top loading connector. FIG. 38 is a cross sectional side view of a polyaxial side loading connector having an upper connector member (306) that is welded to the lower connector member (308) thereby allowing the larger bone screw and spherical head (310) to be placed therein. The upper connector (306) member being generally C shaped having a top annulus portion (320) and a bottom annulus portion (322). The top annulus (320) includes internally directed threads that operatively engage a set screw for securing the rod (302) to the retainer (42) and the spherical head (310). The top annulus portion (320) is formed integrally with the bottom annulus portion (322) and a side wall (324). Side wall (324) circumscribes less than half of the circumference of said top and bottom annulus portions. The retaining ring (42) is again preloaded with the biasing member springs (102) to assist in maintaining the bone screw in position during installation. It should be noted that the removal of the biasing member would not defeat this invention as the biasing member is simply a benefit for the surgeon during installation and the lack of the biasing springs would simply require the holding of the connector while positioning of the connecting rod.



FIG. 40 is a cross sectional side view of a monoaxial side loading connector. In this embodiment the upper body element (326) is again welded to the lower body element (338) thereby allowing the larger bone screw and spherical head (160) to be placed therein. The retaining ring (142) is preloaded with the biasing member springs (102) to assist in maintaining the bone screw in position during installation. The shape of the retainer ring operatively associated with the shape of the recessed area of the bone screw to allow movement only in a monoaxial direction.


It should be noted that while the springs (102) are illustrated as coil springs, any spring or resilient type member suitable for displacing the retaining ring may be utilized without departing from the scope of the invention. Such spring or resilient members may include, but should not be limited to, Belleville type springs, leaf springs, polymeric members and suitable combinations thereof. It should also be noted that the recessed area or the flat portions on the sides of the spherical head may be displaced angularly to provide an assembly that provides a fixed angularly displaced connector or an angularly displaced connector with a limited range of monoaxial movement.



FIG. 41 is a perspective view showing the range of various sized pedicle screws and tulip heads including lumber thoracic spine sizing and cervical-thoracic spine sizing. The five larger screws as shown are lumber-thoracic spine sizing. The largest screw is 55 mm and uses an 8.5 mm tulip, the next smaller size screw is 45 mm and uses a 7.5 mm tulip, the next smaller screw is 40 mm and uses a 6.5 mm tulip, the next smaller screw is 35 mm and uses a 5.5 mm tulip and next smaller screw is 25 mm and uses a 4.5 mm tulip. These lumber thoracic screws use a 5.5 mm rod. The three smallest screws as shown are cervical thoracic spine sizing. The largest of this group is 18 mm with a 4.5 mm tulip, the next smaller screw is 14 mm with a 4.0 mm tulip and the smallest screw is 10 mm with a 3.5 mm tulip. These cervical thoracic screws utilize a 3.5 mm rod. The cervical thoracic spine sized screws are approximately two thirds the size of the lumbar thoracic sized screws. With the smaller sized screws the geometric relationship between the screw and the tulip is such that need for threading the screw through the lower member is eliminated. However it has been found that the utilization of at least one groove on the spherical bearing surface seat is very beneficial in gripping and locking the pedicle screws spherical head to the spherical bearing seat.


The tulip connector assembly shown in FIG. 42 includes an upper connector member 431 and a lower connector member 433. The lower connector member is formed as an annulus and includes an aperture 440. In this configuration the outer diameter of the threaded shank is smaller than the diameter of aperture 440. The lower connector member has a spherical bearing surface 458 that will cooperate with the spherical head 20 on the anchoring screw. The threaded shank is inserted into the lower connector member 433 and through aperture 440. Since the outer diameter of the threaded shank is smaller than the diameter of the aperture 440 the screw will pass through the aperture without the aid of screw threads and the spherical head 20 of the anchoring member can be positioned to cooperate with the spherical bearing seat surface 458 of the lower connector member 433. A retainer ring 442 having a lower spherical surface 456 is resiliently mounted within in a cavity of the upper connector by a biasing member 402 shown in this configuration as a plurality of coil springs. The lower connector member 433 includes spherical seat bearing surface 458. The spherical head of the screw cooperates with spherical bearing surfaces 456 and 458 to permit polyaxial motion of the connector assembly relative to said anchoring member. The upper and lower connector members 431 and 433 are secured to one another using any one of the suitable techniques previously described. This screw can also be used in conjunction with a side loading connector assembly such as that disclosed in FIGS. 36-38. In this instance the upper connector member would be generally C shaped having a top annulus portion and a bottom annulus portion. The top annulus includes internally directed threads that operatively engage a set screw for securing the rod to the retainer and the spherical head. The top annulus portion is formed integrally with the bottom annulus portion and a side wall. Side wall circumscribes less than half of the circumference of said top and bottom annulus portions. Located on spherical bearing seat surface 458 is a gripping and locking groove 470.



FIG. 43 is an enlarged view of the encircled detail area shown in FIG. 42. The groove 470 circumscribes a minor portion of the circumference of the spherical bearing seat surface 458. The groove 470 starts at a zero depth at a lower portion 474 of the spherical bearing surface 458. The grove 470 penetrates to the design depth as it approaches the upper portion 476 of the spherical bearing seat surface 458. The helical groove 470 is used as an additional aid in locking the spherical head of a screw in its polyaxial position. The groove provides additional points and edges for friction gripping. Under high locking forces the groove also provides a flexing interface for the spherical seat surface to deform and better mate to the spherical head of the screw.



FIG. 44 is a perspective top view of the lower connector member 433 with a single groove 470 on the spherical bearing seat surface 458. FIG. 45 is a perspective top view of an alternative embodiment wherein lower connector member 433 has a pair of grooves 471 and 472 formed on the spherical bearing seat surface 458. FIG. 46 is a perspective top view of a third embodiment wherein the lower connector member 433 includes three grooves 473, 474 and 475 each circumscribing only a minor portion of the bearing seat surface 458. FIG. 47 is a cross sectional view of the embodiment shown in FIG. 46.



FIGS. 48 and 49 show different cross sectional views of an embodiment similar to that shown and described in FIG. 42 however in this embodiment the motion of the connector assembly relative to said anchoring member is limited to either mono axial movement or a fixed relative position. The connector assembly (530) has an upper connector member (531) and a lower connector member (533). A portion of each said side wall of the upper connector member is threaded for receipt of a set screw (506) used in securing a rod (504) within the connector assembly (530). The connector assembly (530) is sized to cooperate with the retaining ring (542) for receipt of various sized rods, as well as limiting the range of motion of between the connector assembly (530) and the screw (512). The screw (512) has a spherical connecting head (514). The spherical head includes recessed areas (562) for receipt of the retainer ring (542) for limiting the range of motion in a monoaxial direction and with a limit as to displacement by surfaces (547). Biasing springs (502) place a constant pressure upon the retainer ring (542) which frictionally engages the spherical head (514) of the screw (512). It is also possible to size and configure the recessed areas (562) and retainer surfaces (547) to achieve a fixed relationship between the anchoring screw 512 and the connector assembly (530). The lower connector member 533 includes a spherical bearing seat surface and one, two, or three gripping and locking grooves as illustrated and described in FIGS. 44 through 47.


All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.


It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.


One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.

Claims
  • 1. A pedicle screw comprising: an anchoring member having a threaded shank and a spherical connector;a connecting assembly defined by a lower connector member secured to an upper connector member, said lower connector member including a spherical seat surface formed therein, said spherical seat surface having a generally circular aperture sized to allow only said threaded shank of said anchoring member to pass through, said aperture having at least one groove formed on said spherical seat surface sized and configured to grip and lock said spherical connector;a retainer ring disposed between said lower connector member and said upper connector member, said retainer ring having a lower spherical surface positionable along an upper surface of said spherical connector, said retainer ring constructed and arranged to limit placement of said anchoring member; anda fastener element securable to said upper connector member for engaging of a connection rod member placed within said upper connector member;wherein when said connecting rod member is placed in said upper connector and said fastener element is secured thereto, the connecting rod member engages said retainer ring and said retainer ring locks said connecting assembly in a fixed position in relation to said anchoring member.
  • 2. The pedicle screw of claim 1, wherein the threaded shank of said anchoring member has an outer diameter that is less than the diameter of said aperture of said spherical seat surface.
  • 3. The pedicle screw of claim 2 wherein said at least one groove in said spherical seat surface is helical.
  • 4. The pedicle screw of claim 3 wherein said spherical seat surface has a lower portion and an upper portion and said at least one helical grove starts at a near zero depth at said lower portion and then increases in depth proximate the upper portion of said spherical seat surface.
  • 5. The pedicle screw of claim 3 wherein said at least one helical groove circumscribes only a portion of the spherical seat surface.
  • 6. The pedicle screw of claim 3 further including a second helical groove that circumscribes only a portion of the spherical seat surface.
  • 7. The pedicle screw of claim 3 further including a second and third groove each circumscribing only a portion of the spherical seat surface.
  • 8. The pedicle screw of claim 1 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector thereby limiting the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the guide surface.
  • 9. The pedicle screw of claim 1 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector that is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 10. The pedicle screw of claim 1 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector that also is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 11. The pedicle screw of claim 1 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector thereby fixing the movement of the connector assembly relative to said anchoring member.
  • 12. The pedicle screw of claim 1 further including at least one biasing member positioned between said retainer ring and said upper connector element.
  • 13. A pedicle screw comprising: an anchoring member having a shank and a spherical connector;a connecting assembly defined by a lower connector member secured to an upper connector member, said lower connector member including a spherical seat surface formed therein, said spherical seat surface having a generally circular aperture sized to allow only said threaded shank of said anchoring member to pass through, said aperture having at least one groove formed on said spherical seat surface sized and configured to grip and lock said spherical connector; said upper connector member being generally C shaped having a top annulus portion and a bottom annulus portion, said top annulus portion being connected to said bottom annulus portion with a side wall that circumscribes less than half of the circumference of said top and bottom annulus portions, whereby a connecting rod member can be side loaded into said upper connector member;a retainer ring disposed between said lower connector member and said upper connector member, said retainer ring having a lower spherical surface positionable along an upper surface of said spherical connector,a fastener element securable to said upper connector member for engaging a connection rod member placed within said upper connector member;wherein when said connecting rod member is placed in said upper connector and said fastener element is secured thereto, the connecting rod member engages said retainer ring and said retainer ring locks said connecting assembly in a fixed position in relation to said anchoring member.
  • 14. The pedicle screw of claim 13 further including at least one biasing member positioned between said retainer ring and said upper connector element.
  • 15. The pedicle screw of claim 13 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector thereby limiting the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the guide surface.
  • 16. The pedicle screw of claim 13 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector that is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 17. The pedicle screw of claim 13 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector that also is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 18. The pedicle screw of claim 13 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector thereby fixing the movement of the connector assembly relative to said anchoring member.
  • 19. A pedicle screw comprising: an anchoring member having a threaded shank and a spherical connector;a connecting assembly defined by a lower connector member secured to an upper connector member, said connector assembly further including a socket for receipt of said spherical connector;a retainer ring disposed within said socket and between said lower connector member and said upper connector member, said retainer ring having a lower spherical surface positionable along an upper surface of said spherical connector, said retainer ring constructed and arranged to limit placement of said anchoring member; anda fastener element securable to said upper connector member for engaging of a connection rod member placed within said upper connector membersaid lower connector member including a spherical seat surface formed therein, said spherical seat surface having an aperture and at least one groove formed on said spherical seat surface, the spherical seat surface being sized and configured to grip and lock said spherical connector to said lower connector member; andsaid upper connector member being generally C shaped having a top annulus portion and a bottom annulus portion, said top annulus portion being connected to said bottom annulus portion with a side wall that circumscribes less than half of the circumference of said top and bottom annulus portions, whereby said connecting rod member can be side loaded into said upper connector member.
  • 20. The pedicle screw of claim 19, wherein the threaded shank of said anchoring member has an outer diameter that is less than the aperture of said spherical seat surface.
  • 21. The pedicle screw of claim 20 wherein said at least one groove in said spherical seat surface is helical.
  • 22. The pedicle screw of claim 21 wherein said spherical seat surface has a lower portion and an upper portion and said at least one helical grove starts at a near zero depth at said lower portion and then increases in depth proximate the upper portion of said spherical seat surface.
  • 23. The pedicle screw of claim 22 wherein said at least one helical groove circumscribes only a portion of the spherical seat surface.
  • 24. The pedicle screw of claim 23 further including a second helical groove that circumscribes only a portion of the spherical seat surface.
  • 25. The pedicle screw of claim 23 further including a second and third groove each circumscribing only a portion of the spherical seat surface.
  • 26. The pedicle screw of claim 19 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector thereby limiting the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the guide surface.
  • 27. The pedicle screw of claim 19 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector that is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 28. The pedicle screw of claim 19 wherein a lower portion of said retaining ring has a guide surface that is sized and configured to operatively engage an abutment surface within a recess of the spherical connector that also is sized and configured to thereby limit the range of monoaxial movement of the connector assembly relative to said anchoring member as a function of the shape of the abutment surface.
  • 29. The pedicle screw of claim 19 wherein a lower portion of said retaining ring has a guide surface operatively engaged with an abutment surface within a recess of the spherical connector thereby fixing the movement of the connector assembly relative to said anchoring member.
  • 30. The pedicle screw of claim 19 further including at least one biasing member positioned between said retainer ring and said upper connector element.
PRIORITY CLAIM AND CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of patent application Ser. No. 12/540,398 filed Aug. 13, 2009 which is a continuation in part of U.S. patent application Ser. No. 11/749,615 filed May 16, 2007 and a continuation in part of U.S. patent application Ser. No. 12/355,145 filed Jan. 16, 2009 the entire contents of these applications are herein incorporated by reference.

US Referenced Citations (405)
Number Name Date Kind
3433510 Hulterstrum Mar 1969 A
4273116 Chiquet Jun 1981 A
4419026 Leto Dec 1983 A
4483334 Murray Nov 1984 A
4570982 Blose et al. Feb 1986 A
4693240 Evans Sep 1987 A
4708510 McConnell et al. Nov 1987 A
4763644 Webb Aug 1988 A
4805602 Puno et al. Feb 1989 A
4836196 Park et al. Jun 1989 A
4841959 Ransford Jun 1989 A
4854304 Zielke Aug 1989 A
4867144 Karas et al. Sep 1989 A
4887595 Heinig et al. Dec 1989 A
4887596 Sherman Dec 1989 A
4946458 Harms et al. Aug 1990 A
5002542 Frigg Mar 1991 A
5005562 Cotrel Apr 1991 A
5084049 Asher et al. Jan 1992 A
5085660 Lin Feb 1992 A
5092893 Smith Mar 1992 A
5129388 Vignaud et al. Jul 1992 A
5129900 Asher et al. Jul 1992 A
5133716 Plaza Jul 1992 A
5133717 Chopin Jul 1992 A
5176678 Tsou Jan 1993 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5257993 Asher et al. Nov 1993 A
5261909 Sutterlin et al. Nov 1993 A
5261912 Frigg Nov 1993 A
5312404 Asher et al. May 1994 A
5312405 Korotko et al. May 1994 A
5330477 Crook Jul 1994 A
5360431 Puno et al. Nov 1994 A
5364399 Lowery et al. Nov 1994 A
5395371 Miller et al. Mar 1995 A
5429639 Judet Jul 1995 A
5437671 Lozier et al. Aug 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5470333 Ray Nov 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5476464 Metz-Stavenhagen et al. Dec 1995 A
5480401 Navas Jan 1996 A
5496321 Puno et al. Mar 1996 A
5498262 Bryan Mar 1996 A
5498263 DiNello et al. Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5520690 Errico et al. May 1996 A
5527314 Brumfield et al. Jun 1996 A
5531746 Errico et al. Jul 1996 A
5545164 Howland Aug 1996 A
5549608 Errico et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5562661 Yoshimi et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5575792 Errico et al. Nov 1996 A
5578033 Errico et al. Nov 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5591165 Jackson Jan 1997 A
5591166 Bernhardt et al. Jan 1997 A
5601552 Cotrel Feb 1997 A
5601553 Trebing et al. Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5609593 Errico et al. Mar 1997 A
5609594 Errico et al. Mar 1997 A
5628740 Mullane May 1997 A
5643261 Schafer et al. Jul 1997 A
5643265 Errico et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5669910 Korhonen et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5681319 Biedermann et al. Oct 1997 A
5688272 Montague et al. Nov 1997 A
5688273 Errico et al. Nov 1997 A
5690630 Errico et al. Nov 1997 A
5716355 Jackson et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5716357 Rogozinski Feb 1998 A
5725528 Errico et al. Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5810818 Errico et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
5873878 Harms et al. Feb 1999 A
5876402 Errico et al. Mar 1999 A
5879350 Sherman et al. Mar 1999 A
5879351 Viart Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5902303 Eckhof et al. May 1999 A
5947966 Drewry et al. Sep 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
5980523 Jackson Nov 1999 A
6010503 Richelsoph et al. Jan 2000 A
6015409 Jackson Jan 2000 A
6019759 Rogozinski Feb 2000 A
6022350 Ganem Feb 2000 A
6050997 Mullane Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6063090 Schlapfer May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6080156 Asher et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6110172 Jackson Aug 2000 A
6113600 Drummond et al. Sep 2000 A
6113601 Tatar Sep 2000 A
6132431 Nilsson et al. Oct 2000 A
6132432 Richelsoph Oct 2000 A
6132434 Sherman et al. Oct 2000 A
6146383 Studer et al. Nov 2000 A
6183472 Lutz Feb 2001 B1
6187005 Brace et al. Feb 2001 B1
RE37161 Michelson et al. May 2001 E
6224596 Jackson May 2001 B1
6248105 Schlapfer et al. Jun 2001 B1
6254602 Justis Jul 2001 B1
6261287 Metz-Stavenhagen Jul 2001 B1
6273888 Justis Aug 2001 B1
6280442 Barker et al. Aug 2001 B1
6280445 Morrison et al. Aug 2001 B1
6287308 Betz et al. Sep 2001 B1
6287311 Sherman et al. Sep 2001 B1
6296642 Morrison et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6331179 Freid et al. Dec 2001 B1
6355040 Richelsoph et al. Mar 2002 B1
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6383190 Preissman May 2002 B1
6402752 Schaffler-Wachter et al. Jun 2002 B2
6436100 Berger Aug 2002 B1
6440137 Horvath et al. Aug 2002 B1
6451021 Ralph et al. Sep 2002 B1
6471703 Ashman Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6485491 Farris Nov 2002 B1
6485494 Haider Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6508818 Steiner et al. Jan 2003 B2
6520962 Taylor et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6530929 Justis et al. Mar 2003 B1
6533786 Needham et al. Mar 2003 B1
6537276 Metz-Stavenhagen Mar 2003 B2
6547789 Ventre et al. Apr 2003 B1
6547790 Harkey, III et al. Apr 2003 B2
6551320 Liebermann Apr 2003 B2
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6558387 Errico et al. May 2003 B2
6562040 Wagner May 2003 B1
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6582436 Schlapfer et al. Jun 2003 B2
6582466 Gauchet Jun 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6595992 Wagner et al. Jul 2003 B1
6595993 Donno et al. Jul 2003 B2
6610063 Kumar et al. Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6623485 Doubler et al. Sep 2003 B2
6626907 Campbell et al. Sep 2003 B2
6626908 Cooper et al. Sep 2003 B2
6635059 Randall et al. Oct 2003 B2
6641586 Varieur Nov 2003 B2
6648885 Friesem Nov 2003 B1
6648887 Ashman Nov 2003 B2
6656179 Schaefer et al. Dec 2003 B1
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6663632 Frigg Dec 2003 B1
6663635 Frigg et al. Dec 2003 B2
6672788 Hathaway Jan 2004 B2
6673073 Schafer Jan 2004 B1
6676661 Benlloch et al. Jan 2004 B1
6679833 Smith et al. Jan 2004 B2
6682529 Stahurski Jan 2004 B2
6689133 Morrison et al. Feb 2004 B2
6689134 Ralph et al. Feb 2004 B2
6695843 Biedermann et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699249 Schlapfer et al. Mar 2004 B2
6706045 Lin et al. Mar 2004 B2
6712818 Michelson Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6716247 Michelson Apr 2004 B2
6723100 Biedermann et al. Apr 2004 B2
6726689 Jackson Apr 2004 B2
6730093 St. Martin May 2004 B2
6730127 Michelson May 2004 B2
6733502 Altarac et al. May 2004 B2
6736816 Ritland May 2004 B2
6736820 Biedermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6746449 Jones et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755830 Minfelde et al. Jun 2004 B2
6755835 Schultheiss et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6761723 Butterman et al. Jul 2004 B2
6767351 Orbay et al. Jul 2004 B2
6770075 Howland Aug 2004 B2
6780186 Errico et al. Aug 2004 B2
6790209 Beale et al. Sep 2004 B2
6827719 Ralph et al. Dec 2004 B2
6830571 Lenke et al. Dec 2004 B2
6835196 Biedermann et al. Dec 2004 B2
6837889 Shluzas Jan 2005 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6858031 Morrison et al. Feb 2005 B2
6869432 Schlapfer et al. Mar 2005 B2
6869433 Glascott Mar 2005 B2
6872208 McBride et al. Mar 2005 B1
6905500 Jeon et al. Jun 2005 B2
6932817 Baynham et al. Aug 2005 B2
6945972 Frigg et al. Sep 2005 B2
6951561 Warren et al. Oct 2005 B2
6953462 Lieberman Oct 2005 B2
6955677 Dahners Oct 2005 B2
6958065 Ueyama et al. Oct 2005 B2
6964664 Freid et al. Nov 2005 B2
6964665 Thomas et al. Nov 2005 B2
6974460 Carbone et al. Dec 2005 B2
6979334 Dalton Dec 2005 B2
6981973 McKinley Jan 2006 B2
RE39035 Finn et al. Mar 2006 E
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
RE39089 Ralph et al. May 2006 E
7066937 Shluzas Jun 2006 B2
7087057 Konieczynski et al. Aug 2006 B2
7128743 Metz-Stavenhagen Oct 2006 B2
7144396 Shluzas Dec 2006 B2
7163538 Altarac et al. Jan 2007 B2
7223268 Biedermann May 2007 B2
7306606 Sasing Dec 2007 B2
7322981 Jackson Jan 2008 B2
7335202 Matthis et al. Feb 2008 B2
7445627 Hawkes et al. Nov 2008 B2
7604656 Shluzas Oct 2009 B2
7682377 Konieczynski Mar 2010 B2
20010001119 Lombardo May 2001 A1
20020035366 Walder et al. Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020103487 Errico et al. Aug 2002 A1
20020111626 Ralph et al. Aug 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020173789 Howland Nov 2002 A1
20020193795 Gertzbein et al. Dec 2002 A1
20030004512 Farris Jan 2003 A1
20030023243 Biedermann et al. Jan 2003 A1
20030045879 Minfelde et al. Mar 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030093078 Ritland May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030118395 Abels et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030176862 Taylor et al. Sep 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040024464 Errico et al. Feb 2004 A1
20040092934 Howland May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040102781 Jeon May 2004 A1
20040116929 Barker et al. Jun 2004 A1
20040127906 Culbert et al. Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040176766 Shluzas Sep 2004 A1
20040181224 Biedermann Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040193160 Richelsoph Sep 2004 A1
20040210216 Farris et al. Oct 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20040249380 Glascott Dec 2004 A1
20040267264 Konieczynski et al. Dec 2004 A1
20050027296 Thramann et al. Feb 2005 A1
20050033289 Warren et al. Feb 2005 A1
20050055026 Biedermann et al. Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050131537 Hoy et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050131545 Chervitz et al. Jun 2005 A1
20050149023 Ritland Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159750 Doherty Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171540 Lim et al. Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050192580 Dalton Sep 2005 A1
20050203515 Doherty et al. Sep 2005 A1
20050203516 Biedermann et al. Sep 2005 A1
20050216003 Biedermann et al. Sep 2005 A1
20050228392 Keyer et al. Oct 2005 A1
20050228501 Miller et al. Oct 2005 A1
20050234450 Barker Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050240183 Vaughan Oct 2005 A1
20050251137 Ball Nov 2005 A1
20050251141 Frigg et al. Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050267474 Dalton Dec 2005 A1
20050273099 Baccelli et al. Dec 2005 A1
20050273101 Shumacher Dec 2005 A1
20050277919 Slivka et al. Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050283152 Lindemann et al. Dec 2005 A1
20050283157 Coates et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050288669 Abdou Dec 2005 A1
20050288671 Yuan et al. Dec 2005 A1
20050288673 Catbagan et al. Dec 2005 A1
20060004357 Lee et al. Jan 2006 A1
20060004359 Kramer et al. Jan 2006 A1
20060004360 Kramer et al. Jan 2006 A1
20060004363 Brockmeyer et al. Jan 2006 A1
20060009769 Lieberman Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060015104 Dalton Jan 2006 A1
20060015105 Warren et al. Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060074419 Taylor et al. Apr 2006 A1
20060084981 Shluzas Apr 2006 A1
20060149240 Jackson Jul 2006 A1
20060149241 Richelsoph Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060235392 Hammer et al. Oct 2006 A1
20060241599 Konieczynski et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060276791 Shluzas Dec 2006 A1
20070055241 Matthis et al. Mar 2007 A1
20070093818 Biedermann et al. Apr 2007 A1
20070093826 Hawkes et al. Apr 2007 A1
20070118132 Culbert et al. May 2007 A1
20070123868 Culbert et al. May 2007 A1
20070161996 Biedermann et al. Jul 2007 A1
20070161999 Biedermann et al. Jul 2007 A1
20070219556 Altarac et al. Sep 2007 A1
20070225712 Altarac et al. Sep 2007 A1
20070225713 Altarac et al. Sep 2007 A1
20070270813 Garamszegi et al. Nov 2007 A1
20080009862 Hoffman Jan 2008 A1
20080015576 Whipple Jan 2008 A1
20080015579 Whipple Jan 2008 A1
20080015580 Chao Jan 2008 A1
20080015597 Whipple Jan 2008 A1
20080045953 Garamszegi Feb 2008 A1
20080097436 Culbert et al. Apr 2008 A1
20080177322 Davis et al. Jul 2008 A1
20080269809 Garamszegi Oct 2008 A1
20080287998 Doubler et al. Nov 2008 A1
20090163956 Biedermann et al. Jun 2009 A1
20100023061 Randol et al. Jan 2010 A1
Foreign Referenced Citations (36)
Number Date Country
G9202745.8 Apr 1992 DE
19509332 Aug 1996 DE
19507141 Sep 1996 DE
19720782 Dec 2004 DE
1121902 Aug 2001 EP
1190678 Mar 2002 EP
1474050 Nov 2004 EP
1570795 Sep 2005 EP
1579816 Sep 2005 EP
1634537 Mar 2006 EP
2729291 Jul 1996 FR
2796545 Jan 2001 FR
2856578 Jun 2003 FR
2865373 Jan 2004 FR
2865375 Jan 2004 FR
2865377 Jan 2004 FR
2857850 Apr 2004 FR
2865378 Oct 2004 FR
2173104 Oct 1986 GB
2365345 Feb 2002 GB
W00149191 Jul 2001 WO
W002054966 Jul 2002 WO
W003068088 Aug 2003 WO
W003068083 Aug 2003 WO
W02004041100 May 2004 WO
W02004089245 Oct 2004 WO
W02004107997 Dec 2004 WO
W02005000136 Jan 2005 WO
W02005000137 Jan 2005 WO
W02005020829 Mar 2005 WO
W02005072632 Aug 2005 WO
W02005082262 Sep 2005 WO
W02005099400 Oct 2005 WO
W02006012088 Feb 2006 WO
W02006017616 Feb 2006 WO
W02006028537 Mar 2006 WO
Related Publications (1)
Number Date Country
20100137920 A1 Jun 2010 US
Continuation in Parts (3)
Number Date Country
Parent 12540398 Aug 2009 US
Child 12700436 US
Parent 11749615 May 2007 US
Child 12540398 US
Parent 12355145 Jan 2009 US
Child 11749615 US