Pen coordinate reading device with pen attribute detecting function

Information

  • Patent Grant
  • 6744426
  • Patent Number
    6,744,426
  • Date Filed
    Thursday, August 10, 2000
    23 years ago
  • Date Issued
    Tuesday, June 1, 2004
    20 years ago
Abstract
A circuit mounted in the circuit board 69 of the pen 60 includes: a CR solution circuit 69e; an LC oscillation circuit 69c; and an FSK circuit 69d. The CR oscillation circuit 69e oscillates a signal with one of a plurality of different modulation frequencies that correspond to a plurality of different attributes, such as ink colors, pen tip thickness, and the like, of the pen. The LC oscillation circuit 69c is for oscillating a carrier wave for transmitting the signal oscillated by the CR oscillation circuit 69e. The FSK circuit 69d is for PSK modulating the oscillation frequency of the LC oscillation circuit 69c in accordance with the modulation frequency of the CR oscillation circuit 69e. The receiving side measures a time period at which the frequency of the carrier wave is maintained, thereby determining the period of the modulation frequency to know the pen attributes. Because it is sufficient to receive the signal from the pen for at least one period of time thereof, it is possible to shorten the time required to recognize the pen attributes.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a coordinate reading device and a coordinate input device.




2. Description of the Related Art




Various types of coordinate reading device and a coordinate input device have been proposed.




SUMMARY OF THE INVENTION




FIG.


1


(


a


) is a configuration of a conceivable coordinate reading device and a conceivable coordinate input device. The conceivable coordinate reading device includes: a table


91


, a scanning circuit


92


, and a detection circuit


90


. The tablet


91


is provided with a plurality of X sense coils (conductive loop wires) X


1


to Xm and Y sense coils (conductive loop wires) Y


1


to Yn. The X sense coils X


1


to Xm are for detecting X coordinates of a pen (coordinate input device)


400


, the Y sense coils Y


1


to Yn are for detecting Y coordinates of the pen


400


. The scan circuit


90


is for serially scanning the sense coils X


1


-Xm and Y


1


-Yn on the tablet


91


. The detection circuit


90


is for calculating the x and y coordinates of the pen by detecting induction signals generated at the sense coils X


1


-Xm and Y


1


-Yn.




The pen (coordinate input device)


400


includes a coil


401


that generates an alternating magnetic field. When the pen


400


contacts the tablet


91


, some sense coils that are located near to the pen


400


generate induction signals


97


due to magnetic coupling with the alternating magnetic field from the coil


401


. The induction signals


97


are inputted into the detection circuit


90


. The induction signal


97


are amplified at an amplifier


93


and then its amplitude is detected at an amplitude detection circuit


94


. Next, and A/D conversion circuit


95


converts the measured amplitude into digital values, and outputs the digital values to a CPU


96


. The CPU


96


calculates the positional coordinate of the pen


400


based on the inputted digital values from the A/D conversion circuit


95


. For example, the CPU


96


may refer to a coordinate table that stores data indicative of a relationship between a plurality of digital values and coordinate positions. The CPU


96


selects a positional coordinate that corresponds to the digital values presently inputted from the A/D conversion circuit


95


.




Japanese Patent-Application Publication (Kokai) No. HEI-5-233127 discloses a coordinate reading device for a plurality of different type pens. Each pen transmits a code train that includes attribute information indicating attributes of the pen. The coordinate reading device detects the attribute information in the signal.




FIG.


1


(


b


) is a timing chart showing an example of the code train transmitted from the pen. The code train G includes ten bits; two start bits, seven bits indicating pen attribute information, and a single stop bit. The code train G is superimposed on an alternating magnetic field from the pen in accordance with an operation clock F and then outputted.




In the coordinate reading device, the sense coils generate signals to response to the alternating magnetic field transmitted from the pen. The coordinate reading device reads the code train G that is superimposed in the generated signals, and detects the pen attribute information.




According to this method proposed by the publication, however, the coordinate reading device cannot recognize the pen attribute information unless it receives the code train G over a plurality of periods from the start bit to the stop bit.




Also, the coordinate reading device can not recognize the pen attribute information unless the operation clock of the pen is synchronized with the operation clock of the coordinate reading device.




Further, if detection by the sense coils is started somewhere between the start bit and the stop bit, then the coordinate reading device has to wait until the next start bit, and receive the entire code train from the start bit to the stop bit, or will not be able to detect pen attribute information. Thus, it takes a great deal of time to determine the pen attribute information.




Japanese Patent-Application Publication (Kokai) No. HEI-7-160400 discloses another coordinate reading device and a pen (coordinate input device). According to this publication, the pen generates an alternating magnetic field, whose frequency changes according to color of ink in the pen. The pen includes a switch that enables changing the frequency of the alternating magnetic field in accordance with the ink color. The coordinate reading device recognizes the color of the ink by detecting frequency of the alternating magnetic filed outputted from the pen.




In the configuration proposed by this publication, however, the coordinate input device (pen) switches frequency in accordance with the ink color. The coordinate reading device detects the ink color according to the received frequency. It is impossible for the pen to transmit values that consecutively change, such as pressure, at which the pen is pressed against the writing surface of the coordinate reading device. Also, because only a certain number of frequency bands can be used, this configuration can use frequency to designate only a limited number of attributes, that is, the ink color.




Japanese Patent-Application Publication (Kokai) No. HEI-5-274079 discloses a coordinate input device (pen) which includes a marker portion and a case portion. The marker portion is detachably attached to the case portion, and includes a coil and an ink tank filled with ink. The marker portion is used to draw character and figures on a white board using the ink in the ink tank. The case portion includes a battery and a signal tuning circuitry for producing signals to cause the white board to detect the position of the pen. When the ink in the marker portion runs out, then the marker portion is detached from the case portion and is discarded. A new marker portion filled with ink is then attached to the case portion in its place. With this configuration, the battery and the circuitry in the case portion can still be used, so running costs are low. However, the only information the white board obtains from the tuning unit is the position of the input unit on the board.




In view of the above-described drawbacks, it is an objective of the present invention to provide an improved coordinate input device which is capable of transmitting information so that the coordinate reading device can distinguish the information in a short period of time, and to provide an improved coordinate reading device which is capable of distinguishing information, transmitted from a coordinate input device, in a short period of time.




It is another objective of the present invention to provide an improved method for communicating information so that an information receiving side can distinguish the information in a short period of time.




It is another object of the present invention is to provide an improved coordinate input device which is capable of transmitting information indicating a variety of attributes and consecutively-changing values, and an improved coordinate reading device which is capable of detecting information indicating a variety of attributes and consecutively-changing values.




It is still another objective of the present invention to provide an improved coordinate input device wherein a single case portion can be used with a plurality of different marker portions with different colors, wherein the marker portions can be exchanged simply and easily, wherein the characters drawn on the board will properly match ink color information transmitted to the coordinate reading device.




In order to attain the above and other objects, the present invention provides a coordinate reading system, comprising: a coordinate input device, the coordinate input device including: a coil generating an alternating magnetic field; an angle-modulation portion that modulates the alternating magnetic field in an angle modulation to thereby successively change an angle state of the alternating magnetic field into a plurality of different states in a plurality of successive time durations, with a length of at least one time duration corresponding to desired information; and a coordinate reading device, the coordinate reading device including: a main body having a surface defining a coordinate of the coordinate input device; a plurality of wires provided to the main body, each wire generating an electric signal in response to the alternating magnetic field; a coordinate detection unit that calculates the coordinate of a position of the coordinate input device based on the amplitude of the generated electric signal; and an information detection unit that demodulates the generated electric signal to detect the length of the at least one time duration, thereby determining the desired information.




A length of a single modulation period, which is equal to the total length of all the plurality of time durations, may correspond to the desired information. A duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the plurality of time durations, may correspond to the desired information.




The angle-modulation portion may include a frequency modulation portion that modulates the alternating magnetic field in a frequency deviation modulation to successively modulate the alternating magnetic field into a plurality of different frequencies in a corresponding plurality of time durations, with a length of at least one time duration for at least one frequency corresponding to the desired information.




The coordinate input device may further have a consecutive detection unit that consecutively detects a characteristic of the coordinate input device. In this case, the length of at least one time duration for at least one frequency may have a consecutively-changing value indicative of the consecutively-detected characteristic of the coordinate input device.




The frequency modulation portion in the coordinate input device may include: a signal production portion that produces a signal that repeatedly changes its amplitude in a modulation frequency, the amount of the modulation frequency indicating the desired information; and a modulation portion that subjects the alternating magnetic field to the frequency modulation by using the produced signal. The coordinate input device may further include: an ink cartridge that includes a tank storing ink, the desired information indicating color of the ink; and a case portion that detachably houses the ink cartridge. In this case, at least a part of the signal production portion may be mounted to the ink cartridge.




According to another aspect, the present invention provides a coordinate input device, comprising: a coil generating an alternating magnetic field; and an angle-modulation portion that modulates the alternating magnetic field in an angle modulation to thereby successively change an angle state of the alternating magnetic field into a plurality of different states in a plurality of successive time durations, with a length of at least one time duration corresponding to desired information.




According to a further aspect, the present invention provides a coordinate reading device reading a coordinate of a position of a coordinate input device, the coordinate reading device comprising: a main body having a surface defining a coordinate of the coordinate input device, a plurality of wires provided on the main body, each wire generating an electric signal in response to an alternating magnetic field from a coordinate input device, the alternating magnetic field being modulated in an angle modulation so that an angle state of the alternating magnetic field is successively modulated into a plurality of different states in a plurality of successive time durations, with a length of at least one time duration corresponding to desired information; a coordinate detection unit that calculates the coordinate of a position of the coordinate input device based on the amplitude of the generated electric signal; and an information detection unit that demodulates the generated electric signal to detect the length of the at least one time duration, thereby determining the desired information.




According to another aspect, the present invention provides an information communicating method, comprising the steps of: generating a carrier wave; modulating the carrier wave in an angle modulation to thereby successively change an angle state of the carrier wave into a plurality of different states in a plurality of successive time durations, with a length of at least one time duration corresponding to desired information, and transmitting the carrier wave; receiving the carrier wave by producing an electric signal whose angle state corresponds to that of the carrier wave; and demodulating the carrier wave to detect the length of the at least one time duration, thereby determining the desired information.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects, features and advantages of the invention will become more apparent from reading the following description of the preferred embodiments taken in connection with the accompanying drawings in which:




FIG.


1


(


a


) is a configuration of a conceivable coordinate reading device;




FIG.


1


(


b


) illustrates a code train transmitted from a pen;





FIG. 2

is an external perspective view illustrating an essential configuration of an electronic white board according to a first embodiment of the present invention;





FIG. 3

is an illustration showing the electronic white board of

FIG. 2

being electronically connected to a personal computer (PC) and a printer;





FIG. 4

is an exploded perspective view showing the components of a panel main body provided within the electronic white board;





FIG. 5

is a block diagram showing configuration of a network for communicating written data between the electronic white board and other electronic white boards;




FIG.


6


(


a


) is a cross-sectional view showing internal configuration of the pen


60


;




FIG.


6


(


b


) is a circuit diagram showing electric configuration of the pen


60


;




FIG.


6


(


c


) shows waveforms of signals at the respective points in the CR oscillation circuit


69




e


in the circuit shown in FIG.


6


(


b


);




FIG.


6


(


d


) shows the relationship between pen attributes and modulation frequencies fm;




FIG.


6


(


e


) are timing diagrams showing a CR signal outputted from the CR oscillation circuit


69




e


and a carrier signal modulated by the CR signal, for a black thick pen and a red thick pen;




FIG.


7


(


a


) illustrates how a plurality of sense coils


23


are arranged on the attachment panel


24


, while omitting a part of the sense coils;




FIG.


7


(


b


) illustrates a width of the sense coils


23


and a pitch, by which the sense coils


23


are arranged while being partly overlapped with one another;





FIG. 8

is a block diagram showing an electrical configuration of the electronic white board;





FIG. 9

illustrates signals A, B, and C in the block diagram of

FIG. 8

;




FIG.


10


(


a


) is a graph representing a position coordinate table


58




a;






FIG.


10


(


b


) illustrates a structure of the position coordinate table


58




a;






FIG.


10


(


c


) illustrates how the detected voltage values from the coils are stored in a voltage value storage area


59




a


in the RAM


59


;




FIG.


11


(


a


) illustrates a part of X coils X


1


-X


3


;




FIG.


11


(


b


) shows how the voltages induced at the X coils X


1


-X


3


change when the position of the pen


60


moves along the X direction;




FIG.


11


(


c


) shows how the voltage difference between two adjacent loop coils among the X loop coils X


1


to X


3


changes when the position of the pen


60


moves along the X axis;





FIG. 12

is a block diagram showing an electrical configuration of a FSK demodulation circuit in the electronic white board of

FIG. 8

;




FIG.


13


(


a


) illustrates the relationship between the output signal from the CR oscillation circuit


69




e,


the carrier signal outputted from the LC oscillation circuit


69




c


and FSK-modulated by the FSK circuit


69




d,


the output signal from the limiter circuit


54


, and the counter value k by the counter circuit


55




a;






FIG.


13


(


b


) illustrates how the counter values held in the shift register


55




b


are shifted;




FIG.


14


(


a


) shows the relationship between the threshold value judgement output by the absolute-value comparator


55




f


and the determination period by CPU;




FIG.


14


(


b


) illustrates how counter value K counted by counter


55




g


moves;





FIG. 15

illustrates several signals that appear in the respective portions in the FSK demodulation circuit


55


;





FIG. 16

is a flowchart of a main routine executed by the CPU in the control portion of

FIG. 8

;





FIG. 17

is a flowchart of a coordinate reading process of S


300


in

FIG. 16

;




FIG.


18


(


a


) is a flowchart of a first pen attribute detection process executed by the counter circuit


55




a,


the shift register


55




b,


the average calculating circuit


55




c,




55




d,


the subtracting circuit


55




e,


and the absolute-value comparator


55




f


in the FSK demodulation circuit


55


;




FIG.


18


(


b


) shows the flowcharts of a second pen attribute detection process, which includes a counting process by the counter


55




g


and an adding process by the adder


55




i;







FIG. 19

is a flowchart showing flow of a coordinate reading routine of S


300


according to a modification of the first embodiment;




FIG.


20


(


a


) is a cross-sectional view showing internal configuration of the pen


60


according to a second embodiment;




FIG.


20


(


b


) is a circuit diagram showing electric configuration of the pen


60


of FIG.


20


(


a


);




FIG.


20


(


c


) is a plan view showing the configuration of a film sensor


68


;




FIG.


20


(


d


) shows waveforms of signals at the respective points in the CR oscillation circuit


69




e


in the circuit shown in FIG.


20


(


b


);




FIGS.


21


(


a


) and


21


(


b


) are timing diagrams showing a CR signal outputted from the CR oscillation circuit


69




e


and a carrier signal modulated by the CR signal, wherein FIG.


21


(


a


) shows the carrier signal and the CR signal generated from a thick black pen


60


that is pressed against the writing surface


21




a


with a large pen pressure and a small pen pressure, and FIG.


21


(


b


) shows the carrier signals and the CR signals generated from a thick red pen


60


that is pressed against the writing surface


21




a


with a large pen pressure and a small pen pressure;





FIG. 22

is a circuit diagram showing electrical configuration of a FSK demodulation circuit


55


′ according to the second embodiment;




FIG.


23


(


a


) shows the relationship between pen attributes and the first period T


1


;




FIG.


23


(


b


) shows the relationship between the pen pressure and the second period T


2


;





FIG. 24

is a flowchart of a coordinate reading process of S


300


in

FIG. 16

according to the second embodiment;





FIG. 25

is a flowchart showing processes of pen attributes and pen pressure detection process performed by the FSK demodulation circuit


55


′;




FIG.


26


(


a


) is a circuit diagram showing electric configuration of the pen


60


according to a modification of the second embodiment;




FIGS.


26


(


b


) and


26


(


c


) are timing charts showing a carrier signal and a CR signal generated in the pen of FIG.


26


(


a


), wherein FIG.


26


(


b


) are timing charts showing the carrier signal and the CR signal when a thick black pen is used to write with a large pen pressure and with a small pen pressure. FIG.


26


(


c


) are timing charts showing the carrier signal and the CR signal when a thick red pen is used to write with a large pen pressure and a small pen pressure;




FIG.


26


(


d


) are timing charts, according to another modification of the second embodiment, showing the carrier signal and the CR signal when a thick red pen is used to write a solid line and a dotted line with a large pen pressure and a small pen pressure;




FIG.


27


(


a


) is an external perspective view illustrating an essential configuration of an electronic white board according to a third embodiment of the present invention;




FIG.


27


(


b


) is an illustration showing the electronic white board of FIG.


27


(


a


) being electrically connected to a personal computer (PC) and a printer;




FIG.


28


(


a


) is a cross-sectional view showing internal configuration of the pen


60


according to the third embodiment;




FIG.


28


(


b


) is a perspective view showing the ink cartridge


63


from its rear side;




FIG.


28


(


c


) illustrates a connection between the ink cartridge and a circuit board


69


;




FIG.


28


(


d


) is a circuit diagram showing electric configuration of the pen


60


;




FIG.


29


(


a


) is a cross-sectional view showing internal configuration of a pen


160


according to a first modification of the third embodiment;




FIG.


29


(


b


) illustrates a connection between the ink cartridge and a circuit board


169


according to the first modification;




FIG.


29


(


c


) is a circuit diagram showing electric configuration of the pen


160


according to the first modification;




FIG.


30


(


a


) is a cross-sectional view showing internal configuration of a pen


260


according to a second modification of the third embodiment;




FIG.


30


(


b


) is a perspective view showing the ink cartridge


263


from its rear side;




FIG.


30


(


c


) illustrates a connection between the ink cartridge and a circuit board


269


according to the second modification;




FIG.


30


(


d


) is a circuit board showing electric configuration of the pen


260


according to the second modification;




FIG.


31


(


a


) is a partial cross-sectional view, according to another modification, showing a charging unit


300


for charging a chargeable battery


370


mounted in a pen


360


, which includes a coil L


301


;




FIG.


31


(


b


) is a circuitry diagram showing electrical configuration of the charging unit


300


and the pen


360


;




FIG.


32


(


a


) is a cross-sectional view of a pen


460


according to another modification;




FIG.


32


(


b


) shows a modification of a pen tip


62


;




FIG.


32


(


c


) shows another modification of a pen tip


62


;




FIG.


32


(


d


) shows still another modification of a pen tip


62


;




FIG.


33


(


a


) is a circuit diagram showing electric configuration of the pen


60


according to another modification of the first embodiment; and




FIG.


33


(


b


) are timing diagrams, for the modification of FIG.


33


(


a


), showing a CR signal outputted from the CR oscillation circuit


69




e


and a carrier signal modulated by the CR signal, for a black thick pen and a red thick pen.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A coordinate reading device according to preferred embodiments of the present invention will be described while referring to the accompanying drawings wherein like parts and components are designated by the same reference numerals to avoid duplicating description.




<First Embodiment>




A coordinate reading device according to a first embodiment will be described below with reference to

FIGS. 2

to


18


(


b


).




The coordinate reading device of the present embodiment is an electronic white board. A pen is used to draw images such as characters and/or figures on the electronic white board, whereupon the electronic white board electrically reads the drawn images and stores data of the read images therein.




Next, the configuration of the electronic white board


1


will be described while referring to

FIGS. 2 and 3

.




As shown in

FIG. 2

, the electronic white board


1


has a writing panel


10


. A pen


60


and an eraser


40


are provided to the electronic white board


1


. The pen


60


is for writing images, such as characters and/or figures, on the writing panel


10


and for allowing the electronic white board


1


to produce and store data indicative of the written images. The eraser


40


is for erasing the written images from the writing panel


10


and also for erasing the data indicative of the written images. The electronic white board


1


can be electrically connected to a personal computer (PC)


100


and a printer


200


as shown in FIG.


3


.




Next, the configuration of the writing panel


10


will be described in greater detail below.




As shown in

FIG. 2

, the writing panel


10


includes a frame


11


. A panel main body


20


is assembled within the frame


11


. The panel main body


20


has a writing surface


21




a,


on which images, such as characters and/or figures, can be written by the pen


60


. A plate-shaped stand


12


is attached to a lower end surface of the frame


11


and extends frontwardly from the frame


11


. A concave


12




a


having a semicircular cross-section is formed in the upper surface of the stand


12


for supporting the pen


60


. A flat portion


12




b


is formed to the right of the concave


12




a.


The eraser


40


is placed on the flat portion


12




b.






An operation portion


30


is provided at the right side of the front surface of the frame


11


. The operation portion


30


includes: a speaker


31


, a page number display LED


32


, a page reverse button


33


, a page forward button


34


, and erase button


35


, a print output button


36


, a PC output button


37


, a power button


38


, and a battery warning LED


39


. The speaker


31


is for reproducing sounds such as operation sounds and warning sounds. The page number display LED


32


is constructed from a seven-segmented LED to display the number of pages of images, which are written on the writing surface


21




a


and whose data (which will be referred to as “written data” hereinafter) is stored in the electronic white board


1


. The page reverse button


33


is used by a user to return one page at a time each time it is pressed. The page forward button


34


is used also by the user to feed one page at a time each time it is pressed. The erase button


35


is used to erase one page's worth of written data at a time each time it is pressed. The printer output button


36


is pressed to output the written data to the printer


200


. The PC output button


37


is pressed to output the written data to the PC


100


. The power button


38


is pressed by the user to start and stop operation of the electronic white board


1


. The battery warning LED


39




b


is for warning when a battery


70


in the pen


60


(to be described later) runs out.




A battery case


14


is provided at the lower portion on the front surface of the frame


11


. The battery case


14


is for storing four C batteries


14




a,


for example, which serve as a power source of the electronic white board


1


. A lid


14




b


is openably and closably attached to the front surface of the battery case


14


. A volume adjustment knob


13




c


is provided to the right of the battery case


14


. The volume adjustment knob


13




c


is for adjusting volume of the sounds outputted from the speaker


31


. A pair of connectors


13




a


and


13




b


are provided to the right of the volume adjustment knob


13




c.


As shown in

FIG. 3

, a plug


202


of a connection cable


20




a


from the printer


200


is connected to the connector


13




b.


A plug


102


of another connection cable


101


from the PC


100


is connected to the connector


13




a.


Thus, the written data indicative of the content written on the writing surface


21




a


can be outputted to the PC


100


. Accordingly, the user can view the content written on the electronic white board


1


using a monitor


103


provided on the PC


100


. The written data can also be outputted to the printer


200


so that the content written on the electronic white board


1


can be printed on a print sheet


203


.




Next, the configuration of the panel main body


20


, which is housed within the frame


11


, will be described in greater detail. The panel main body


20


is housed within the frame


11


. The panel main body


20


may be produced into any flexible or non-flexible sheet or plate shape.





FIG. 4

is an exploded perspective view showing the components of the panel main body


20


. The panel main body


20


includes: a writing sheet


21


, a plate-shaped panel


22


, a frame-shaped attachment panel


24


, and a plate-shaped back panel


25


, all of which are mounted one on another in this order. The writing sheet


21


has the writing surface


21




a


on its one surface. The frame-shape attachment panel


22


is provided with a plurality of sense coils (loop wires or loop coils)


23


as will be described later. The plate-shaped back panel


25


is for blocking noises.




According to the present embodiment, the writing sheet


21


is made from several sheets of polyethylene terephthalate (PET) film which are attached together into a thickness of 0.1 mm. The panel


22


is formed to a thickness of 3.0 mm from acryl resin, acrylonitrile-butadiene-styrene copolymer (ABS), or polycarbonate (PC). The attachment panel


24


is formed to a thickness of 40 mm, for example, from a foam resin material such as cellular styrene. The back panel


25


is formed to a thickness of about 1 mm from electrically-conductive material such as aluminum. The overall thickness of the frame


11


that sandwiches all the components of the panel main body


20


is formed to a thickness of 50 mm.




As shown in

FIG. 2

, hooks


15


,


15


are attached, at both sides, to the upper end of the back surface of the frame


11


. Those hooks


15


,


15


are used to hand the electronic white board


1


on the wall. According to the present embodiment, the writing surface


21




a


has a height H


1


of 900 mm and a width W


1


of 600 mm, for example. The frame


11


and the stand


12


are formed to light weight by synthetic resin such as polypropylene (PP). The total weight of the electronic white board


1


is less than 10 kg.




The electronic white board


1


can transmit the written data, indicative of the images written on the writing surface,


21




a,


to other electronic white boards


1


and other personal computers.





FIG. 5

is a black diagram showing configuration of a network for communicating written data between one electronic white board


1


and other electronic white boards and/or personal computers. In this example, it is assumed that a plurality of electronic white boards


1


are provided in a plurality of different rooms within the same company


2


and are provided also in other companies


5


and that written data is communicated between the plurality of rooms and also between different companies.




The company


2


includes several rooms


3


and one room


4


. Each of the rooms


3


,


4


includes the electronic white board


1


and the personal computer


100


in electrical connection with each other as shown in FIG.


3


. In each room


3


, the personal computer


100


is connected to a corresponding LAN board


103


. The personal computer


100


in the room


4


is connected to a modem


108


. The LAN board


103


provided to each room


3


is connected to a hub


105


by a corresponding LAN cable


104


. The hub


105


is connected to a server


106


. The server


106


can be connected to other companies


5


through the Internet


300


. The modem


108


in the room


4


can be connected to other companies


5


through a telephone line


109


and a public communication exchange network


301


. Although not shown in the drawings, the other companies


5


have the electronic white boards


1


that perform communication with personal computers


100


in the same manner as the company


2


.




In the network having the above-described arrangement, written data stored in the electronic white board


1


in one room


3


is transmitted from the electronic white board


1


to the personal computer


100


via the connection cable


101


, and then to the personal computer


100


in another designated room


3


through the LAN board


103


and the hub


105


. A user who receives the written data can view the content of the received data by displaying the received data on the monitor


103


of the personal computer


100


or by printing out the received data onto a sheet using the printer


200


that is connected to the personal computer


100


.




The written data can be transmitted also to other companies


5


from the server


106


across the Internet


300


as an image file, in Tag Image File Format (TIFF), appended to an e-mail message. In this case, the other companies


5


can view the content of the written data by decoding the image file, appended to the e-mail message, transmitted from the company


2


.




Next, essential configuration of the pen


60


will be explained while referring to FIGS.


6


(


a


) and


6


(


b


). FIG.


6


(


a


) is a cross-sectional view showing internal configuration of the pen


60


. FIG.


6


(


b


) is a circuit diagram showing electric configuration of the pen


60


.




As shown in FIG.


6


(


a


), the pen


60


includes a cylindrical body (casing)


61




a


and a lid


61




c


which is detachably attached to one end of the body


61




a


. The body


61




a


houses a coil L


1


, an ink cartridge (marker portion)


63


, a pen tip


62


, a circuit board


69


, and a battery


70


. The ink cartridge


63


stores ink and is removable from the body


61




a


in a direction indicated by an arrow F


2


. The pen tip


62


is inserted into the ink cartridge


63


. The circuit board


69


serves as an oscillation circuit for oscillating the coil L


1


to generate an alternating magnetic field. The battery


70


serves as a power source for supplying electric power to the circuit board


69


. In this example, the battery


70


is LR44 with a voltage of about 1.5V.




The coil L


1


has a ring shape and is formed from a plurality of turns of windings. The coil L


1


is mounted inside the pen


60


so that the coil L


1


will be separated by some distance from the tip of the pen tip


62


when the tip of the pen tip


62


abuts against the writing surface


21




a


of the writing panel


10


.




A push button switch


67


is provided between the ink cartridge


63


and the circuit board


69


. The push button switch


67


is for supplying electric power from the battery


70


to the circuit board


69


, and also for terminating supply of the electric power to the circuit board


69


. When the pen tip


62


is pressed against the writing surface


21




a


, the ink cartridge


63


moves in a direction indicated by an arrow F


1


, as a result of which the push button switch


67


turns ON. When the pen tip


62


is separated away from the writing surface


21




a


, the ink cartridge


63


moves in the direction indicated by the arrow F


2


by a spring (not shown) provided within the push button switch


67


. As a result, the push button switch


67


turns OFF. Thus, an alternating magnetic field is generated from the coil L


1


only when the pen


60


is pressed against the writing surface


21




a


to draw images such as characters and/or figures on the writing surface


21




a.






As shown in FIG.


6


(


b


), the circuit board


69


in the pen


60


includes: an LC oscillation circuit


69




c


, a CR oscillation circuit


69




e


, and a frequency shift keying (FSK) circuit


69




d


. The LC oscillation circuit


69




c


is for oscillating the alternating magnetic field as a carrier wave. The LC oscillation circuit


69




c


is constructed from: three condensers C


1


, C


2


, C


3


, a resistor R


1


, the coil L


1


, and an integrated circuit IC


1


, and is for causing the coil L


1


to generate an alternating magnetic field (carrier wave). The carrier wave has a fixed oscillation frequency, whose amount is determined by capacitances of the condensers C


1


, C


2


, C


3


, the resistance of the resistor R


1


, and inductance of the coil L


1


. In this example, the integrated circuit IC


1


is a TOSHIBA TC7SLU04F (trade name) produced by Toshiba Corporation. The resistor R


1


has a resistance of 1 MΩ. The capacitor C


1


has capacitance of 0.1 μF. Both of the capacitors C


2


and C


3


have capacitance of 0.0033 μF. The carrier wave (alternating magnetic field) has a frequency of 410 kHz.




The CR oscillation circuit


69




e


is for oscillating a signal, whose frequency is set with one of a plurality of different modulation frequencies fm in correspondence with a plurality of different attributes of the pen


60


, as to color of ink stored in the ink cartridge


63


and thickness of the pen tip


62


. That is, the CR oscillation circuit


69




e


, which is mounted in each pen


60


, is set with one modulation frequency fm that corresponds to one attribute of the subject pen


60


, as to color of ink stored in the corresponding ink cartridge


63


and thickness of the corresponding pen tip


62


.




The CR oscillation circuit


69




e


is constructed from: a variable resistor R


3


, a resistor R


2


, a capacitor C


5


, and a pair of integrated circuits IC


2


and IC


3


. The resistor R


2


is an input protection resistor and has a resistance, whose amount is ten times greater than the resistance of the resistor R


3


or more. In this example, both of the integrated circuits IC


2


and IC


3


are TOSHIBA TC7SLU04F (trade name) produced by Toshiba Corporation. It is noted that the integrated circuits IC


2


and IC


3


can be constructed from any other integrated circuits of a type “U04”. The resistor R


2


has resistance of 1 MΩ. The variable resistor R


3


has a resistance range of 0 to 1 MΩ. The capacitor C


5


has a capacitance of 100 pF.




With the above-described structure, as shown in FIG.


6


(


b


), when the output (A) of the IC


2


is low and the output (B) of the IC


3


is high, the capacitor C


5


is charged so that the electric potential at the point (B) becomes positive and that the electric potential at the point (C) becomes negative. When the electric potential at the point (C) becomes equal to or smaller than the threshold voltage V


TH


(½ Vcc) of the IC


2


, the circuit is reversed so that the point (A) becomes high and the point (B) becomes low.




When the point (A) is high and the point (B) is low, the capacitor C


5


is charged so that the electric potential at the point (B) becomes negative and that the electric potential at the point (C) becomes positive. When the electric potential at the point (C) becomes equal to or greater than the threshold voltage V


TH


(½ Vcc) of the IC


2


, the circuit is reversed again. Accordingly, the input to the IC


2


and the output from the IC


3


is as shown in FIG.


6


(


c


).




It is noted that the modulation frequency fm is determined by resistance of the variable resistor R


3


and capacitance of the capacitor C


5


. More specifically, the period T and the modulation frequency fm of the signal generated by the CR oscillation circuit


69




e


is determined as follows:








T=


1/


fm=


2(0.69×


R




3


×


C




5


).






Thus, by selectively changing the values of the resistance of the variable resistor R


3


and the capacitance of the capacitor C


5


, the Cr oscillation circuit


69




e


can oscillate a plurality of different modulation frequencies fm in correspondence with a plurality of different pen attributes.




According to the present embodiment, the relationship between several different pen attributes (ink color and pen tip thickness) and modulation frequencies fm is set as shown in FIG.


6


(


d


). In FIG.


6


(


d


), “fine” refers to the pen tip


62


with a fine or thin tip, “thick” refers to the pen tip


62


with a thick tip. For example, “black thick” refers to an attribute of a pen that employs a thick pen tip


62


and that stores black colored ink in its ink cartridge


63


. Because pens


60


with different characters (attributes) are designed to oscillate with different modulation frequencies fm, when the pen


60


with some attribute is used to write characters on the electronic white board


1


and to generate the alternating magnetic field, the electronic white board


1


will recognize the character of the pen


60


. For example, the frequency of the CR oscillation circuit


69




e


is set with a single modulation frequency fm of 4.1 kHz for black thick pen, that is, when ink stored in the ink cartridge


63


is black.




The signal thus oscillated by the CR oscillation circuit


69




e


is carried by the carrier wave (alternating magnetic field) oscillated by the LC oscillation circuit


69




c


. In other words, the FSK oscillation circuit


69




d


modulates the oscillation frequency of the LC oscillation circuit


69




c


by using the modulation frequency fm of the signal from the CR oscillation circuit


69




e.






The FSK oscillation circuit


69




d


is constructed from: a condenser C


4


and a MOS FET gate. The frequency deviation, by which the oscillation frequency of the carrier wave deviates by the FSK circuit


69




d


, is determined by capacitance of the condenser C


4


in the FSK oscillation circuit


69




d


. In this example, the capacitor C


4


has capacitance of 0.0015 μF. The FSK circuit


69




d


can deviate, by the deviation amount of ±20 kHz, the frequency of the carrier wave from its central frequency of 410 kHz.




With the above-described structure, when the push button switch


67


is turned ON, electric power from the battery


70


is supplied to the entire circuitry. Output from the integrated circuit IC


3


in the CR oscillation circuit


69




e


switches the MOS FET gate in the FSK oscillation circuit


69




d


. The LC oscillation circuit


69




c


is controlled by the signal generated from the CR oscillation circuit


69




e


to oscillate a frequency-modulated carrier wave. Thus, the coil L


1


generates an alternating magnetic field (carrier wave) whose frequency is modulated by the FSK circuit


69




d.






For example, as shown in FIG.


6


(


e


), for the black thick pen, the CR oscillation circuit


69




e


oscillates the CR signal with the modulation frequency fm of 4.1 kHz. Accordingly, the CR signal repeatedly changes its level between high and low levels with a period T of 1/4,100=244 (μs). As a result, the carrier wave (alternating magnetic field) is FSK modulated to be repeatedly changed into the high frequency state f


1


and the low frequency state f


2


with the modulation frequency fm of 4.1 kHz, that is, a period T of 1/4,100=244 (μs).




Contrarily, for the red thick pen, the CR oscillation circuit


69




e


oscillates the CR signal with the modulation frequency fm of 7.7 kHz. Accordingly, the CR signal repeatedly changes its level between high and low levels with a period T of 1/7,7000=130 (μs). As a result, the carrier wave (alternating magnetic field) is FSK modulated to be repeatedly changed into the high frequency state f


1


and the low frequency state f


2


with the modulation frequency fm of 7.7 kHz, that is, a period T of 1/7,700=130 (μs).




The eraser


40


shown in

FIG. 2

also houses a coil, an oscillating circuit for oscillating the coil, and a battery that supplies electric power to the oscillating circuit. The coil generates an alternating magnetic field when being oscillated by the oscillating circuit. It is noted that as shown in FIG.


6


(


e


), the eraser


40


is allocated with another modulation frequency fm, which is different from the modulation frequencies fm allocated to the pens


60


, in order to allow the electronic white board


1


can recognize the eraser


40


when the eraser


40


is used to erase the images drawn on the electronic white board


1


.




As shown in FIGS.


4


and


7


(


a


) and


7


(


b


), the attachment panel


24


in the writing panel


10


is provided with the plurality of sense coils (loop coils or loop wires)


23


. The sense coils


23


are for producing signals by magnetic coupling with the alternating magnetic field generated from the coil L


1


in the pen


60


or generated from the coil in the eraser


40


. The electronic white board


1


uses the signals thus produced by the sense coils


23


to determine the position of the pen


60


or the eraser


40


. Thus, the electronic white board


1


can read the coordinates of successive points of images drawn by the pen


60


and can read the coordinates of points to be erased by the eraser


40


. For example, each sense coil


23


is formed from a copper wire that has a diameter of 0.35 mm and that is covered with an insulation film, of enamel layer or nichrome plating layer, for example, on its outer surface.




The sense coils


23


include a plurality of X sense coils


23


and a plurality of Y sense coils


23


which are arranged on the attachment panel


24


as shown in FIG.


7


(


a


). The plurality of X sense coils


23


are arranged in a direction of a predetermined X axis. As shown in

FIG. 2

, the X axis extends horizontally when the writing panel


10


is being used. In this example, as shown in FIG.


7


(


a


), X coils X


1


to Xm are disposed following the direction of the X axis. The total number of the X coils is “m” wherein “m” is an integer greater than one (1). In this example, m=22. The X coils X


1


to Xm are for detecting the X coordinate in the coordinates (X, Y) of the pen


60


or the eraser


40


on the writing surface


21




a.






The plurality of Y sense coils


23


are arranged in a direction of a predetermined Y axis that is perpendicular to the X axis. As shown in

FIG. 2

, the Y axis extends vertically when the writing panel


10


is being used. As shown in FIG.


7


(


a


), in this example, Y coils Y


1


to Yn are arranged along the Y axis. The total number of the Y coils is “n” where “n” is an integer greater than one (1). In this example, n=33. The Y coils Y


1


to Yn are for detecting the Y coordinate in the coordinates (X, Y) of the pen


60


or the eraser


40


.




Each of the X and Y coils


23


is formed in a loop-shaped coil (loop wire) with a single turn and has approximately a rectangular shape as shown in FIG.


7


(


a


). Thus, each coil


23


has: a pair of short sides that are located opposite to each other, and a pair of long sides that extend between the pair of short sides. More specifically, each of the X coils X


1


-Xm has: a pair of short sides Xd and Xh that are located opposite to each other, and a pair of long sides Xf and Xg that extend between the pair of short sides Xd and Xh. Each of the Y coils Y


1


-Yn has: a pair of short sides Yd and Yh that are located opposite to each other, and a pair of long sides Yf and Yg that extend between the pair of short sides Yd and Yh. The short side Xh of each X coil X


1


-Xm is connected to a pair of coil terminal


23




a


, and the short side Yh of each Y coil Y


1


-Yh is connected to a pair of coil terminal


23




b.






Each of the X coils


23


has a length of P2Y in the lengthwise direction of the rectangular shape. In other words, the long sides Xf and Xg of each X coil


23


has the length of P2Y. Each of the Y coils


23


has a length of P2X in the lengthwise direction of the rectangular shape. In other words, the long sides Yf and Yg of each Y coil


23


has the length of P2X.




As shown in FIG.


7


(


b


), each of the X and Y coils


23


has a width of the same amount P1. Thus, each X coil


23


has a length P2Y along its long sides Xf and Xg, and has a width P1 along its short sides Xd and Xh. Each Y coil


23


has a length P2X along its long sides Yf and Yg, and has a width P1 along its short sides Yd and Yh. Adjacent X coils


23


are arranged along the X axis to overlap with one another by a half of the width P1, that is, P1/2. Similarly, adjacent Y coils


23


are arranged along the Y axis to overlap with one another also by a half of the width P1, that is, P1/2. In this example, P2X=680 mm, P2Y=980 mm, and P1=50 mm.




It is noted that in FIG.


7


(


a


), for clarity and simplicity, the sides of the coils


23


are shifted from one another. However, actually, they are arranged to overlap with one another. For example, the long sides X


1




g


, X


2




g


, . . . , and Xm-


2




g


of the X coils X


1


, X


2


, . . . , Xm-


2


overlap with long sides X


3




f


, X


4




f


, . . . , Xmf of X coils X


3


, X


4


, . . . , Xm, respectively. Similarly, the long sides Y


1




g


, Y


2




g


, . . . , and Yn-


2




g


of the Y coils Y


1


, Y


2


, . . . , Yn-


2


overlap with long sides Y


3




f


, Y


4




f


, . . . , Ynf of Y coils Y


3


, Y


4


, . . . , Yn, respectively. Additionally, the short sides Yd of all the Y coils


23


overlap with the long side Xf of the X coil X


1


, and the short sides Yh of all the Y coils


23


overlap with the long side Xg of the X coil Xm. The short sides Xd of all the X coils


23


overlap with the long side Yf of the Y coil Y


1


, and the short sides Xh of all the X coils


23


overlap with the long side Yg of the Y coil Yn. Also, the pair of terminals


23




a


for each X coil


23


are configured to have the minimum interspacing therebetween. Similarly, the pair of terminals


23




b


for each Y coil


23


are configured to have the minimum interspacing therebetween.




As shown in

FIG. 8

, the pair of coil terminals


23




a


for each X coil


23


is connected to an X coil switching circuit


50




a


, which is provided in a control portion


50


of the electronic white board


1


. Similarly, the pair of coil terminals


23




b


for each Y coil


23


is connected to a Y coil switching circuit


50




b


, which is also provided in the control portion


50


of the electronic white board


1


.




Next, electrical configuration of the control portion


50


of the electronic white board


1


will be described while referring to the block diagram of FIG.


8


.




The electronic white board


1


includes the control device


50


that is internally provided in the writing panel


10


. The control device


50


includes: the X coil switching circuit


50




a


for switching the X coils X


1


to Xm in this order to successively scan the X coils X


1


to Xm; and a Y coil switching circuit


50




b


for switching the Y coils Y


1


to Yn in this order to successively scan the Y coils Y


1


to Yn. Although not shown in the drawing, each circuit


50




a


,


50




b


includes a switching element such as a transistor (MOS FET, for example).




The control portion


50


further includes: an amplifier


50




c


, a bandpass filter (BPF)


50




d


, an amplitude detection circuit


51


, an analog-to-digital (A/D) conversion circuit


52


, a limitter circuit


54


, a FSK demodulation circuit


55


, an input/output (I/O) circuit


53


, a CPU


56


, a ROM


58


, a RAM


59


, an interface (I/F) device


57


, a sound circuit


31




a.






When the pen


60


is placed on the writing surface


21




a


, the X and Y sense coils


23


are magnetically coupled with the alternating magnetic field from the pen


60


, and produces electric signals. The I/O circuit


53


is controlled by the CPU


56


to output coil selecting signals A, as shown in

FIG. 9

, to control the X and Y coil switching circuits


50




a


and


50




b


to successively scan the X coils X


1


-Xm and the Y coils Y


1


-Yn. As a result, the electric signals induced on the X coils X


1


-Xm and the Y coils Y


1


-Yn are scanned, and are inputted through the sense coil terminals


23




a


and


23




b


to the X and Y coil switching circuits


50




a


and


50




b.






The amplifier


50




c


is for receiving the signals thus scanned by the X and Y coil switching circuits


50




a


and


50




b


, and for amplifying the received signals to produce amplified signals B shown in FIG.


9


.




The bandpass filter (BPF)


50




d


is for filtering out portions of unnecessary bandwidths from the amplified signal B. The portion of the amplified signal B, only in a required bandwidth, passes through the bandpass filter (BPF)


50




d


. The resultant signals have the same waveform as that of the carrier signals (alternating magnetic field), which has been frequency-shift-keying modulated according to the modulation frequency fm and which has been transmitted from the pen


60


.




The amplified signals, having passed through the BPF


50




d


, are received by the amplitude detection circuit


51


. The amplitude detection circuit


51


is for detecting amplitudes (voltage values) of the thus amplified signals B, and produces detection amplitude signals C also shown in FIG.


9


.




The A/D conversion circuit


52


is for converting those analog signals C, which are outputted from the amplitude detection circuit


51


and which are indicative of the amplitudes of the amplified signals, into digital signals that correspond to the amplitudes of the amplified signals. The CPU


56


receives the thus obtained digital signals through the I/O circuit


53


.




The limitter circuit


54


and the FSK demodulation circuit


55


are for cooperating to detect the modulation frequency fm of the bandpass-filtered amplified signals, that is, the modulation frequency fm of the alternating magnetic-field from the pen


60


, thereby detecting the attribute of the pen


60


now located on the writing surface


21




a


. That is, the amplified signal B having passed through the BPF


50




d


is received also by the limitter circuit


54


. The limiter circuit


54


is for converting the filtered, amplified signal (frequency-shift-keying modulated carrier wave) B into square waveform pulses. The FSK demodulation circuit


55


is for demodulating the square waveform pulses and for obtaining output values (demodulated count number) indicative of the demodulated result. The CPU


56


receives the output values (demodulated count number) through the I/O circuit


53


, and determines the attribute of the pen now being located on the writing surface


21




a.






The ROM


58


stores therein a variety of control programs to be executed by the CPU


56


, such as the programs of the routines of

FIGS. 16 and 17

. The ROM


58


stores therein a position coordinate table


58




a


(FIG.


10


(


b


)) as will be described later. The ROM


58


further stores therein an attribute table shown in FIG.


6


(


d


) that stores the relationship between the plurality of pen attributes and the demodulation count numbers to be obtained by the FSK demodulation circuit


55


.




The I/F device


57


is connected to the CPU


56


and to the control panel


30


(FIG.


2


). When one of the page reverse button


33


, the page forward button


34


, and the erasure button


35


is pressed, then the CPU


56


will execute appropriate page process, such as, reversing, forwarding, or erasing the stored written data in page units. The sound circuit


31




a


is controlled by the CPU


56


to generate operational sounds, such as beeps, through the speaker (SP)


31


when one of the buttons on the operation panel


30


is pressed.




Next, the position coordinate table


58




a


will be described while referring to FIGS.


10


(


a


) and


10


(


b


).




The position coordinate table


58




a


, shown in FIG.


10


(


b


), is used for detecting the coordinates indicative of the position of the pen


60


on the writing surface


21




a


. FIG.


10


(


a


) is a graph representing the position coordinate table


58




a.






The position coordinate table


58




a


is prepared in a manner described below.




As shown in FIG.


11


(


a


), the X coils X


1


, X


2


, X


3


have center lines c


1


, c


2


, and c


3


, respectively. Each center line c


1


, c


2


, c


3


extends along the Y direction. If the pen


60


is positioned at some place near the X coils X


1


-X


3


on the writing surface


21




a


, the X coils X


1


, X


2


, X


3


generate voltages ex1, ex2, ex3, respectively, as shown in FIG.


11


(


b


). FIG.


11


(


b


) shows how the voltages induced at the loop coils X


1


-X


3


change when the position of the pen


60


moves along the X direction. As apparent from FIG.


11


(


b


), each of the voltages ex1 to ex3 becomes maximum when the pen


60


comes close to the corresponding center line c


1


to c


3


, and gradually decreases as the pen


60


goes away from the corresponding center line toward the long sides Xf and Xg of the corresponding loop coil X


1


, X


2


, X


3


.




The voltage line ex1−ex3 for each X coil X


1


-X


3


has a pair of null points where the voltage ex1−ex3 has a voltage of about zero (0) value. In other words, each X coil generates a voltage of zero value when the pen


60


is located on one of the null points along the X axis. According to the present embodiment, the X coils X


1


-Xm are arranged to overlap with adjacent X coils by a half of the width P1 so that each null point for each X coil will be located at a position that is separated from the corresponding center line by a distance greater than the half of the width P1. Accordingly, the null point for each X coil is separated away from the corresponding center line by a distance that is greater than the distance of the corresponding center line to the center lines of adjacent X coils. In this example shown in FIG.


11


(


b


), the null points for the X coil X


2


are separated away from the center line C


2


by a distance that is greater than the distance from the center line C


2


to the center lines C


1


and C


3


of the adjacent X coils X


1


and X


3


.




It should be noted that in the drawings of FIGS.


11


(


a


)-


11


(


c


), the width of the sense coils


23


is indicated slightly smaller than the actual size in order to facilitate understanding of the overlap between the sense coil


23


.




FIG.


11


(


c


) shows how the voltage difference between two adjacent loop coils


23


among the X loop coils X


1


to X


3


changes when the position of the pen


60


moves along the X axis. As shown in FIG.


11


(


c


), the voltage difference is largest when the pen


60


is located at the center c


1


to c


3


of each sense coil, and becomes zero when the pen


60


is located at the position in the intermediate position defined between the center of each sense coil and a long side (Xg or Xf) of the corresponding sense coil. That is, the voltage difference is zero at the middle position in the area where two adjacent sense coils overlap with one another.




For example, FIG.


11


(


c


) indicates, using a solid line, how the voltage difference value (ex1=ex2) between the voltages at the X coils X


1


and X


2


changes when the pen


60


goes away from the center C


1


of the X coil X


1


toward the intermediate point Q


1


(FIG.


11


(


a


)), which is the middle point in the area where the X coil X


1


overlaps with the X coil X


2


. In this case, the distance ΔX of the pen


60


from the center C


1


of the X coil X


1


changes from a zero value toward a half of the intercoil pitch (P1/2), that is, P1/4. It is therefore apparent that the distance ΔX of the pen


60


from the center C


1


can be known based on the voltage difference (ex1−ex2) between the voltages at the adjacent X coils X


1


and X


2


.




For example, when the pen


60


is located at a position Q


2


of FIG.


11


(


a


), by detecting the voltage difference (ex1−ex2), the distance ΔX


1


of the pen


60


from the center C


1


can be determined, and the X coordinate of the point Q


2


can be determined accordingly.




When the voltage difference (ex1−ex2) is expressed in digital data DIFF of eight bits, the relationship between the digital data DIFF and the distance ΔX [mm] from the center C


1


can be indicated as shown in FIG.


10


(


a


). More specifically, the graph of FIG.


10


(


a


) is obtained when the pen


60


is located at some place in the area between the center line C


1


and the middle line Q


1


. The voltages induced at the X coils X


1


and X


2


are scanned by the x-coil scanning circuit


50




a


, amplified by the amplifier


50




c


, filtered by the BPF


50




d


, detected by the amplitude detection circuit


51


, and converted by the A/D converter


52


into eight-bit digital data. The digital data DIFF is obtained by calculating the difference between the eight-bit digital data for the voltages at the X coils X


1


and X


2


. The relationship between the position ΔX [mm] of the pen


60


from the center line C


1


and the digital difference data DIFF is shown in FIG.


10


(


a


). The position coordinate table


58




a


of FIG.


10


(


b


) is obtained simply by converting the graph of FIG.


10


(


a


) into a table form.




As indicated by a solid line in FIG.


11


(


c


), in the area from the center line C


1


to the middle line Q


1


, the characteristic in FIG.


10


(


a


) shows the relationship between the voltage difference (ex1−ex2) and the pen location ΔX [mm] from the center line C


1


in the positive direction along the X axis. However, as indicated by broken lines in FIG.


11


(


c


), in another area from the middle line Q


1


to the center line C


2


, the same characteristic in FIG.


10


(


a


) shows the relationship between the voltage difference (ex2−ex1) and the pen location ΔX [mm] that is now defined from the center line C


2


in the negative direction along the X axis.




Thus, in the area from the center line Ci of each X coil Xi (where 1≦i≦m−1) to the middle line Qi, between the center line Ci and the center line Ci+1 of its next X coil Xi+1, the characteristic of FIG.


10


(


a


) represents the relationship between the voltage difference (exi−exi+1) and the pen location ΔX [mm] that is defined from the center line Ci of the X coil Xi in the positive direction along the X axis. Contrarily, in the area from the middle line Qi to the center line Ci+1, the same characteristic of FIG.


10


(


a


) represents the relationship between the voltage difference (exi+1−exi) and the pen location ΔX [mm] defined from the center line Ci+1 in the negative direction along the X axis.




Additionally, the same characteristic in FIGS.


11


(


a


)-


11


(


c


) is obtained for the relationship between the voltages induced at the Y sense coils Y


1


-Yn and the position of the pen


60


in the Y axial direction. Accordingly, in the area from the center line Ci of each Y coil Yi (where 1≦i≦n−1) to the middle line Qi between the center line Ci of the subject Y coil Yi and the center line Ci+1 of the next Y coils Yi+1, the characteristic in FIG.


10


(


a


) represents the relationship between the voltage difference (eyi−eyi+1) for the coils Yi and Yi+1 and the pen location ΔY [mm], that is defined from the center line Ci of the Y coil Yi in the positive direction along the Y axis. Contrarily, in the area from the middle line Qi to the center line Ci+1 of the Y coil Yi+1, the characteristic in FIG.


10


(


a


) represents the relationship between the voltage difference (eyi+1−eyi) and the pen location ΔY [mm], which is defined from the center line Ci+1 in the negative direction along the Y axis.




As will be described later, when the pen


60


is located at some place on the writing surface


21




a


, the voltages induced at the X coils X


1


-Xm are scanned by the x-coil scanning circuit


50




a


, amplified by the amplifier


50




c


, filtered by the BPF


50




d


, detected by the amplitude detection circuit


51


, and converted by the A/D converter


52


into eight-bit digital data. The thus obtained eight-bit digital data are stored in the RAM


59


at its voltage value storage area


59




a


as shown in FIG.


10


(


c


). When the voltage at some X coil Xi is the largest among all the X coils X


1


-Xm and when the voltage at its adjacent coil Xi+1 is greater than the voltage at its other adjacent coil Xi−1, it can be known that the pen


60


is within the area between the center line Ci of that coil Xi and the middle line Qi between the center lines Ci and Ci+1. Accordingly, the X coordinate of the pen can be obtained by adding, to the X coordinate of the center line Ci, the distance ΔX [mm] that is indicated in the table of FIG.


10


(


b


) in correspondence with one value DIFF that is most near to a difference value calculated between the digital data for the coils Xi and Xi+1.




Similarly, when the voltage at some X coil Xi is the largest among all the X coils X


1


-Xm and when the voltage at the adjacent coil Xi−1 is greater than that at the adjacent coil Xi+1, it can be known that the pen


60


is within the area between the center line Ci of that coil Xi and the middle line Qi−1 between the center lines Ci and Ci−1. Accordingly, the X coordinate of the pen can be obtained by subtracting, from the X coordinate of the center line Ci, the distance ΔX [mm] that is indicated in the table of FIG.


10


(


b


) in correspondence with one value DIFF that is most near to a difference value calculated between the digital data for the coils Xi and Xi−1. Thus, the x coordinate of the pen


60


on the writing surface


21




a


can be determined.




In a similar manner, the y coordinate of the pen


60


on the writing surface


21




a


can be determined. That is, the voltages induced at the Y coils Y


1


-Yn are scanned by the y-coil scanning circuit


50




b


, filtered by the BPF


50




d


, amplified by the amplifier


50




c


, detected by the amplitude detection circuit


51


, and converted by the A/D converter


52


into eight-bit digital data. The thus obtained eight-bit digital data are stored in the RAM


59


at its voltage value storage area


59




a


in the same manner as shown in FIG.


10


(


c


). Then, in the same manner as described above for the x-coordinate, the y-coordinate of the pen


60


can be determined using the difference between the voltages of two adjacent Y coils that induce the largest and the second largest voltages and referring to the table


58




a.






As described already, the position coordinate table


58




a


is stored in the ROM


58


, and will be referred to as table data for determining coordinates of the position of the pen


60


using the detected induction voltages.




As described already, in the control portion


50


(FIG.


8


), the portion of the amplified signal B, only in a required bandwidth, passes through the bandpass filter (BPF)


50




d


. Accordingly, the resultant signals have the same waveform as that of the carrier signals (alternating magnetic field) transmitted from the pen


60


. It is noted that the carrier signals are frequency-shift-keying modulated according to the modulation frequency fm of the CR signal, and therefore have the waveform as shown in FIG.


13


(


a


).




The amplified signals, having passed through the BPF


50




d


, are then received by both of the amplitude detection circuit


51


and the limitter circuit


54


. Accordingly, the limiter circuit


54


converts the filtered, amplified signal (frequency-shift-keying modulated carrier wave) B into a square waveform (limitter output signal) shown in FIG.


13


(


a


). The FSK demodulation circuit


55


demodulates the square wave of FIG.


13


(


a


) and detects the period TA of the modulation frequency fm, at which the carrier wave is modulated.




As shown in

FIG. 12

, the FSK demodulation circuit


55


includes: a counter circuit


55




a


, a shift register


55




b


, a first average calculating circuit


55




c


, a second average calculating circuit


55




d


, a subtraction circuit


55




e


, an absolute-value comparator


55




f


, a counter


55




g


, a register


55




h


, and an adding circuit


55




i.






The counter circuit


55




a


is for counting the counter value K indicative of the duration of each period of the limitter output signal of FIG.


13


(


a


). The shift register


55




b


, the first average calculating circuit


55




c


, the second average calculating circuit


55




d


, the subtraction circuit


55




e


, and the absolute-value comparator


55




f


are for cooperating to detect timing when the detected amount of the counter value K changes. The counter


55




g


, the register


55




h


, and the adder circuit


55




i


are for cooperating to measure the period from when the detected amount of the counter value K first changes, when the detected amount of the counter value K again changes, and until when the detected amount of the counter value K further changes, by calculating a sum (demodulated counter number) of count numbers of counting the system clock signals. The adding circuit


55




i


is connected to the CPU


56


via the I/O circuit


53


. As described above, the ROM


58


stores the table shown in FIG.


6


(


d


) that is indicative of a relationship between the several pen attributes and corresponding demodulated count numbers, each demodulated count number being indicative of the duration of a single period for the corresponding modulation frequency fm. Accordingly, the CPU


56


can refer to the table of FIG.


6


(


d


) to judge the pen attribute of the pen


60


based on the demodulated count number outputted from the adding circuit


55




i.






It is noted that in this example, as shown in FIG.


13


(


a


), the FSK circuit


69




d


in the pen


60


(FIG.


6


(


b


)) is designed to modulate the carrier signals (alternating magnetic field from the LC oscillation circuit


69




c


) to a high frequency of, for example, 430 kHz while the CR signal (from the CR oscillation circuit


69




e


) is in a low level, and to a lower frequency of, for example, 390 kHz when the CR signal is in a high level. The amplified signals B having passed through the BPF


50




d


(

FIG. 8

) have the save waveform with the carrier signals (alternating magnetic field) modulated by the FSK circuit


69




d


and outputted from the pen


60


. Accordingly, the limiter circuit


54


outputs the limiter output signal shown in FIG.


13


(


a


) that has a period TB during a low level period of the CR signal (from the CR oscillation circuit


69




e


) and a period TC during the high level period of the CR signal (from the CR oscillation circuit


69




e


). The period TC is longer than the period TB.




It is also noted that the carrier signal is modulated with its central frequency being 410 kHz and its frequency deviation being ±20 kHz. However, in order to facilitate explanation, the carrier signal is shown in FIG.


13


(


a


) with exaggerated frequency shift. Also, it is assumed in this example that a thick black pen


60


is used for drawing on the writing surface


21




a.






The FSK demodulation circuit


55


will be described below in greater detail.




The counter circuit


55




a


is for measuring each period TB or TC of the limiter output signal. That is, the counter circuit


55




a


counts, using a system clock (CLK) provided by the CPU


56


, the number K of the system clock signals (counter value) indicative of each period TB or TC of the limiter output signals. More specifically, as shown in FIG.


15


, when a rising edge of the limiter output signal is detected, the counter circuit


55




a


starts measuring the period until the next rising edge of the limiter output signal is detected. The counter circuit


55




a


then outputs the counter value K to the shift register


55




b


, and resets the counter value K to start the next counting. Thus, the counter circuit


55




a


measures the length TB or TC of one period of the limiter output signals.




The counter value K thus measured by the counter circuit


55




a


is either one of the values corresponding to the lengths TB and TC. The counter values K increases from a value corresponding to the length TB to the other value corresponding to the length TC when the CR signal changes from its low level to its high level. The counter value K decreases from the value corresponding to the length TC to the value corresponding to the length TB when the CR signal changes from the high level to the low level.




Accordingly, by detecting the timing at which the counter value K changes, the timing of the rising edge and the lowering edge of the CR signal can be detected. The time duration from when the counter value K changes to when it changes again is equivalent to a half of a single period of the CR signal. Therefore, by measuring the time from when the counter value K changes first time until when the counter value K changes third time, the duration of a single period of the CR signal can be determined. Accordingly, the modulation frequency fm can be determined, and the attribute of the pen


60


can be determined in accordance with the relationship between the modulation frequencies fm and the pen attributes (FIG.


6


(


d


)).




According to the present embodiment, the shift register


55




b


is configured, as shown in FIG.


13


(


b


), to store counter values K counted by the counter circuit


55




a


for eight successive periods Ki−7 to Ki of the limiter output signal. Each time a new counter value K (i+1) is inputted from the counter circuit


55




a


to the shift register


55




b


, all of the counter values K in the shift register


55




b


shift by one position and the counter value K (i−7) counted in the oldest period among the eight successive periods is discarded.




The first average calculating circuit


55




c


is for calculating an average of the latest counter value Ki, the second latest counter value Ki−1, and the third latest counter value Ki−2, and outputs the calculated average to the subtraction circuit


55




e


as a first mean value. The second average calculating circuit


55




d


is for calculating an average of the older counter value Ki−7, the second oldest counter value Ki−6, and the third oldest counter value Ki−5, and outputs the calculated average to the subtraction circuit


55




e


as a second mean.




The subtraction circuit


55




e


is for calculating a difference Δm between the first mean and the second mean, and outputs the difference Δm to the absolute-value comparator


55




f


. In the example shown in FIG.


13


(


b


), at a first timing, the first average calculating circuit


55




c


calculates the mean value of the counter values K6 to K8. The second average calculating circuit


55




d


calculates the mean value of the counter values K1 to K3. In this case, each of the counter values K7 and K8, indicative of the length of the period TC, is longer than each of the counter values K1-K3 and K6, indicative of the length of the period TB. Therefore, the first mean value will be larger than the second mean value. Accordingly, when it is detected that the difference between the second mean value and the first mean value is thus large, then it is known that the level of the CR signal changes between the low level and the high level. By thus detecting the timing when the CR signal changes, the period of the CR signal, that is, the period of the modulation frequency fm can be detected.




It is noted that each of the average circuits


55




c


and


55




d


is designed to calculate an average of three counter values K which are obtained at three different timings separated from one another. Accordingly, even if one of the counter values K have been effected by noise, the overall effects of the noise will be small by the calculation of the average.




The first average circuit


55




c


and the second average circuit


55




d


are designed depending on the complexity of the circuitry and on the ratio between the frequency of the carrier wave (oscillation frequency of the LC oscillation circuit


69




c


) and the modulation frequency fm. The shift register


55




b


is designed to hold the total number of counter values K, indicative of the total number of periods of the limitter output signal, dependently on the ratio of the system clock frequency to the carrier wave frequency. The system clock frequency is set to a frequency that enables sufficient distinction in changes in frequency of the carrier wave. For example, the system clock frequency is preferably set to 16 MHz that is about forty times as high as the frequency of the carrier signal.




The absolute-value comparator


55




f


is for comparing an absolute value of the difference Δm, outputted from the subtractor


55




e


, with a preset threshold value Th, to thereby judge whether or not the absolute value of he difference Δm is equal to or greater than the threshold value Th, the absolute-value comparator


55




f


outputs a threshold value judgement output in one of two different levels (high level and low level) according to the judgement results as shown in FIG.


15


. More specifically, when the absolute value of the different Δm is judged to be greater than or equal to the threshold value Th, the absolute-value comparator


55




f


changes the threshold value judgement output between a low level and a high level. Thus, the absolute value comparator


55




f


judges that the period of the limiter output signal has changed or said differently detects the rising or lowering edge of the Cr signal.




For example, it is assumed that the counter circuit


55




a


counts the counter value K of ten (10) for the short period TB of the limiter output signal and counts the counter value K of sixteen (16) for the longer period TC. In the first row of FIG.


13


(


b


), the calculation range by the first average circuit


55




c


and the second average circuit


55




d


reaches the timing of the rising edge of the CR signal. In this case, all of the counter values K1 to K6 shown in FIG.


13


(


a


) are ten (10). Therefore, the second mean value is equal to 10 ((K1+K2+K3)/3=10). Also, because the counter value K7 and the counter value K8 are both equal to 16, then the first mean value will be equal to 14 ((K6+K7+K8)/3=42/3=14). Therefore, the difference Δm obtained by the subtraction circuit


55




e


will be equal to −4 (10−14=−4).




If the threshold value Th is set to two (2), because 4 (absolute value of the difference Δm) is greater than 2 (threshold value m1), the threshold judgement output is changed between a low level and a high level. For example, the threshold judgement output is changed from a low level to a high level. This level condition of the threshold value judgement output will be maintained until the absolute value comparator


55




f


judges that the absolute value of the difference Δm becomes equal to or greater than the threshold value Th next.




When the calculation range by the first average circuit


55




c


and the second average circuit


55




d


again reaches the edge timing of the CR signal, the absolute value of the difference Δm becomes greater than the threshold value Th again, and the threshold judgement output is changed again between a low level and a high level.




The counter


55




g


is for using the system clock (CLK2), provided by the CPU


56


, to count the number of the system clock signals to thereby measure the time that the threshold judgement output is maintained at one of high and low levels, that is, a half period of the threshold judgement output. That is, when change in the threshold value judgement output is detected between a low level and a high level, the counter


55




g


starts counting until the threshold judgement output again changes between the high and low levels.




As shown in FIG.


14


(


a


), it is assumed that the absolute-value comparator


55




f


first judges at a timing t0 that the absolute value of the difference Δm becomes equal to or greater than the threshold value Th. In other words, at the timing t0, the absolute value comparator


55




f


determines that the period of the limiter output signal has changed, and recognizes the rising edge of the CR signal. The absolute-value comparator


55




f


changes the threshold value judgement output from a low level to a high level. The absolute-value comparator


55




f


again judges at timing t1 that the absolute value of the difference Δm becomes equal to or greater than the threshold value Th. In other words, at the timing t1, the absolute value comparator


55




f


determines that the period of the limiter output signal has changed again, and recognizes the lowering edge of the CR signal. The absolute-value comparator


55




f


changes the threshold value judgement output from a high level to a low level. The counter value K counted by the counter circuit


55




g


between the timings t0 and t1 is {circle around (


1


)} as indicated in (B


1


) of FIG.


14


(


b


). At the timing t1, the counter


55




g


then outputs the counter value {circle around (1)} to the register


55




h


as shown in (B


2


) of FIG.


14


(


b


). The counter


55




g


then resets the counter value {circle around (1)}, and again counts a half period of the threshold value judgement output, that is, the time that the threshold value judgement output is maintained at a low level until the timing t2 when the threshold value judgement output again changes. In this example, the counter value measured between the timings t1 and t2 is indicated by {circle around (2)}.




Thus, the counter


55




g


will measure the lengths of successive periods t0-t1, t1-t2, t2-t3, . . . , and t7-t8, to thereby output counter values {circle around (1)} to {circle around (8)} indicative of the lengths of the periods t0-t1, t1-t2, t2-t3, . . . , and t7-t8, respectively. In each period t0-t1, t1-t2, t2-t3, . . . , and t7-t8, the threshold judgment output is maintained at either the low or high level.




The adding circuit


55




i


determines that an adding timing has arrived when the counter values K have been held in both of the counter


55




g


and the register


55




h


. In this example, at the timing t2 when the counter value {circle around (1)} is held in the register


55




h


and the counter value {circle around (2)} is determined in the counter


55




g


, the adding circuit


55




i


adds the counter value {circle around (2)} held in the counter


55




g


and the counter value {circle around (1)} held in the register


55




h


, and outputs the sum {circle around (1)}+{circle around (2)}, as a demodulated counter value, to the CPU


56


. At the same time, the counter


55




g


outputs the counter value {circle around (2)} to the register


55




h


as indicated in (B


3


) of FIG.


14


(


b


).




Thus, the CPU


56


reads the demodulated counter value (sum value {circle around (1)}+{circle around (2)}) from the FSK demodulation circuit


55


via the input/output circuit


56


, and judges the pen attribute based on the received demodulated counter value (sum value {circle around (1)}°{circle around (2)}) while referring to the table shown in FIG.


6


(


d


). For example, if the sum {circle around (1)}+{circle around (2)} is 245, then the CPU


56


will judge the pen attributes to be black and thick as indicated in the table of FIG.


6


(


d


).




In the same manner as described above, the adding circuit


55




i


adds the counter value {circle around (2)} for the duration t1-t2, now registered in the register


55




h


, to the counter value {circle around (3)} for the duration t2-t3, newly counted in the counter


55




g


, and outputs the sum to the CPU


56


as indicated in (B


3


) in FIG.


14


(


b


). These processes are repeated so that every time the threshold value judgement output changes between low and high levels, the counter value K of the counter


55




g


is outputted to the register


55




h


, and the adding circuit


55




i


adds the counter value K in the counter


55




g


to the counter value K held in the register


55




h


and outputs the sum to the CPU


56


. That is, as shown in FIG.


14


(


b


), the adding circuit


55




i


adds the counter value K, which is counted during the latest duration by the counter


55




g


, to the counter value K, which is counted during the duration immediately prior to the latest duration and which is held in the register


55




h


, and the sum is outputted to the CPU


56


. For this reason, as shown in FIG.


14


(


a


), the CPU


56


judges the pen attributes, based on the sum of the latest counter value K and the preceding counter value K, each half period of the threshold value judgement output. Accordingly, even if the scanning operation of the loop coils


23


is performed at a timing between times t0 and t1 shown in FIG.


14


(


a


), it is unnecessary to wait for the next period of t2-t4. The counter sum can be determined for the time t1 to t3 that is after a half period elapsed from the time t1. Accordingly, the pen attribute can be judged immediately.




Accordingly, when the period of the limitter output signal changes as shown in

FIG. 15

, the counter circuit


55




a


starts counting the system clock signals each time a rising edge of the limitter output signal is detected. The absolute-value comparator


55




f


produces the threshold judgement output whose level changes in correspondence with the timing when the period of the limitter output signal changes. The counter


55




g


counts the system clock signals each time the level of the threshold judgement output changes. The adding circuit


55




i


calculates the duration of the successive two periods, during which the threshold judgement output is in high and low levels. The duration is indicative of the length of a single period required by the threshold judgement output to change two times. Thus, duration is indicative of the length of a single period of the CR signal where the level of the CR signal changes two times, and accordingly is indicative of the modulation frequency fm of the CR signal. Thus, if the modulation frequency fm of the CR signal is high, the level of the threshold judgement output highly frequently changes, and therefore the counter value counted by the counter


55




g


will be small. When the modulation frequency fm of the Cr signal is less, the level of the threshold judgement output changes less frequently, and therefore the counter value counted by the counter


55




g


is large.




With the above-described structure, the CPU


56


controls the entire device


1


. More specifically, the CPU


56


executes the main routine as shown in FIG.


16


.




When the CPU


56


detects that the power button


38


is pressed down to be turned ON (S100:YES), then in S200, the CPU


56


executes initialization processes. During the initialization processes, the CPU


56


loads the various control programs from the ROM


58


into a work area of the RAM


59


. The CPU


56


also loads the position coordinate table


58




a


of FIG.


10


(


b


) and the pen attribute table of FIG.


6


(


d


) from the ROM


58


into the work area of the RAM


59


.




Next, the CPU


56


executes a coordinate reading process in S300 to read X and Y coordinates of the position of the pen


60


on the writing surface


21




a


, and to store data of the read X and Y coordinates in the RAM


59


. As the coordinate reading process of S300 is repeatedly executed, the pen is repeatedly detected by the sense coils


23


and the X and Y coordinates of the position of the pen


60


are repeatedly determined, and stored in the RAM


59


. The thus successively-determined position coordinate data of the pen


60


constitute a set of written data that is indicative of an image (characters and/or figures) drawn on the writing surface


21




a


by the pen


60


. A plurality of sets of written data, indicative of a plurality of pages' worth of images, can be stored in the RAM


59


, wherein each set of written data indicates a corresponding page image.




Next, the CPU


56


executes a page process in S400. During the page process of S400, when the user presses down either one of the page reverse button


33


, the page forward button


34


, and the erasure button


35


, the CPU


50


executes appropriate page process, such as a page reversing process, a page forwarding process, or a page erasing process, in page units onto the written data now stored in the RAM


59


. More specifically, the CPU


56


receives, through the I/O circuit


57


, a switching signal which is generated in response to an operation of some button on the operation portion


30


, and executes the page processes. For example, the CPU


56


reverses or forwards, by page units, the written data stored in the RAM


59


. Or, the CPU


56


erases the written data also in page units.




In S500, the CPU


56


executes a data output process to convert all the written data (pen position coordinate data) of the user's desired page, that is now stored in the RAM


59


, into an appropriate format and to output the resultant data to the PC


100


or the printer


200


. In S600, the CPU


56


executes a sound output routine for generating operational sounds, such as beeps, by operating the sound circuit


31




a


in response to the switching signals, which are generated when one of the buttons is pressed, and by controlling the speaker (SP)


31


accordingly.




Then, the routine proceeds to S700. In S700, if the eraser


40


is located on the writing surface


21




a


and is detected by the sense coils


23


, the CPU


56


determines the X and Y coordinates of the eraser


40


, in the same manner as in the pen coordinate reading process of S300, based on values of the voltages generated by the X and Y coils


23


that are magnetically coupled with the alternating magnetic field from the coil in the eraser


40


. The CPU


56


then determines the course followed by the eraser


40


. The CPU


56


deletes, from the RAM


59


, some pen coordinate data (written data) that corresponds to the course followed by the eraser


40


.




After process of S700 is completed, one series of processes represented by the flowchart in

FIG. 16

are completed, whereupon the program returns to S100 and repeats the processes in S100 to S700.




The coordinate reading process of S300 in

FIG. 16

is performed as shown in FIG.


17


.




That is, when the coordinate reading routine is started, the X coils are first scanned in S302. More specifically, the X coils X


1


to Xm are scanned by the coil selection signal A (

FIG. 9

) in this order. If no pen


60


is detected (S304:NO), then the coordinate reading process of S300 is ended, and the routine proceeds to the page routine of S400 (FIG.


16


). If the pen


60


is detected (S304:YES), then in S306, the voltage values of all the X coils and Y coils are stored in the RAM


59


. More specifically, the voltage values ex(1)-ex(m) from the X coils X


1


-Xm are stored in association with the corresponding coil numbers (1)-(m) in the voltage value storage area


59




a


as shown in FIG.


10


(


c


). Once the voltage values for the X coils are thus stored in S306, then the X coordinate calculation routine is performed in S308.




When the X coordinate is obtained in S308, then Y coils are scanned in S310. More specifically, the Y coils Y


1


to Yn are scanned by the coil selection signal A (

FIG. 9

) in this order. Then, in S312, the voltage values ey(1)-ey(n) from the Y coils Y


1


-Yn are stored in association with the corresponding coil numbers (1)-(n) in the temporary storage area


59




a


. Once the voltage values for the Y coils are thus stored in S312, then the Y coordinate calculation routine is performed in S314.




When the Y coordinate calculation routine of S314 is completed, then the routine for reading values from the FSK demodulation circuit


55


is performed in S316, and a routine for determining the pen attribute is performed in S318.




Then, in S320, the CPU


56


stores the pen attributes in association with the X and Y coordinates n the RAM


59


. Then, the coordinate reading process of S300 is ended.




Next, operations of the X coordinate calculation routine in S308 will be described below.




The calculation in S308 is executed using the voltage values e(I) to e(m) that are stored in the voltage value storage area


59




a.






More specifically, the CPU


56


first selects the largest voltage value e(max) among all the voltage values e1 to em stored in the voltage value storage area


59




a


, where 1≦max≦m. The CPU


56


then determines the coil number “max” of the X coil X(max) that has generated the largest voltage value e(max). The CPU


56


stores the determined coil number “max” in the RAM


59


.




For example, if the pen


60


is located at a position Q


3


shown in FIG.


11


(


a


), the X coils X


1


, X


2


, X


3


generate voltage values e1, e2, e3, respectively, as shown in FIG.


11


(


b


). In this case, the CPU


56


selects the voltage value e2 as the largest voltage value e(max). The CPU


56


selects the coil number (2) of the X coil X


2


as the coil number “max”, and stores the coil number (2) in RAM


59


.




The CPU


56


then compares voltage values e(max+1) and e(max−1) with each other. The voltage value e(max+1) is the value of a voltage induced at a X coil X(max+1) that is located adjacent to and in the right side of the maximum coil X(max). In other words, the X coil X(max+1) is located in the positive direction from the X coil X(max) along the X axis. The voltage value e(max−1) is the value of a voltage induced at another X coil X(max−1) that is located adjacent to and in the left side of the maximum coil X(max). In other words, the X coil X(max−1) is located in the negative direction from the X coil X(max) along the X axis. The CPU


56


selects one of the voltage values e(max+1) and e(max−1) that is greater than the other. The CPU


56


then stores, in the RAM


59


, the coil number (max2) of the X coil that has generated the selected greater voltage value e(max+1) or e(max−1). The thus selected X coil (max2) is the second maximum voltage coil that has induced the second largest voltage among all the X coils (X coil (1)-X coil (m)).




In the example shown in FIGS.


11


(


a


) and


11


(


b


), because the maximum coil number (max) is equal to 2, the voltage value e1 (e(max−1)) of the X coil X


1


and the voltage value e3 (e(max+1)) of the X coil X


3


are compared with each other. Because e3 is greater than e1 for the position of Q


3


, the corresponding coil number (3) of the X coil X


3


is stored in the RAM


59


as the coil number (max2).




Next, the CPU


56


compares the value of the coil number (max) and the coil number (max2) which are now stored in the RAM


59


. The CPU


56


then judges whether or not the coil number (max2) is greater than or equal to the coil number (max). In other words, the CPU


56


judges whether the coil X(max2) exists in the positive direction (rightside) or in the negative direction (leftside) from the coil X(max) along the X axis.




When the max2≧max, it is determined that the coil X(max2) exists in the positive direction (rightside) from the coil X(max) along the X axis. Accordingly, a variable “SIDE” is set to 1. On the other hand, when max2<max, it is determined that the coil X(max2) exists in the negative direction (leftside) from the coil X(max) along the X axis. Accordingly, the valuable “SIDE” is set to −1.




In the example of FIGS.


11


(


a


) and


11


(


b


), because max=2 and max2=3, max2>max, and therefore the variable SIDE is set to 1.




Next, the CPU


56


calculates a difference voltage “DIFF” between the voltages e(max) and e(max2) by calculating the following formula (1):







DIFF=e


(


max


)−


e


(


max


2)  (1)




Next, the CPU


56


retrieves, from the position coordinate table


58




a


(FIG.


10


(


b


)) now stored in the RAM


59


, a coordinate offset amount ΔX that corresponds to a value DIFF that is closest to the calculated different value DIFF. The CPU


56


sets the retrieved coordinate offset amount ΔX as a value “OFFSET”.




The CPU


56


then determines the X coordinate X


1


of the pen


60


by calculating the following formula (2)








X




1


=(


P




1


/


2


)×(


max


)+OFFSET×SIDE  (2)






wherein the value of “(P1/2)×(max)” represents the X coordinate of the center line of the maximum voltage-inducing coil X(max).




In the example shown in FIGS.


11


(


a


)-


11


(


c


), X


1


of the pen


60


at the location Q


3


is calculated as being equal to (P1/2)×2+(e2-e3)×1. Thus, it is known that the position Q


3


is separated, in the positive direction along the X axis, from the center line C


2


of the X coil X


2


by the distance ΔX2 that corresponds to the voltage value difference (e2-e3).




The y coordinate of the pen


60


is calculated in S314 in the same manner as in the process of S308.




Next will be described the process of S316 (

FIG. 17

) to read demodulation counter values from the FSK demodulation circuit


55


.




In the FSK demodulation circuit


55


, the counter circuit


55




a


, the shift register


55




b


, the average calculating circuit


55




c


,


55




d


, the subtracting circuit


55




e


, and the absolute-value comparator


55




f


perform a first pen attribute detection process shown in FIG.


18


(


a


). The counter


55




g


, the register


55




h


, and the adding circuit


55




i


perform a second pen attribute detection process shown in FIG.


18


(


b


).




The first and second pen attribute detection processes will be described while referring to FIGS.


18


(


a


) and


18


(


b


).




As described already, the amplified signals having passed through the band pass filter


50




d


are supplied not only to the amplitude detection circuit


51


but also to the limiter circuit


54


. The signals are converted by the limiter circuit


54


into a limiter output signal with the square waveform shown in FIG.


13


(


a


). The limiter output signal is supplied to the FSK demodulation circuit


55


.




As shown in FIG.


18


(


a


), when the FSK demodulation circuit


55


detects a rising edge of the limiter output signal (S10:YES), then in S12, the counter circuit


55




a


starts counting the number of the system clock (CLK) to measure the period of the limiter output signals. When the next rising edge of the limiter output signals is detected (S14:YES), then in S16, the counter value K by the counter circuit


55




a


is outputted to the shift register


55




b


. Then, in S18, the counter value K of the counter circuit


55




a


is reset. Thus, the counter circuit


55




a


measures the length TB or TC of a single period of limiter output signal shown in FIG.


13


(


a


).




The thus newly produced counter value K is inputted into the shift register


55




b


so that counter values K obtained during eight successive periods are stored in the shift register


55




b


. Each time the new counter value K is inputted to the shift register


55




b


, all of the counter values K in the shift register


55




b


are shifted one position and the oldest counter value K is discarded. The first average circuit


55




c


calculates an average from the latest counter value K to the third latest counter value K, and outputs the calculated mean value to the subtraction circuit


55




e


as the first mean value. The second average calculating circuit


55




d


calculates an average of the oldest counter value K to the third oldest counter value K, and outputs the calculated mean value to the subtraction circuit


55




e


as a second mean value.




Next, in S20, the subtraction circuit


55




e


calculates the different Δm between the first mean value and the second means value, and outputs the difference Δm to the absolute-value comparator


55




f


. Then, in S22, the absolute-value comparator


55




f


compares the absolute value of the difference Δm with the preset threshold value Th to judge whether or not the absolute value of the difference Δm is equal to or greater than the threshold value Th. If the absolute value of the difference Δm is judged to be greater than or equal to the threshold value Th (S22:YES), then in S24, a threshold value judgement output, to be outputted from the absolute-value comparator


55




f


, is changed between a low level and a high level.




As shown in FIG.


18


(


b


), when the counter


55




g


detects the change in the threshold judgment output between a low level and a high level (S30:YES), then in S32, the counter


55




g


starts counting the system clock (CLK2) pulses to measure the time that the threshold judgement output is maintained at the present level, that is, the half period of the threshold judgement output.




When the absolute value converter


55




f


again judges that the absolute value of the difference Δm is equal to or greater than the threshold value Th (S22:YES), then in S24, the absolute value comparator


55




f


again changes the threshold value judgement output between a high level and a low level. At the same time, the counter


55




g


detects in S34 that the threshold value judgement output changes again (S34:YES). Then, in S36 the counter


55




g


outputs its counter value to the register


55




h


. Next, in S38, the counter


55




g


resets the counter value. The counter


55




g


then again starts counting in S32 the half period of the threshold value judgement output, that is, the time that the threshold value judgement output is maintained at the present level.




The adding circuit


55




i


determines whether the adding timing has arrived by detecting the timing when the counter values are inputted to both the counter


55




g


and the register


55




h


. When counter values are inputted to both the counter


55




g


and the register


55




h


for a certain timing (S50: YES), then in S52, the adding circuit


55




i


adds the counter value now held in the counter


55




g


to the counter value now held in the register


55




h


. The adding circuit


55




i


then outputs the sum value to the CPU


56


in S56. At this time, the counter


55




g


outputs in S36 the next counter value to the register


55




h.






Accordingly, in S316 (FIG.


17


), the CPU


56


reads the sum value from the adding circuit


55




i


, that is, the demodulation counter value of the FSK demodulation circuit


55


, through the input/output circuit


53


.




In S318, the CPU


56


determines the pen attributes based on the retrieved sum value while referring to the table of FIG.


6


(


d


). For example, if the sum value is 245, then the CPU


56


will judge the pen attributes to be black and thick.




Then, in S320, the CPU


56


stores the pen attributes in association with the X and Y coordinates in the RAM


59


. The thus stored written data (X and Y coordinate data and the pen attribute data) will be outputted to the printer


200


. for example, which in turn prints the characters or figures in a manner corresponding to the pen attribute. For example, if the pen attribute is black and thick, the printer


200


will print the characters or figures in thick black font. Also, the written data could be outputted to the personal computer


100


and displayed on the monitor


103


in the thick black font. Thus, the written data is reproduced according to the attributes of the pen


60


.




It is noted that the circuit board


69


in the pen


60


(FIG.


6


(


b


)) is designed to start oscillating and modulating the alternating magnetic field (carrier wave) when the pen


60


is pressed against the writing surface


21




a


of the electronic white board


1


. It is preferable that the circuit board


69


continues oscillating and modulating the alternating magnetic field (carrier wave) for a predetermined length of time after the start of the oscillation and modulation. The length of the predetermined time is preset as a duration of time that is sufficiently long for the electronic white board


1


to detect the period T of the modulation frequency fm. More specifically, the circuit board


69


is preferably provided with a timer (not shown) for measuring a time length from the timing when the pen


60


first contacts the writing surface


21




a


. When the measured time length reaches and exceeds the predetermined time length, the circuit board


69


stops generating the alternating magnetic field (carrier wave). According to this modification, the pen


60


can consume less power to transmit attribute information to the electronic white board


1


.




As described above, according to the present embodiment, the oscillation circuit mounted in the circuit board


69


of the pen


60


includes: the CR oscillation circuit


69




e


; the LC oscillation circuit


69




c


; and the FSK circuit


69




d


. The CR oscillation circuit


69




e


oscillates a signal with one of a plurality of different modulation frequencies fm that correspond to a plurality of different attributes, such as ink colors, pen tip thickness, and the like, of the pen. The LC oscillation circuit


69




c


is for oscillating a carrier wave (alternating magnetic field) for transmitting the signal oscillated by the CR oscillation circuit


69




e


. The FSK circuit


69




d


is for FSK modulating the oscillation frequency of the LC oscillation circuit


69




c


in accordance with the modulation frequency of the CR oscillation circuit


69




e


. The receiving side or the electronic white board


1


measures a time period at which the frequency of the carrier wave changes, thereby determining the period of the modulation frequency fm to know the pen attribute. Because it is sufficient to receive the signal from the pen for at least one period of time thereof, it is possible to shorten the time required to recognize the pen attributes.




Thus, the pen


60


transmits a CR signal, with its period corresponding to attributes of the pen


60


, to the electronic white board


1


. The electronic white board


1


can determine the attributes of the pen


60


by measuring the single period of the CR signal. Therefore, less time is required to distinguish the attributes of the pen


60


than in the conceivable manner wherein the code train has to be transmitted for a plurality of periods.




For example, if the CR oscillation circuit


69




e


has a modulation frequency fm of 5 kHz, then the time required to distinguish a single period of the CR signal will be {fraction (1/5,000)}=200 (μs) at shortest. On the other hand, if the conceivable coordinate reading device shown in

FIG. 1

transmits the code train with the same frequency of 5 kHz, then 200 μs is required to transmit each bit. Since a total of 10 bits are transmitted in the conceivable code train, then 2,000 μs (200 μs×10=2,000 μs) is required to transmit the entire code train that indicates pen attributes in the conceivable situation. Thus, the electronic white board


1


according to the present embodiment can distinguish pen attributes in {fraction (1/10)} the time ({fraction (200/2,000)}={fraction (1/10)}) of the time required in the conceivable situation.




Even if the period of the CR signal changes slightly, this change will appear as a change of the period of the limiter output signal. This change is detected by the FSK demodulation circuit


55


and further by the CPU


56


. Accordingly, even when the period of the CR signal is changed slightly according to the respective pen attributes, the white board


1


can properly recognize the pen attribute.




In the above description, the count circuit


55




a


counts the periods TB and TC of the limiter output signal based on the system clock. If the period of the limiter output signal changes by at least one period of the system clock, the count circuit


55




a


will count a different value, and so will be able to recognize the pen attributes. Therefore, attributes for each pen can be indicated by only slightly changing the period of the CR signal by only one or more periods of system clock. Accordingly, a great number of pen attributes can be set.




Further, because the pen attributes are recognized based on measuring the period of the CR signal, there is no need to synchronize the operation clock of the electronic white board


1


with the operation clock of the pen


60


. Therefore, the pen need not be provided with a divider or other circuitries for generating an operation clock. Therefore, the pen


60


can have a single circuitry configuration.




The CR signal can be repeatedly transmitted at the fixed period. Therefore, even if the sense coils are scanned in the middle of a CR signal period, the pen attributes can be determined by measuring the next single period. Therefore, there is no need to wait for the next start bit or to receive the code train from the start bit for a plurality of successive periods until the stop bit as in the conceivable situation. Therefore, the time required to recognize the pen attributes can be shortened.




Furthermore, because the carrier wave from the LC oscillation circuit


69




c


has its frequency modulated by the CR signal, even if the amplitude of the carrier wave is changed, the period of the CR signal will not change. Therefore, there is no danger that the pen attribute information indicated by the period of the CR signal will change. For example, even if the voltage of the battery


70


in the pen


60


drops, so that the strength of the alternating magnetic field (carrier wave) generated by the coil L


1


also drops, the attribute information of the pen


60


can be reliably and accurately transmitted.




Next, a modification of the present embodiment will be described while referring to FIG.


19


.




The electronic white board according to the present modification scans every other X coil and Y coil to retrieve X and Y coordinates rapidly.




The electronic white board


1


according to the present modification is the same as that of the above-described present embodiment except that the electronic white board


1


of the present modification executes the coordinate reading process of S


300


as shown in FIG.


19


.





FIG. 19

is a flowchart showing flow of a coordinate reading routine of S


300


executed by the CPU


56


provided to the electric black board of the present modification.




As shown in

FIG. 19

, when the coordinate reading routine of S


300


starts, first, in S


330


, the CPU


56


scans every other X coil. If the pen


60


is detected (S


332


:YES), then in S


334


, the CPU


56


serially stores voltage values of the thus detected X coils into the voltage value memory area


59




a


of the RAM


59


. Next, in S


336


, the CPU


56


detects an X coil Xi that has generated the largest voltage value e(max) among the voltage values e(l) to e(m) now stored in the voltage value memory area


59




a.


Then, the CPU


56


scans the X coils (Xi−1) and (Xi+1) that are located on either side of the X coil Xi. That is, because every other X coil has been scanned in S


330


, the X coils (Xi−1) and Xi+1) have not been scanned. Those X coils (Xi−1) and (Xi+1) are adjacent to the X coil Xi, and therefore one of the X coils (Xi−1) and (Xi+1) might possibly have a voltage that is higher than the voltage of the X coil Xi. Taking this into account, the X coils (Xi−1) and (Xi+1) are scanned in S


338


.




Next, in S


340


, the CPU


56


selects the maximum voltage X coil among the three X coils (Xi−1), Xi (Xi+1), and then stores the coil number of the maximum voltage coil, as coil number (max), in the RAM


59


. Next, in S


342


, the CPU


56


selects an X coil with the second largest voltage value among two X coils that are located adjacent to the X coil (max), and stores the corresponding coil number, as coil number (max


2


), in the RAM


59


. The CPU


56


compares the coil number (max) to the coil number (max


2


) stored in the RAM


59


, and judges whether the coil number (max


2


) is in the positive or negative direction along the X axis from the coil number (max). If max


2


≧max, then the variable SIDE is set to 1. On the other hand, if max


2


<max, then the variable SIDE is set to −1.




Next, in S


344


, the CPU


56


uses equation (1) described in the first embodiment to calculate the voltage difference DIFF, reads the position coordinate Δx, corresponding to a value DIFF that is nearest to the calculated voltage difference DIFF, from the position coordinate table


58




a


stored in the ROM


58


, and sets this value as the OFFSET. Next, the CPU


56


determines the X coordinate X


1


using the equation (2) described already in the present embodiment.




Although not shown in the drawing, the CPU


56


also scans every other Y coil and calculates the Y coordinate Y


1


using the same procedures used for determining the X coordinate in S


332


to S


346


.




For example, when there are 22 X coils, and the CPU


56


scans every other X coil in S


330


, the CPU


56


will scan only 11 times (22/2=11). Then, the CPU


56


will perform two additional scans in S


338


for a total of 13 scans (11+2=13). Accordingly, because the present modification requires only thirteen scans where the already-described present embodiment requires


22


scans, the time required for scanning the X coils can be reduced by the number required to scan nine coils (9=22−13).




Thus, the electronic white board according to the present modification has the same good effect as in the present embodiment of requiring less time to distinguish pen attributes. In addition, the electronic white board according to the present modification requires less time to scan the sense coils


23


so is that much faster.




In the above-described embodiment and modification, pen attributes are determined based on the length of a single period of the CR signal. However, when the duty ratio of the CR signal is fixed to 50%, then the pen attributes can be determined based on the half period of the CR signal. In this case, the time required to determine pen attributes can be further reduced to one half of the time required for the above-described configuration.




<Second Embodiment>




A second embodiment will be described below with reference to FIGS.


20


(


a


)-


26


(


d


).




The electronic white board


1


of the present embodiment is the same as that of the first embodiment except for the points described below.




According to the present embodiment, as shown in FIG.


20


(


a


), a pen pressure sensor


68


is additionally provided for detecting pen pressure, that is, the pressing force of the pen


60


against the writing surface


21




a.


The pen pressure sensor


68


is provided between the switch


67


and the circuit


69


. The pen pressure sensor


68


is made from a pressure sensor whose resistance value changes according to the pen pressure. Such a pressure sensor is desirable because of its long life and its compact size, and also because it is suitable for use in a pen that is frequently placed in contact with and removed from the surface of the writing surface


21




a.


For example, the pen pressure sensor


68


is made from a variable resistor-type film sensor. The film sensor is thin, and so does not take up a great deal of space inside the pen


60


. FIG.


20


(


c


) is a plan view showing the configuration of the film sensor


68


. The film sensor


68


includes: a PET film


68




a;


an electrode pattern


68




b


printed in silver paste on the PET film


68




a;


and a carbon film


68




c


pressed onto the electrode pattern


68




b.






According to the present embodiment, therefore, the CR oscillation circuit


69




e


has a circuit structure as shown in FIG.


20


(


b


). That is, the CR oscillation circuit


69




e


is constructed from: a capacitor C


5


, a resistor R


2


, a variable resister R


3


, a pair of diodes D


1


and D


2


, and three integrated circuits IC


2


, IC


3


, and IC


4


. In this example, the variable resistor R


3


is constructed from the pressure sensor


68


of FIG.


20


(


c


). The variable range of the variable resistor R


3


is 100 kΩ to 1 MΩ. The capacitor C


5


has a capacitance of 100 pF. All of the integrated circuits IC


2


, IC


3


, and IC


4


are TOSHIBA TC7SLU04F (trade name) produced by Toshiba Corporation. It is noted that the integrated circuits IC


2


and IC


3


can be constructed from any other integrated circuits of a type “U


04


”. The resistor R


2


has resistance of 1 MΩ.




With the above-described structure, the CR oscillation circuit


69




e


operates in the same manner as the CR oscillation circuit


69




e


of the first embodiment. Accordingly, the input to the IC


2


and the output from the IC


4


is as shown in FIG.


20


(


d


). The modulation frequency fm of the CR signal is determined dependently on the values of the capacitance of the capacitor C


5


, the resistances of the resistors R


2


and R


3


, and the resistances of the diodes D


1


and D


2


.




It is noted that according to the present configuration, when the output at the IC


4


is in the high level, the diode D


1


is brought into an off condition and the diode D


2


is brought into an on condition. Accordingly, the time duration T


2


, where the CR signal is maintained in a high level as shown in FIGS.


21


(


a


)-


21


(


b


), is determined by the following formula:








T




2


=0.69×


C




5


×


R




3


.






Additionally, when the output at the IC


4


is in the low level, the diode D


1


is brought into an on condition and the diode D


2


is brought into an off condition. Accordingly, the time duration T


1


, where the CR signal is maintained in a low level as shown in FIGS.


21


(


a


)-


21


(


b


), is determined by the following formula:








T




1


=0.69×


C




5


×


R




2


.






Because the resistor R


2


has a fixed amount of resistance, the time length of the period T


1


can be determined according to the amount of the capacitance of the capacitor C


5


. Therefore, according to the present embodiment, the capacitance of the capacitor C


5


is set as different for the different attribute of the pen


60


. Thus, the time length of the low level period T


1


is set as indicative of the pen attribute.




The time length of the period T


2


changes according to the amount of the resistance of the variable resistor R


3


, that is, the pressure sensor


68


. Because the resistance of the variable resistor R


3


changes in accordance with the pen pressure, the time length of the high level period T


2


will change as indicative of the pen pressure.




With the above-described structure, the CR oscillation circuit


69




e


oscillates a CR signal, as shown in FIG.


21


(


a


) and


21


(


b


), not only according to the pen attribute, as to the ink color and the pen tip thickness, but also according to the pressure with which the pen


60


is pressed against the writing surface


21




a.


More specifically, the CR signal is generated so that its low level is maintained for the first period T


1


and its high level is maintained for the second period T


2


. Accordingly, as also shown in the figures, the carrier signal (alternating magnetic field) is FSK modulated by the CR signal so that its high frequency f


1


is maintained for the first period T


1


and its low frequency f


2


is maintained for the second period T


2


.




According to the structure of the CR oscillation circuit


69




e,


the first period T


1


is set according to the pen attribute and the second period T


2


is determined according to the pen pressure.




For example, for a thick black pen, as shown in

FIG. 21

(a), the first period T


1


is set to a value of 0.24 mS. Contrarily, for a thick red pen, as shown in FIG.


21


(


b


), the first period T


1


is set to a value of 0.13 mS. As the pen pressure decreases, the length of the second period T


2


increases. Accordingly, when the thick black pen


60


is pressed against the writing surface


21




a


with a large pen pressure and a small pen pressure to draw characters and figures on the writing surface


21




a,


the CR signal is generated and the carrier signal (alternating magnetic field) is modulated as shown in FIG.


21


(


a


). Similarly, when a thick red pen


60


is pressed against the writing surface


21




a


with a large pen pressure and a small pen pressure, the CR signal is generated and the carrier signal (alternating magnetic field) is modulated as shown in FIG.


21


(


b


).




According to the present embodiment, the FSK demodulation circuit


55


in the control portion


50


of the electronic white board


1


is modified as shown in FIG.


22


. The FSK demodulation circuit


55


of the present embodiment will be referred to as FSK demodulation circuit


55


′ hereinafter. According to the present embodiment, as shown in

FIG. 22

, the FSK demodulation circuit


55


′ does not have the register


55




h


or the adding circuit


55




i.


The counter circuit


55




g


is directly connected to the I/O circuit


53


.




The ROM


58


prestores a pen attribute table shown in FIG.


23


(


a


) and a pressure table


58




b


shown in FIG.


23


(


b


). The pen attribute table of FIG.


23


(


a


) stores data indicative of the relationship between the plurality of different pen attributes and the corresponding time lengths of the first period T


1


in terms of the demodulated counted value, counted by the counter


55




g.


The pressure table


58




b


stores data indicative of the relationship between pen pressure and the corresponding time lengths of the second period T


2


in terms of the demodulated counted value, counted by the counter


55




g.






With the above-described structure, the CPU


56


in the electronic white board


1


executes the coordinate reading routine of S


300


as shown in FIG.


24


. That is, the CPU


56


executes the processes of S


302


-S


314


in the same manner as in the first embodiment (FIG.


17


). Then, the CPU


56


executes the process of S


316


to read data from the FSK demodulation circuit


55


. Then, the CPU


56


executes the pen attribute judgement process of S


318


and a pen pressure judgement process of S


319


, before the storage process of S


320


.




According to the present embodiment, the FSK demodulation circuit


55


′ executes operations to detect the lengths of the periods T


1


and T


2


, shown in FIG.


21


(


a


) and


21


(


b


), in a manner described below.




In the same manner as the FSK demodulation circuit


55


of the first embodiment, the FSK demodulation circuit


55


′ can known the timings of the rising edge and of the lowering edge of the CR signal by detecting the timings when the count value k counted by the counter circuit


55




a


changes between its larger value and its smaller value. The duration of time when the counter value k is maintained at the larger value corresponds to a half period between the rising edge and the lowering edge of the CR signal. Thus, this half period corresponds to the length of the period T


2


. By detecting this period, therefore, it is possible to know the pen pressure.




Similarly, the duration of time when the counter value k is maintained at the smaller corresponds to the other half period between the lower edge and the rising edge of the CR signal. Thus, this half period corresponds to the length of the period T


1


. By detecting this period, it is possible to know the pen attribute.




More specifically, the FSK demodulation circuit


55


′ of the present embodiment operates as shown in FIG.


25


.




First, in S


2010


-S


2018


, the FSK demodulation circuit


55


′ executes the same processes with the processes of S


10


-S


18


in FIG.


18


(


a


) in the first embodiment. That is, when the FSK demodulation circuit


55


′ detects a rising edge of the limiter output signal (S


2010


,YES), then in S


2012


, the counter circuit


55




a


starts counting the number of the system clock (CLK) to measure the period of the limiter output signal. When the next rising edge of the limiter output signals is detected (S


2014


:YES), then in S


2016


, the counter value K by the counter circuit


55




a


is outputted to the shift register


55




b.


Then, in S


2018


, the counter value K of the counter circuit


55




a


is reset. Thus, the counter circuit


55




a


measures the length TB or TC of a single period of limiter output signal shown in FIG.


13


(


a


).




The thus newly produced counter value K is inputted into the shift resister


55




b


so that counter values K obtained during eight successive periods are stored in the shift register


55




b.


Each time the new counter value K is inputted to the shift register


55




b,


all of the counter values K in the shift register


55




b


are shifted one position and the oldest counter value K is discarded.




The first average circuit


55




c


calculates an average from the latest counter value K to the third latest counter value K, and outputs the calculated mean value to the subtraction circuit


55




a


as the first mean value. The second average calculating circuit


55




d


calculates an average of the oldest counter value K to the third oldest counter value K, and outputs the calculated mean value to the subtraction circuit


55




e


as a second mean value.




Next, in S


2020


, the subtraction circuit


55




e


calculates the difference Δm between the first mean value and the second mean value, and outputs the difference Δm to the absolute-value comparator


55




f.


More specifically, the subtraction circuit


55




e


subtracts the first mean value from the second mean value, and outputs the resultant value Δm to the absolute-value comparator


55




f.






For example, in the first row of FIG.


13


(


b


), the first average circuit


55




c


calculates the first average value for the counter values k


6


-k


8


, while the second average circuit


55




d


calculates the second average value for the counter values k


1


-k


3


. Accordingly, the first average value becomes greater than the second average value. When it is detected that the first average value becomes greater than the second average value, it can be known that the calculation range by the first average circuit


55




c


and the second average circuit


55




d


reaches the timing of the rising edge of the CR signal. Similarly, when it is detected that the first average value becomes smaller than the second average value, it can be known that the calculation range by the first average circuit


55




c


and the second average circuit


55




d


reaches the timing of the lowering edge of the CR signal.




Then, in S


2022


, the absolute-value comparator


55




f


compares the absolute value of the difference Δm with the preset threshold value Th to judge whether or not the absolute value of the difference Δm is equal to or greater than the threshold value Th. If the absolute value of the difference Δm is judged to be greater than or equal to the threshold value Th (S


2022


:YES), then the program proceeds to S


2024


.




In S


2024


, it is determined whether or not the difference Δm calculated in S


2020


is a positive value. If the difference Δm is a positive value (S


2024


:YES), then in S


2026


, a lowering edge flag is set which shows that this is a lowering edge of the CR signal. On the other hand, when the difference Δm is not a positive value, that is, when it is a negative value (S


2024


:NO), then in S


2028


, a rising edge flange is set to show that this is the rising edge of the CR signal.




For example, it is assumed that the counter circuit


55




a


counts the counter value K of ten (10) for the short period TB of the limiter output signal and counts the counter value K of sixteen (16) for the longer period TC. In the first row of FIG.


13


(


b


), all of the counter values K


1


to K


6


are ten (10). Therefore, the second mean value is equal to 10 ((K


1


+K


2


+K


3


)/3=10). Also, because the counter value K


7


and the counter value K


8


are both equal to 16, then the first mean value will be equal to 14 ((K


6


+K


7


+K


8


)/3=42/3=14). Therefore, the difference Δm obtained by the subtraction circuit


55




e


will be equal to −4 (10−14=−4). Accordingly, the rising edge flag is set in S


2028


.




Then, in S


2030


, a threshold value judgement output, to be outputted from the absolute-value comparator


55




f,


is changed between a low level and a high level. In other words, the absolute-value comparator


55




f


outputs its detection of the rising edge or the lowering edge of the CR signal, i.e., the timing when the period of the limitter signal has changed.




In the present example, the absolute value of the difference Δm (=4) is greater than the threshold value Th (=2), and the threshold value judgement output changes from the low level to the high level in S


2030


.




When the calculation range by the first average circuit


55




c


and the second average circuit


55




d


is shifted from the edge timing of the CR signal and reaches the timing when the period of the limiter output signal is fixed, both the average calculating circuits


55




c,




55




d


will calculate average values for the counter values K from the same periods. Therefore, the subtraction results by the subtraction circuit


55




e


will be equal to zero (0) (no in S


2022


). In this case, the threshold value judgement output from the absolute-value comparator


55




f


will be continued unchanged as shown in FIG.


15


.




Next, in S


2032


, the counter


55




g


uses the system clock (CLK


2


) to count an interval, which is how long the judgement output from the absolute value comparator


55




f


is at the present level (high level in this example). Next in S


2034


, the counter


55




g


outputs the count value together with the flag data set in S


2026


or S


2028


to the CPU


56


through the input/output circuit


53


. In S


2036


, the flag that has been set in S


2026


or S


2028


is reset in S


2036


.




Accordingly, the CPU


56


receives the counter value data and the flag data in S


316


of FIG.


24


. Then, in S


318


and S


320


, the CPU


56


judges the pen attributes and the pen pressure based on the count value and the flag data. For example, if the counter


55




g


first outputs flag data of a lowering edge flag, and then subsequently outputs flag data of a rising edge flag, then the CPU


56


judges that the counter value inputted between these two sets of flag data represents the period T


1


of the CR signal shown in FIG.


21


. The period T


1


indicates pen attributes. For example, when the count value is 245, the CPU


56


judges that pen has a thick tip and holds black ink, while referring to the table of FIG.


23


(


a


).




The CPU


56


also uses the received count value and flag data to judge pen pressure in S


319


. For example, when the flag data inputted first from the counter


55




g


is for a rising edge flag, and the subsequently inputted flag data is for a lowering edge flag, then the count value inputted between these two sets of flag data represents the period T


2


of the CR signal as shown in FIG.


21


. The period T


2


indicates pen pressure. The CPU


56


therefore refers to the pen pressure table of FIG.


23


(


b


), and determines the amount of the pen pressure that is stored in correspondence with the detected count value.




Next, in S


320


, the CPU


56


stores pen attributes, pen pressure, and the X/Y coordinates in association in a predetermined memory region of the RAM


59


. The written data thus stored in this form can either be outputted to the printer


200


and printed out on a sheet, or outputted to the personal computer


100


and displayed on the monitor


103


. In the above-described example, thick black characters or symbols are displayed or printed out, with a density that corresponds to the detected pen pressure. Thus, the written data is reproduced with the detected attributes of the pen


60


and in the detected pen pressure.




As described above, according to the present embodiment, the period T


1


, which is how long the carrier signal is at the first (high) frequency f


1


after changing from the second (low) frequency f


2


, differs depending on the attributes of the pen


60


. Moreover, the electronic white board


1


measures the period T


1


using the system clock, and detects attributes based on the measured value. Therefore, it is possible to discriminate between different values of the period T


1


if the difference in the values of the period T


1


is equal to or greater than at least a single period of the system clock. Accordingly, a great number of attributes can be discriminated by setting a great number of different values for the period T


1


.




Also, the period T


2


, which is how long the carrier signal is at the second (low) frequency f


2


after changing from the first (high) frequency f


1


, changes in accordance with pen pressure of the pen


60


. Moreover, the electronic white board


1


uses the system clock to measure the period T


2


in the same manner as it uses the system clock to measure the period T


1


. Accordingly, when the pen pressure changes gradually, the value of the period T


2


also gradually changes in accordance with the change in the pen pressure. Even in this case, the amount of the consecutive change in the length of the period T


2


can be detected at a resolution that corresponds to the system clock.




Next, a modification of the present embodiment will be described while referring to FIGS.


26


(


a


) to


26


(


d


).




According to this modification, not only the time lengths of T


1


and T


2


of the CR signal but also the duty ratio of the CR signal can be changed. For example, as shown in FIGS.


26


(


b


) and


26


(


c


), the time length of a single period T(=T


1


+T


2


) can be set dependently on the attribute of the pen, and the duty ratio (T


1


/T) can change according to the pen pressure.




More specifically, according to this modification, the CR oscillation circuit


69




a


is constructed as shown in FIG.


26


(


a


). According to this modification, the pressure sensor


68


(shown in FIG.


20


(


a


)) is constructed from: a resistor R (a pair of variable resistors R


2


and R


3


), and a spring or other member (not shown), which is provided for changing the position of the contact point between the capacitor C


5


and the resistor R, according to the amount of the pressure applied from the ink cartridge


63


against the pressure sensor


68


. Thus, the pressure sensor


68


changes the position of the separating point between the resistors R


2


and R


3


, according to the amount of the pen pressure. Therefore, according to the pen pressure, the lengths of the resistors R


2


and R


3


are changed, while the total length of the resistors R


2


and R


3


(length of R) are maintained as being fixed.




Because the sum of the resistances of the variable resistors R


2


and R


3


is thus set as being fixed, the duty ratio D(=T


1


/T) and the time length of the single period T (=T


1


+T


2


) of the CR signal can be determined as follows:








D=R




3


/(


R




2


+R


3


).










T=


0.69


×C




5


×(


R




2




+R




3


).






According to the present modification, therefore, the capacitance of the capacitor C


5


is set differently for the different pen attribute. As a result, the time length of the period T is set different for the different pen attribute. According to the present modification, data of the time length of the period T, thus set for each pen attribute, is prestored in the same manner as in FIG.


6


(


d


) of the first embodiment.




When the pressure of the pen


60


against the writing surface


21




a


changes, the resistance of the resistors R


2


and R


3


change while maintaining their sum value. As a result, the duty ratio D changes. According to this modification, data of the duty ratio D in correspondence with various amounts of the pen pressure is also stored in the same manner as in FIG.


23


(


b


) of the present embodiment.




Thus, according to the present modification, the pen attribute information is indicated by the period T, that is, the sum of the periods T


1


and T


2


. The period T corresponds to the modulation frequency fm. The pen pressure is indicated by the duty ratio D of (T


1


/T). Accordingly, the FSK demodulation circuit


55


′ (FIG.


22


), provided in the electronic white board


1


, uses the system clock to measure the periods T


1


and T


2


in the same manner as described above in the present embodiment. In S


318


, the CPU


56


calculates the sum of the periods T


1


and T


2


, to thereby determine the period T. Then, the CPU


56


determines the pen attribute based on the determined period T. In S


319


, the CPU


56


calculates the duty ratio T


1


/T, to thereby determine the pen pressure.




According to this modification, in the same manner as described already in the present embodiment, the modulation frequency fm (period T) of the carrier signal is set different for each pen attribute. Moreover, the electronic white board


1


uses the system clock to measure the period T (modulation frequency fm), and so can detect pen attribute based on the measured period T. Therefore, if the difference in period T is equal to or less than at least one period of the system clock, the pen attributes can be detected. Therefore, an extremely large number of attributes can be set.




Additionally, the duty ratio (T


1


/T) is changed in accordance with pen pressure. Moreover, the duty ratio T


1


/T can be measured by the system clock in the same manner as the period T. Therefore, even if pen pressure gradually changes, the amount of these gradual changes can be detected using the duty ratio, at a resolution that corresponds to the system clock.




In addition to the pen attributes as to ink color and the thickness of the pen tip, an ID number for distinguishing the user of the pen can also be set as an additional attribute for each pen.




Also, a piezoelectric element could be used as the pen pressure sensor


68


, instead of the pressure sensor shown in FIG.


20


(


c


).




In the above description, the carrier signal is modulated in two frequencies f


1


. f


2


. However, the carrier signal can be modulated into three or more different frequencies. For example, as shown in FIG.


26


(


d


), each of three different characteristics, such as: (1) ink color and pen tip thickness, (2) pen pressure, and (3) the character of a line (solid line or broken line) drawn by the pen, can be distinguished by changing the time durations T


1


, T


2


, and T


3


where the frequency is maintained at first, second and third frequencies f


1


-f


3


. In this case, the CR signal should be generated as a multi-value signal with a plurality of different amplitudes. With this configuration, a great number of different kinds of information can be efficiently transmitted to the electronic white board


1


. A great number of different kinds of information can be efficiently designated by the time lengths and the duty ratios.




As described above, according to the present embodiment, as shown in

FIG. 21

, the signal is frequency-shift-keying modulated at first frequency f


1


for the period of T


1


and is frequency-shift-keying modulated at second frequency f


2


for the period of T


2


. The period T


1


is set different for different attributes, such as thickness of the pen tip and color of ink of the pen


60


. For example, a thick black pen, that is, its pen tip


62


is thick and the color of the ink is black, is set for the period T


1


of 0.24 mS. A thick red pen is set with a period T


1


of 0.13 mS.




The FSK demodulation circuit


55


′, provided in the electronic white board


1


, uses the system clock to measure the period T


1


of the signal transmitted from the pen


60


. The CPU


56


detects the attributes of the pen


60


based on the measured values. Accordingly, the total number of attributes capable of being transmitted is not limited to the frequency bands that can be transmitted and received, so a great number of attributes can be set.




The length of the period T


2


changes depending on pressure placed on the tip of the pen


60


. Because the period T


2


can be measured using the system clock of the electronic white board


1


in the same manner as the period T


1


, even if the length of the period T


2


consecutively changes in accordance with pen pressure, the consecutively-changing amount can be accurately detected. Accordingly, the pen pressure that consecutively changes can be detected. Thus, according to the present embodiment, various intervals at which the frequency changes can be employed in correspondence with various types of information. In this way, the pen or coordinate input device can transmit information indicating a variety of attributers and consecutively-changing amounts to the coordinate reading device.




In the modification shown in FIGS.


26


(


a


) to


26


(


c


), the duty ratio (T


1


/T) is differentiated according to the pen pressure of the pen


60


, wherein T


1


is the period wherein the frequency of the frequency-shift-keying modulated signal is at the first frequency f


1


, and T is the interval from the time when the frequency of the frequency-shift-keying modulated signal changes into the first frequency f


1


, through the time when the frequency changes into the second frequency f


2


, until the time when the frequency changes back to the first frequency f


1


.




The FSK demodulation circuit


55


′ uses the system clock to measure the periods T


1


and T (sum or T


1


and T


2


) of the signal transmitted from the pen


60


. The CPU


56


calculates the duty ratio (T


1


/T) based on the measured values. The pen pressure is determined based on the duty ratio. Accordingly, the pen pressure can be detected even if the pen pressure consecutively changes. By outputting the FSK modulated signal by a corresponding duty ratio, the coordinate input device is capable of transmitting information on a consecutively-changing amount.




In this case, the period T is set different for different attributes of the pen, such as the color of the ink and a thickness of the pen tip. For example, a thick black pen is set to 4.1 kHz and a thick red pen in set to 7.7 kHz. The FSK demodulation circuit


55


′ uses the system clock to measure the period T. The CPU


56


detects attributes of the pen


60


based on the measured values. Accordingly, a great number of attributes can be set without any restriction by the frequency bands that can be transmitted and received.




<Third Embodiment>




A third embodiment will be described below with reference to FIGS.


27


(


a


)-


32


(


d


).




The electronic white board


1


of the present embodiment is the same as that of the first embodiment except for the points described below.




According to the present embodiment, as shown in FIGS.


27


(


a


) and


27


(


b


), several holes or concaves


12




a


are formed in the upper surface of the stand


12


for supporting several pens


60


.




According to the present embodiment, as shown in FIG.


28


(


a


), the CR oscillation circuit


69




e


is not disposed on the circuit board


69


, but is disposed in the rear portion of the ink cartridge


63


. More specifically, as shown in FIG.


28


(


d


), the CR oscillation circuit


69




e


is mounted in the ink cartridge


63


The CR oscillation circuit


69




e


is for generating the CR signal with a modulation frequency fm that depends on the pen attribute, such as ink color and pen tip thickness. The LC circuit


69




c


and the FSK circuit


69




d


are provided on the circuit board


69


that is mounted inside the cylindrical body portion


61




a.






As shown in FIG.


28


(


d


), a plurality of contact points J


1




a,


J


2




a,


J


3




a,


J


4




a


are provided in the CR oscillation circuit


69




e.


The plurality of contact points J


1




a,


J


2




a,


J


3




a,


J


4




a


are exposed on the outer surface of the ink cartridge


63


as shown in FIGS.


28


(


b


) and


28


(


c


). As shown in FIG.


28


(


d


), the circuit board


69


is provided with a plurality of contact points J


1




b


to J


4




b.


The contact points J


1




a


to J


4




a


in the ink cartridge


63


side are for establishing an electrical connection with corresponding ones of the contact points J


1




b


to J


4




b


provided on the circuit board


69


.




More specifically, as shown in FIG.


28


(


b


), the contact points J


1




a


to J


4




a


are provided at four positions on the outer peripheral end edge at the rear side of the ink cartridge


63


. A groove


63




a


is provided also on the rear side of the ink cartridge


63


. The groove


63




a


is for regulating the posture of the ink cartridge


63


relative to the cylindrical body portion


61




a,


so that the contact points J


1




a


to J


4




a


properly connect with the contact points J


1




b


to J


4




b


provided on the circuit board


69


in the cylindrical body portion


61




a.






As shown in FIG.


28


(


c


), each of the contact points J


1




b


to J


4




b


is provided with a coil spring that is for pressing, with resilient force, against the corresponding one of the contact points J


1




a


to J


4




a.


With this configuration, the contact points J


1




a


to J


4




a


will be maintained in stable contact with the contact points J


1




b


to J


4




b,


even while the user draws or writes on the electronic white board


1


so that the ink cartridge


63


moves in the direction F


1


and the button switch


67


is pressed.




As described already in the first embodiment, the modulation frequency fm, identifying the ink color and the line thickness (pen tip thickness), is determined by the condenser C


5


and the resistor R


3


in the CR oscillation circuit


69




e.


Accordingly, when the ink cartridge


63


is exchanged for a different one, the capacitor C


5


and the resistor R


3


of the CR oscillation circuit


69




e


are also automatically exchanged. As a result, the modulation frequency fm that indicates the line thickness produced by the type of pen tip


62


, and that also indicates the color of ink stored in the ink cartridge


63


, will also be exchanged.




Thus, when the ink cartridge


63


is exchanged, then the coil L


1


will generate an ID signal (carrier wave) with a modulation frequency fm being automatically designated by the CR oscillation circuit


69




e


in the new ink cartridge


63


. The electronic white board


1


will receive the ID signal, and will be able to recognize line color, thickness, and other attributes of the pen according to the modulation frequency fm of the ID signal.




As described above, according to the present embodiment, the pen


60


is provided with the cylindrical body portion (case portion)


61




a.


The coil L


1


, the ink cartridge


63


, the circuit board


69


, the switch


67


, and the battery


70


are mounted inside the cylindrical body portion


61




a.


The ink cartridge


63


is detachably mounted to the case portion


62




a


so as to be capable of being taken away from the case portion


61




a


in the direction indicated by the arrow F


2


. The circuit board


69


is provided with the oscillation circuit for oscillating the coil L


1


. The switch


67


is of the pressing button type. When the pen


60


is used to write letters or characters on the writing surface


21




a,


the coil L


1


generates an alternating magnetic field, whereby the electronic white board


1


detects the position of the pen


60


. The ink cartridge


63


is provided with the CR oscillation circuit


69




e


that oscillates a modulation frequency fm to indicate the color and thickness of the pen


60


. When the ink cartridge


63


is replaced with a new one, the CR oscillation circuit


69




e


is also changed with a new one, and oscillates a modulation frequency fm that properly corresponds to the color and thickness of a line to be written by the new ink cartridge


63


.




Accordingly, a desired one of a plurality of ink cartridges


63


with different color and thickness can be simply mounted to the single body portion


61




a


in single action. Further, because the CR oscillation circuit


69




e,


which determines modulation frequency fm that enables the electronic white board


1


to determine attributes, such as ink color and thickness, is provided to the ink cartridge


63


itself, the patterns and characters drawn on the writing surface


21




a


will always match the data produced in the electronic white board


1


. Because all the circuit elements other than the CR oscillation circuit


69




e


are used commonly for all the ink cartridges


63


, the costs for producing the pen


60


can be kept low.




Various modifications of the present embodiment will be described below.




Because the modulation frequency fm of the ID signal, which represents line thickness and ink color of the ink cartridge


63


, is determined by the capacitor C


5


and the resistor R


3


of the CR oscillation circuit


69




e,


the modulation frequency fm will change when the capacitor C


5


, the resister R


3


, or any combination of these is changed. Therefore, instead of mounting the entire CR oscillation circuit


69




e


in the ink cartridge


63


, only one of or any combination of the capacitor C


5


and the resistor R


3


may be disposed in the ink cartridge


63


.




For example, only the capacitor C


5


may be disposed in the ink cartridge


63


, but the remaining portion of the CR oscillation circuit


69




e


can be disposed on the circuit board


69


.




Or, only the resister R


3


may be disposed in the ink cartridge


63


, but the remaining portion of the CR oscillation circuit


69




e


can be disposed on the circuit board


69


. In this case, both of the resisters R


2


and R


3


may be disposed in the ink cartridge


63


, but the remaining portion of the CR oscillation circuit


69




e


can be disposed on the circuit board


69


. Or, all of the condenser C


5


and the resisters R


2


and R


3


may be disposed in the ink cartridge


63


, but the remaining portion of the CR oscillation circuit


69




e


can be disposed on the circuit board


69


.




Or, the entire circuit board


69


may be disposed in the ink cartridge


63


, but a remaining portion of the entire circuitry, including the battery


70


, may be disposed in the cylindrical body


61




a.


The battery


70


could also be provided internally in the ink cartridge


63


.




Thus, any desired one of the circuit elements, including the power source (battery)


70


, and the circuit portions, such as the coil L


1


, the CR oscillation circuit


69




e,


the LC oscillation circuit


69




c,


and the FSK circuit


69




d,


may be disposed in the ink cartridge


63


, while a remaining portion of the entire circuitry being disposed in the cylindrical body portion


61




a.






For example, according to a first modification shown in FIGS.


29


(


a


)-


29


(


c


), a pen


160


is provided with an ink cartridge


163


. A capacitor C


105


is mounted in the ink cartridge


163


. A remaining part of a CR oscillation circuit


169




e


is mounted on a circuit board


169


, which is mounted in the cylindrical body portion


161




a.






As shown in FIGS.


29


(


b


) and


29


(


c


), the ink cartridge


163


includes a pair of connection points J


5




a


and J


6




a,


and the circuit board


169


includes connection points J


5




b,


J


6




b.


When the ink cartridge


163


is mounted in the cylindrical body portion


161




a,


the connection point J


5




a


of the ink cartridge


163


is located in non-contacting confrontation with the connection point J


5




b


of the circuit board


169


. The connection point J


6




a


of the ink cartridge


163


is arranged in non-contacting confrontation with the contact point J


6




b


of the circuit board


169


. All of the connection points J


5




a,


J


5




b,


J


6




a,


J


6




b


are formed from thin metal plates. A dielectric body, that is, air and the wall of the ink cartridge


163


(resin), is interposed in the space between the confronting non-contacting connection points. Accordingly, the portion between the thus confronting non-contacting connection points function as capacitors. For this reason, by setting the total capacitance from the connection points J


5




b


to J


6




b,


including the capacitor C


105


, to a desired value, a desired modulation frequency fm can be generated by the non-contact connections.




As described above, according to this modification, the pen


160


has the ink cartridge


163


with the capacitor C


105


for signal modulation. Therefore, there is no danger that the electronic white board


1


will erroneously recognize the attribute of the pen. In particular, because the modulation frequency fm can be set using this limited configuration, running costs in association with exchanging ink can be kept low. In addition to this, because this is achieved with a non-contacting configuration, configuration is simplified, production costs are reduced, and problems resulting from poor contact can be avoided.




A second modification of the pen structure will be described below.




As shown in FIGS.


30


(


a


)-


30


(


d


), a pen


260


is provided with an ink cartridge


263


. A resistor R


203


is mounted in the ink cartridge


263


. A remaining part of a CR oscillation circuit


269




e


is mounted on a circuit board


269


, which is mounted in the cylindrical body portion


261




a.


More specifically, the resister R


203


is disposed in the rear portion of the ink cartridge


263


. A pair of contact points J


7




a,


J


8




a


are provided on the ink cartridge


263


in connection with the resister R


203


. A pair of contact points J


7




b,


J


8




b


are provided on the circuit board


269


so as to be electrically connected with the contact points J


7




a,


J


8




a.






As shown in FIG.


30


(


b


), the contact points J


7




a,


J


8




a


are provided at opposing peripheral edges on the rear surface of the ink cartridge


263


. A groove


263




a


is provided for regulating position of the ink cartridge


263


in the pen


260


, so that the contact points J


7




a,


J


8




a


will properly contact with the contact points J


7




b,


J


8




b.


As shown in FIG.


30


(


o


), the contact points J


7




b,


J


8




b


are provided with coil springs, and abut against the contact points J


7




a,


J


8




a


with resilient force. Therefore, even if the ink cartridge


263


is moved in direction F


1


so that the button switch


267


is pressed, the contact points J


7




a,


J


8




a


will stably contact the contact points J


7




b,


J


8




b.






It should be noted that both the resisters R


203


and R


202


could be provided in the ink cartridge


263


.




As described above, the ink cartridge


263


is provided with the resister R


203


for modulating the signals. Therefore, a modulation frequency fm that properly matches the color of ink and thickness of the pen tip can be generated and transmitted to the electronic white board


1


. In particular, this is accomplished using the relatively simple and inexpensive configuration of the resister R


203


so running costs relating to exchange of ink can be kept low.




Still another modification will be described with reference to FIGS.


31


(


a


)-


31


(


b


).




In the above description, the battery


70


, which is disposed to the rear of the circuit board


69


, is a dry battery. Representative examples of the dry battery are: a button shaped mercury cell, a manganese cell, and alkaline-manganese cell. Instead, a rechargeable battery can be used as the battery


70


. A representative example of the rechargeable battery is a chargeable polymer battery, which employs a conductive macromolecule, added with a plasticizer, as an electrolyte of a lithium ion secondary battery. When such a chargeable battery is employed, then the battery can be formed in a very thin shape.




A pen


360


according to this modification is the same as the pen


60


of the present embodiment (

FIG. 28

) except that a chargeable battery


370


is mounted in the pen


360


. In this case, a battery charge unit


300


is used to charge the chargeable battery. The battery charger


300


is preferably provided to the stand


12


of the electric black board


1


. For example, the battery charge unit


300


may be provided inside each hole


12




a.


The battery charge unit


300


charges the chargeable battery


370


in the pen


360


using the function of a coil L


301


that is disposed in the pen


360


near to its pen tip


362


.




More specifically, as shown in FIG.


31


(


a


), the battery charger


300


includes a stand shaped body


301


and a charging coil L


302


. The body


301


is formed with an insertion portion


302


. The tip of the cylindrical body portion


361




a


of the pen


360


is inserted into and supported in the insertion portion


302


. When the pen


360


is inserted in this manner, the pen tip


362


of the pen


360


is brought into a sealed condition and prevented from drying out. In this state, the charging coil L


302


is disposed in confrontation with the coil L


301


in the pen


360


, so that the charging coil L


302


is capable of magnetically coupling with the coil L


301


.




As shown in FIG.


31


(


b


), the battery charger


300


includes: an alternating current power source


303


, the charging coil L


302


, and a switch SW


1


. The power source


303


is connected to the charging coil L


302


, and the switch SW


1


is used to open and close the circuit between the power source


303


and the recharging coil L


302


.




The pen


360


includes: a pair of switches SW


2


and SW


3


; a diode D


301


, condensers C


301


and C


302


, resisters R


301


and R


302


, a transistor TR


301


, a Zenar diode D


302


, and the chargeable battery


370


. The switches SW


2


and SW


3


operate in an interlocking manner for switching connection of the coil L


301


between the oscillation circuitry


69


(shown in FIG.


28


(


d


)) and the charging circuitry of the battery charger


300


. In order to charge the battery


370


, the pen


360


is mounted in the battery charger


300


, and the switches SW


2


and SW


3


are manually switched into connection with the charging circuitry of the battery charger


300


. Alternatively, this switching operation can be automatically performed when the pen


360


is mounted in the battery charger


300


.




When the pen


360


is mounted in the battery charger


300


and the switches SW


2


and SW


3


are switched into their battery charging states, the charging coil L


302


and the coil L


301


are magnetically coupled with each other so that an alternating current starts to flow at the coil L


301


. The diode D


301


operates to flow the current of a half cycle wave in a single direction, and the condenser C


301


serves as a smoothing circuit for smoothing the current into substantially a direct current. The Zenar diode D


302


generates a reference voltage. The transistor TR


301


stabilizes the current into a fixed amount so that the battery


370


can be charged without being subjected to an excessive current.




Modifications for the coil L


1


an the pen tip


62


will be described below.




The position, the number of windings, and the diameter of the coil L


1


are dependent on the size of the writing panel


10


, and on the sensitivity and resolution enabled by the arrangement of the sense coils


23


. The configuration of the coil L


1


can be changed as needed.




For example, a coil L


401


may be provided in a pen


460


as shown in FIG.


32


(


a


). More specifically, when the diameter of the cylindrical body portion


461




a


of the pen


460


is relatively small compared to the winding diameter of the coil L


401


, the cylindrical body portion


461




a


can be formed to protrude radially at a portion that corresponds to the location where the coil L


401


is mounted.




The pen tip


62


may be modified as shown in FIGS.


32


(


b


)-(


d


). For example, the magnetic flux can be regulated by dispersing ferrite particles into the felt pen tip


62


as shown in FIG.


32


(


b


). Alternatively, a needle shaped iron core can be disposed in the pen tip


62


as shown in FIG.


32


(


c


). Further alternatively, the pen tip


62


can be surrounded by an iron pipe as shown in FIG.


32


(


d


). By using such modifications, the density and the direction of the lines of magnetic force can be adjusted, so the sensitivity, or resolution, of the pen


60


can be adjusted.




While the invention has been described in detail with reference to the specific embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention.




For example, the electrical circuitries disclosed in the above-described embodiments and modifications are merely examples, and could be changed into other circuitries that perform the same function.




It is desirable for the cylindrical body portion


61




a


of the pen


60


to be configured in accordance with the thickness of a line to be drawn using the pen


60


. More specifically, pens


60


that are for drawing thick lines should have a thick body portion


61




a


and pens


60


that are for drawing fine lines should be provided with a thin body portion


61




a.


With this configuration, the user needs merely glance at the case


61




a


to determine the thickness of the line. Therefore, the user will draw with the wrong thickness pen less frequently. Also, it is desirable that the case


61




a


have the same color as the color to be written using the subject pen.




In the first embodiment, the length of the period T of the CR signal is set differently for the respective pen attributes. However, the attribute information can be set by designating the duty ratio of the CR signal. In this case, the CR oscillation circuit


69




e


should be modified as shown in FIG.


33


(


a


). That is, a pair of variable resistors R


2


and R


3


(resistor R) are employed, instead of the pressure sensor


68


in the second embodiment (FIG.


26


(


a


)). According to the present modification, the position of the contact point between the capacitor C


5


and the resistor R, that is, the separating point between the resistors R


2


and R


3


is changed according to the pen attribute. Thus, according to the pen attribute, the lengths of the resistors R


2


and R


3


are changed, while the total length of the resistors R


2


and R


3


are maintained to be fixed.




Accordingly, also in this case, the duty ratio D of the CR signal is determined as follows:








D=R




2


/(


R




2


+


R




3


).






The time length of the single period of the CR signal is determined as follows:








T=


0.69×


C




5


×(


R




2


+


R




3


).






Accordingly, by changing the amounts of the resistances of the variable resistors R


2


and R


3


, while maintaining the amounts of their sum value, according to a different pen attribute, the duty ratio D can be set differently for a different pen attribute. For example, as shown in FIG.


33


(


b


), the CR oscillation circuit


69




e


may oscillate the CR signal with some single duty ratio D(=T


1


/T) for the black thick pen, and may oscillate the CR signal with another single duty ratio D for the red thick pen. It is noted that T=T


1


+T


2


, wherein T


1


is the time length where the CR signal is in the low level and T


2


is the time length where the CR signal is in the high level.




In this case, the FSK demodulation circuit


55


in the first embodiment is preferably modified into the FSK demodulation circuit


55


′ (

FIG. 22

) as in the second embodiment. By executing the operation shown in

FIG. 25

of the second embodiment, the FSK demodulation circuit


55


′ outputs a demodulated counted value, indicative of the time length T


1


where the CR signal is maintained in the low level, and another demodulated counted value, indicative of the time length T


2


where the CR signal is maintained in the high level. Based on the received information, the CPU


56


can calculate the time length of the single period T, that is, the sum of the time lengths T


1


and T


2


, and then calculate the duty ratio D=(T


1


/T) of the CR signal, and detect the pen attribute accordingly.




By additionally setting a different duty ratio of the CR signal for each user of the pen


60


and storing, in an EEPROM for example, each user name in correspondence with its duty ratio, written data can be printed out or displayed with the user's name.




It should be noted that phase modulation can be used in place of the frequency modulation. Thus, according to the present invention, any angle modulation for modulating an angle or phase state, such as the phase or the frequency, of the alternating magnetic field (carrier wave), can be used to designate the pen attributes. Because the carrier wave has its angle state modulated by the CR signal corresponding to the pen attribute, even if the amplitude of the carrier wave is changed, the period or the duty ratio of the CR signal will not change. Therefore, there is no danger that the pen attribute information indicated by the period or the duty ratio of the carrier wave will change.




Thus, according to the first embodiment and this modification, the pen or coordinate input device


60


is provided to include the coil L


1


for generating an alternating magnetic field with a fixed frequency, and to modulate the alternating magnetic field in angle modulation with a single period or a single duty ratio that is set corresponding to attribute information of the pen


60


. The pen or coordinate input device


60


transmits the angle-modulated signal, whose period or duty ratio is set to the single value that corresponds to the attribute information. When the electronic white board or coordinate reading device


1


receives the transmitted signal, the sense coils


23


are magnetically coupled with the angle-modulated alternating magnetic field, thereby producing signals. Based on the thus produced signals, the electronic white board or coordinate reading device


1


calculates the coordinate of the pen or coordinate input device


60


. The electronic white board or coordinate reading device further demodulates the signals, and detects the period or duty ratio of the signal, thereby determining the attribute information.




Because the carrier signal is angle modulated by the pen


60


before being transmitted, even if the strength of the alternating magnetic field is changed, the attribute information will be accurately transmitted and received because the period or phase, which is the attribute information indicating portion, will not be influenced even when the strength is changed.




By repeatedly transmitting the carrier signal over at least the predetermined duration of time, even if the timing when the alternating magnetic field is generated from the pen does not match the timing where the electronic white board


1


detects the signal generated in the sense coils, the electronic white board


1


can determine the attribute information because it can detect the signal generated in the sense coils within the predetermined time.




The above description is directed to an electronic white board. However, the present invention can be applied to other various information communication systems, such as a security system. In the situation for the security system, several sensors are provided at various locations in a building to monitor windows, entrances, and exits. A transmission device provided with the oscillation circuit


69


shown in FIG.


6


(


b


) or FIG.


33


(


a


) is installed into each sensor. The modulation frequency fm (or period) or the duty ratio of the CR oscillation circuit


69




e


in the transmission device is set to a different value for each sensor. A reception device, having the at least the limiter circuit


54


and the FSK demodulation circuit


55


shown in

FIG. 8

or the FSK demodulation circuit


55


′ shown in

FIG. 22

, is provided in a security office of the building.




When a sensor is turned ON, the transmission device connected to the sensor operates and sends a signal to the reception device. The reception device demodulates the transmitted signal, and determines which sensor has transmitted the signal. Also in this case, because the sensors can be distinguished by providing slightly different frequencies (periods) to the CR oscillation circuit, a great number of sensors can be provided in the security system.




Thus, according to this signal communicating method, the pen or transmitting device


60


sets a single period or a single duty ratio to information desired to be transmitted, and modulates a carrier signal in angle modulation with the set single period or the set single duty ratio. The pen or transmitting device


60


transmits the angle-modulated signal, whose period or duty ratio is set to the single value that corresponds to information desired to be transmitted. The electronic white board or receiving device


1


receives the transmitted signal, and detects the period or duty ratio of the signal, thereby determining the corresponding information.




Because the signal has a single period or a single duty ratio, and because the period or duty ratio is set depending on the information to be transmitted, the receiving side can recognize the information by merely detecting the signal for a single period. Accordingly, the time required to detect the information becomes shorter than the conceivable situation of FIG.


1


(


b


) wherein information is indicated using a plurality of periods from a start bit to a stop bit.




Additionally, according to this method, information can be distinguished by merely changing the period or the duty ratio of the signal slightly. For example, the information can be distinguished if the period or the duty ratio is changed by at least a single signal period of a system clock by the receiving device (electronic white board)


1


. Accordingly, a great variety of different types of information can be transmitted and information can be distinguished in a shorter time.




Further, because the carrier signal is angle modulated by the pen (transmitting side)


60


before being transmitted, even if the amplitude of the carrier signal is changed, the information will be accurately transmitted and received because the period or phase, which is the information indicating portion of the signal, will not be influenced even when the amplitude is changed.




By repeatedly transmitting the signal over at least the predetermined duration of time, the time that the signal can be received by the receiving side can be properly secured. Therefore, if the receiving side starts receiving the signal in the middle of a first period of the signal, so that the information in the signal could not be detected, then even in this situation the information can be detected by merely receiving the second period of the signal.



Claims
  • 1. A coordinate reading system, comprisinga coordinate input device, the coordinate input device including: a coil generating an alternating magnetic field; an angle-modulation portion that modulates the alternating magnetic field in an angle modulation to thereby successively change an angle state of the alternating magnetic field into a plurality of different states in a plurality of successive time durations, while setting a length of at least one time duration to a value corresponding to information of the coordinate input device, the angle state being maintained, during each time duration, as being fixed to a corresponding state and changing from the corresponding state into another state at a timing between the each time duration and its next time duration; and a coordinating reading device, the coordinate reading device including: a main body having a surface defining a coordinate of the coordinate input device; a plurality of wires provided to the main body, each wire generating, upon receipt of the modulated alternating magnetic field, an electric signal whose amplitude corresponds to the position of the coordinate input device and whose angle state corresponds to the angle state of the received alternating magnetic field; a coordinate detection unit that calculates the coordinate of a position of the coordinate input device based on the amplitude of the generated electric signal; and an information detection unit that detects the length of the at least one time duration by detecting timings when the angle state of the electric signal changes, thereby determining the information of the coordinate input device.
  • 2. A coordinate reading system as claimed in claim 1, wherein the angle-modulation portion includes:a modulation frequency setting portion that sets a value of a modulation frequency that corresponds to the information of the coordinate input device; and a modulation portion that changes the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a length of a single modulation period, which is equal to the total length of all the plurality of successive time durations, having a value corresponding to the set modulation frequency value.
  • 3. A coordinate reading system as claimed in claim 1, wherein the angle-modulation portion includes:a duty ratio setting portion that sets a value of a duty ratio that corresponds to the information of the coordinate input device; and a modulation portion that changes the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the plurality of time durations, having the set value.
  • 4. A coordinate reading system as claimed in claim 1,wherein the angle-modulation portion includes a frequency modulation portion that modulates the alternating magnetic field in a frequency deviation modulation to successively modulate the alternating magnetic field into a plurality of different frequencies in the plurality of time durations, with a length of at least one time duration for at least one frequency having the set value.
  • 5. A coordinate reading system as claimed in claim 4, wherein each wire generates the electric signal, whose amplitude corresponds to the coordinate of the position of the coordinate input device and whose frequency corresponds to the frequency of the alternating magnetic field, andwherein the information detection unit includes a timing detecting portion that detects the timing when the generated electric signal changes in its frequency, to thereby detect the length of the at least one time duration.
  • 6. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion includes:a single-value-setting portion that sets a single value indicative of a single kind of information of the coordinate input device; and a modulation portion that modulates the frequency of the alternating magnetic field in the plurality of successive time durations, the length of the at least one time duration having the set single value.
  • 7. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion includes:a modulation frequency setting portion that sets a value of a modulation frequency that corresponds to the single kind of information of the coordinate input device; and a modulation portion that changes the frequency of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a modulation period, which is equal to a total length of all the plurality of successive time durations, having a value corresponding to the set modulation frequency value.
  • 8. A coordinate reading system as claimed in claim 7, wherein the modulation frequency setting portion sets the modulation frequency to a fixed value that corresponds to attribute information predetermined for the coordinate input device, thereby causing the modulation period to have a fixed value indicative of the attribute information of the coordinate input device.
  • 9. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion includes:a duty ratio setting portion that sets a value of a duty ratio that corresponds to the single kind of information of the coordinate input device; and a modulation portion that changes the frequency of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the time durations, having the set value.
  • 10. A coordinate reading system as claimed in claim 9, wherein the duty ratio setting portion sets the duty ratio to a fixed value that corresponds to attribute information predetermined for the coordinate input device, thereby causing the duty ratio to have the fixed value indicative of the attribute information of the coordinate input device.
  • 11. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion includes:a plural-value-setting portion that sets a plurality of values indicative of a plurality of kinds of information of the coordinate input device; and a modulation portion that modulates the frequency of the alternating magnetic field in the plurality of successive time durations, the lengths of the plurality of time durations corresponding to the set plurality of values.
  • 12. A coordinate reading system as claimed in claim 11, wherein the lengths of the plurality of time durations have the set plurality of values, respectively.
  • 13. A coordinate reading system as claimed in claim 11, wherein the coordinate input device further comprises a consecutive detection unit that consecutively detects a characteristic of the coordinate input device,wherein the plural-value-setting portion sets one fixed value that corresponds to attribute information that is predetermined for the coordinate input device and one consecutively-changing value indicative of the consecutively-detected characteristic of the coordinate input device, and wherein the modulation portion modulates the frequency of the alternating magnetic field in the plurality of successive time durations, the length of one time duration for one frequency having the set fixed value indicative of the attribute information of the coordinate input device, the length of another time duration for another frequency having the set consecutively-changing value indicative of the consecutively-detected characteristic of the coordinate input device.
  • 14. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion includes:a fixed-value-setting portion that sets a fixed value indicative of information of a fixed state of the coordinate input device; and a modulation portion that modulates the frequency of the alternating magnetic field in the plurality of successive time durations, the length of at least one time duration for at least one frequency corresponding to the set fixed value.
  • 15. A coordinate reading system as claimed in claim 4, wherein the coordinate input device further comprises a consecutive detection unit that consecutively detects a characteristic of the coordinate input device, andwherein the frequency modulation portion includes: a changeable-value-setting portion that sets a consecutively-changing value indicative of the consecutively-detected characteristic of the coordinate input device; and a modulation portion that modulates the frequency of the alternating magnetic field in the plurality of successive time durations, the length of at least one time duration for at least one frequency corresponding to the consecutively-changing value.
  • 16. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion repeatedly modulates the frequency of the alternating magnetic field for a predetermined length of time.
  • 17. A coordinate reading system as claimed in claim 4,wherein the coordinate input device further includes a carrier wave generating portion that causes the coil to generate the alternating magnetic field with a predetermined frequency, and wherein the frequency modulation portion controls the carrier wave generating portion to cause the coil to generate the alternating magnetic field whose frequency is modulated into the plurality of different frequencies in the plurality of successive time durations.
  • 18. A coordinate reading system as claimed in claim 4, wherein the frequency modulation portion in the coordinate input device includes:a signal production portion that produces a signal that repeatedly changes its amplitude in a modulation frequency, the amount of the modulation frequency indicating the information; and a modulation portion that subjects the alternating magnetic field to the frequency modulation by using the product signal.
  • 19. A coordinate reading system as claimed in claim 18, wherein the modulation portion performs a frequency-shift-keying modulation onto the alternating magnetic field by using the produced signal.
  • 20. A coordinate reading system as claimed in claim 18, wherein the coordinate input device further includes:an ink cartridge that includes a tank storing ink, the desired information indicating color of the ink; and a case portion that detachably houses the ink cartridge, wherein at least a part of the signal production portion is mounted to the ink cartridge.
  • 21. A coordinate reading system as claimed in claim 20, wherein the ink cartridge further includes a pen tip for writing with the ink stored in the tank, the desired information indicating thickness of the pen tip.
  • 22. A coordinate reading system as claimed in claim 20, wherein the signal production portion includes a capacitor that determines the modulation frequency, the capacitor being mounted to the ink cartridge.
  • 23. A coordinate reading system as claimed in claim 20, wherein the signal production portion includes a resistor that determines the modulation frequency, the resistor being mounted to the ink cartridge.
  • 24. A coordinate reading system as claimed in claim 20,wherein the coordinate input device further includes: a power source that supplies electric power; and an LC oscillation circuit that causes the coil to generate the alternating magnetic field with a predetermined frequency; wherein the signal production portion includes a CR oscillation circuit that has a capacitor and a resistor oscillating the signal with the modulation frequency, wherein the modulation portion includes a frequency shift keying circuit that modulates the alternating magnetic field with the signal produced by the CR oscillation circuit, wherein the coordinate input device further includes a switch that supplies the electric power from the power source to the LC oscillation circuit, the CR oscillation circuit, and the frequency shift keying circuit when the ink cartridge is in a writing operation, and wherein at least a part of the CR oscillation circuit is mounted to the ink cartridge.
  • 25. A coordinate reading system as claimed in claim 24, wherein an entire part of the CR oscillation circuit is mounted to the ink cartridge.
  • 26. A coordinate reading system as claimed in claim 1, wherein the angle-modulation portion includes:a setting portion that sets a value indicative of the information of the coordinate input device; and a modulation portion that modulates the angle state of the alternating magnetic field into a plurality of different states in the plurality of successive time durations, while setting the length of the at least one time duration to a value corresponding to the set value.
  • 27. A coordinate reading system as claimed in claim 1, wherein the angle-modulation portion includes:a fixed-value-setting portion that sets a fixed value indicative of information of a fixed state of the coordinate input device; and a modulation portion that modulates the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, the length of the at least one time duration corresponding to the set fixed value.
  • 28. A coordinate reading system as claimed in claim 1, wherein the angle-modulation portion includes:a changeable-value-setting portion that detects a changeable state of the coordinate input device and that sets a changeable value indicative of the detected state of the coordinate input device; and a modulation portion that modulates the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, the length of the at least one time duration corresponding to the set changeable value.
  • 29. A coordinate input reading device, comprising:a coil generating an alternating magnetic field; and an angle-modulation portion that modulates the alternating magnetic field in an angle modulation to thereby successively change an angle state of the alternating magnetic field into a plurality of different states in a plurality of successive time durations, while setting a length of at least one time duration to a value corresponding to information of the coordinate input device, the angle state being maintained, during each time duration, as being fixed to a corresponding state and changing from the corresponding state into another state at a timing between the each time duration and its next time duration.
  • 30. A coordinate input device as claimed in claim 29, wherein the angle-modulation portion includes:a modulation frequency setting portion that sets a value of a modulation frequency that corresponds to the information of the coordinate input device; and a modulation portion that changes the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a length of a single modulation period, which is equal to the total length of all the plurality of successive time durations, having a value corresponding to the set modulation frequency value.
  • 31. A coordinate input device as claimed in claim 29, wherein the angle-modulation portion includes:a duty ratio setting portion that sets a value of a duty ratio that corresponds to the information of the coordinate input device; and a modulation portion that changes the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, a duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the plurality of time durations, having the set value.
  • 32. A coordinate input device as claimed in claim 29, wherein the angle-modulation portion includes a frequency modulation portion that modulates the alternating magnetic field in a frequency deviation modulation to successively modulate the alternating magnetic field into a plurality of different frequencies in the plurality of time durations, with a length of at least one time duration for at least one frequency having the set value.
  • 33. A coordinate input device as claimed in claim 29, wherein the angle-modulation portion includes:a setting portion that sets a value indicative of the information of the coordinate input device; and a modulation portion that modulates the angle state of the alternating magnetic field into the plurality of different states in the plurality of successive time durations, while setting the length of the at least one time duration to a value corresponding to the set value.
  • 34. A coordinate reading device reading a coordinate of a position of a coordinate input device, the coordinate reading device comprising:a main body having a surface defining a coordinate of the coordinate input device, a plurality of wires provided on the main body, each wire generating an electric signal in response to an alternating magnetic field from a coordinate input device, the alternating magnetic field having an angle state successively modulated into a plurality of different states in a plurality of successive time durations, the angle state being maintained, during each time duration, as being fixed to a corresponding state and changing from the corresponding state into another state at a timing between the each time duration and its next time duration, a length of at least one time duration corresponding to information of the coordinate input device, an amplitude of the electric signal corresponding to the position of the coordinate input device and an angle state of the electric signal corresponding to the angle state of the alternating magnetic field; a coordinate detection unit that calculates the coordinate of a position of the coordinate input device based on the amplitude of the generated electric signal; and an information detection unit that detects the length of the at least one time duration by detecting timings when the angle state of the electric signal changes, thereby determining the information of the coordinate input device.
  • 35. A coordinate reading device as claimed in claim 34, wherein the alternating magnetic field has a length of a single modulation period, which is equal to the total length of all the plurality of time durations, corresponding to the information, and wherein the information detection unit detects the length of the single modulation period of the generated electric signal, thereby determining the information.
  • 36. A coordinate reading device as claimed in claim 34, wherein the alternating magnetic field has an amount of a duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the plurality of time durations, corresponding to the information, and wherein the information detection unit detects the duty ratio of the generated electric signal, thereby determining the information.
  • 37. A coordinate reading device as claimed in claim 34, wherein the alternating magnetic field is modulated in its frequency to be successively modulated into a plurality of different frequencies in a corresponding plurality of time durations, and wherein the information detection unit includes a timing detecting portion that detects the timing when the generated electric signal changes in its frequency, to thereby detect the length of the at least one time duration.
  • 38. An information communicating method, comprising:generating a carrier wave; modulating the carrier wave in an angle modulation to thereby successively change an angle state of the carrier wave into a plurality of different states in a plurality of successive time durations, while setting a length of at least one time duration to a value corresponding to information, the angle state being maintained, during each time duration, as being fixed to a corresponding state and changing from the corresponding state into another state at a timing between the each time duration and its next time duration, and transmitting the carrier wave; receiving the modulated carrier wave by producing an electric signal whose angle state corresponds to that of the carrier wave; and detecting timings when the angle state of the electric signal changes to detect the length of the at least one time duration, thereby determining the desired information.
  • 39. An information communicating method as claimed in claim 38, wherein modulating the carrier wave further comprises modulating the carrier wave into a modulated state in which a length of a single modulation period, which is equal to the total length of all the plurality of time durations, corresponds to the information, and the detecting timings further comprises detecting the length of the single modulation period of the electric signal, thereby determining the information.
  • 40. An information communicating method as claimed in claim 38, wherein modulating the carrier wave further comprises modulating the carrier wave into a modulated state in which a duty ratio, which is equal to a ratio of a length of one time duration relative to the total length of all the plurality of time durations, corresponds to the information, and the detecting timings further comprises detecting the duty ratio of the electric signal, thereby determining the information.
  • 41. An information communicating method as claimed in claim 38, wherein the angle-modulation modulates the alternating magnetic field in a frequency modulation to successively modulate the alternating magnetic field into a plurality of different frequencies in the plurality of time durations, and the detecting timings further comprises detecting the timings when the frequency of the electrical signal changes to determine the length of the at least one time duration, thereby determining the information.
Priority Claims (3)
Number Date Country Kind
P11-226693 Aug 1999 JP
P11-231151 Aug 1999 JP
P2000-099354 Mar 2000 JP
US Referenced Citations (3)
Number Name Date Kind
5138118 Russell Aug 1992 A
5239489 Russell Aug 1993 A
5571997 Gray et al. Nov 1996 A
Foreign Referenced Citations (3)
Number Date Country
A-5-233127 Sep 1993 JP
A-5-274079 Oct 1993 JP
A-7-160400 Jun 1995 JP