The present invention relates generally to a biodegradable needle assembly for a drug delivery device. More particularly, the present invention relates to a pen needle having components made from a biodegradable polymer material. Still more particularly, the present invention relates to a pen needle having components made of polylactide (PLA), polyvinyl alcohol or starch-filled polypropylene materials, thereby providing a more environmentally friendly drug delivery needle for a drug delivery device.
Insulin and other injectable medications are commonly given with drug delivery pens, whereby a disposable pen needle is attached to facilitate drug container access and allow fluid egress from the container through the needle into the patient.
As technology and competition advance, driving the desire for shorter, thinner, less painful, and more efficacious injections, the design of the pen needle and parts thereof becomes more and more important. Designs need to proactively address ergonomically improving injection technique, injection depth control and accuracy, the ability to be safely used and transported to disposal, and protection against misuse while maintaining the ability to be economically manufactured on a mass production scale. Increasingly, environmental factors relating to the manufacture and disposal of pen needles must also be considered.
Drug delivery devices, such as the exemplary drug delivery pen 100 shown in
The medicament cartridge 12 is typically a glass tube sealed at one end with the septum 16 and sealed at the other end with the stopper 15. The septum 16 is pierceable by a septum penetrating cannula 18 in the hub 20, but does not move with respect to the medicament cartridge 12. The stopper 15 is axially displaceable within the medicament cartridge 12 while maintaining a fluid tight seal.
An exploded perspective view of a pen needle 2 of an exemplary drug delivery pen is shown in
To protect users from injury and the needle cannula 11 from being damaged, the inner shield 59 covers the exposed portion of the needle cannula 11. The open proximal end 210 of the inner shield 59 is placed over the exposed portion of the needle cannula 11. The open proximal end 110 of the cover 69 envelops the inner shield 59, needle cannula 11, and hub. 20.
The distal end 105 of the cover 69 is closed to prevent contamination and damage to the inner components of pen needle 2, and to prevent injury to anyone who may handle it prior to use. The proximal end 410 of the hub 20 is typically covered by a sanitary paper or foil cover (not shown) glued on an end 110 of the cover 69. The drug delivery pen is then ready for shipment to a user. When the user is ready to use the drug delivery pen, the sanitary cover (not shown) is removed from the cover 69, the hub 20 is screwed onto a lower housing 17 of a standard pen 100 (
Existing pen needles include components made of petroleum-based polymers for packaging, including the outer cover, inner shield and parts of the label tab. Petroleum based polymers do not degrade in landfills. Thus, a need exists for an environmentally friendly pen needle.
The rate limiting factor on existing pen needle lines is feeding of the label tab material. Syringe assembly lines often run at twice the rate of the pen needle lines. Thus, a need also exists for a pen needle in which the paper label tab is eliminated, thereby increasing the production speed.
Existing drug delivery pens are disclosed in U.S. Patent Application Publication Nos. 2006/0229562 to Marsh et al. and 2007/0149924 to R. Marsh, the entire contents of both of which are hereby incorporated by reference.
In accordance with an aspect of the present invention, a pen needle or other drug delivery needle has biodegradable components, thereby providing an environmentally friendly needle.
In accordance with another aspect of the present invention, a pen needle includes a cap made of a biodegradable material, thereby increasing the production rate as well as providing an environmentally friendly pen needle.
In accordance with another aspect of the present invention, an outer cover of a pen needle is made with less material.
The foregoing objects are basically attained by providing a drug delivery needle assembly including a hub and a needle fixedly connected to the hub. A cover member removably receives the hub. A sealing member is removably connected to the cover member. At least one of the hub, the cover member and the sealing member is made of a biodegradable material, thereby providing a more environmentally friendly drug delivery needle.
Objects, advantages, and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
The above benefits and other advantages of the various embodiments of the present invention will be more apparent from the following detailed description of exemplary embodiments of the present invention and from the accompanying drawing figures, in which:
Throughout the drawings, like reference numbers will be understood to refer to like parts, components and structures.
The following description and details of exemplary embodiments of the present invention, while generally disclosed in a typical drug delivery pen, as shown in
Components of a pen needle assembly according to exemplary embodiments of the present invention are made of a biodegradable polymer, such as polylactide (PLA), which is made from corn and decomposes in landfills. PLA polymers are substantially stronger than polypropylene, which is currently used to manufacture components of pen needles, thereby providing increased resistance to penetration with a similar thickness. Thus, components made of PLA polymers may be made with a reduced wall thickness while still providing increased resistance to penetration than polypropylene components. The PLA polymer may be used to manufacture any component of a drug delivery pen that is not in a fluid delivery path, such as, but not limited to, pen needle hubs, syringe caps (both plunger and patient ends), sharps disposal containers, lancet bodies and caps, non-fluid path components in safety syringes, non-fluid path components in regular syringes and external packaging. Alternative environmentally-friendly materials for manufacturing components of a pen needle include polyvinyl alcohol, a degradable polymer that dissolves when left in contact with water, and starch-filled polypropylene, which has a reduced petroleum-based polymer content.
In an exemplary embodiment of the present invention shown in
The cap 541 is disposed on a second end 537 of the hub 531 such that the second end 537 of the hub abuts an inner surface 543 of the cap. The cap 541 protects the non-patient end of the needle 521. The side walls 539 of the hub 531 are exposed when the inner shield 511 and cap 541 are disposed on the hub. Sterility of the needle 521 is preserved by the inner shield 511 at a first end 533 of the hub 531 and the cap 541 at the second end 537 of the hub. Therefore, neither an outer cover nor a paper or foil label tab is needed.
The cap 541 may be disposed over the outside of the hub 531 or disposed within the hub, thereby providing a sterile seal between the cap and the hub. The second end 537 of the hub 531 may abut the inner surface 543 of the cap 541 such that a portion of the outer surface of the side wall 539 is disposed adjacent the inner surface 545 of the cap 541. Alternatively, the outer surface 547 of the cap 541 may be disposed within the hub 531.
In the exemplary embodiment of
In another exemplary embodiment of the present invention shown in
The label tab 641 is bonded to a second end 637 of the hub 631. The label tab 641 protects the non-patient end of the needle 621. The side walls 639 of the hub 631 are exposed when the inner shield 611 and label tab 641 are disposed on the hub. Sterility of the needle 621 is preserved by the inner shield 611 at a first end 633 of the hub 631 and the label tab 641 at the second end 637 of the hub. As in the previous embodiment, no outer cover is needed.
In the exemplary embodiment of
In another exemplary embodiment of the present invention shown in
The cap 741 is, preferably disposed over the outside of the outer cover 711. The end 713 of the outer cover 711 abuts an inner portion 742 of the base 743 of the cap 741 within a wall 747 such that at least a portion of the outer surface 716 of the body 715 of the outer cover 711 is disposed adjacent to an inner surface 745 of the wall 747 of the cap 741. Alternatively, the cap may be disposed within the outer cover 711, which would require a longer outer cover (and therefore more polymer to manufacture the cover) to provide clearance with the hub 731 disposed therein. The end 713 of the outer cover shield 711 abuts an outer portion 748 of the base 743 of the cap 741 such that at least a portion of an inner surface of the body 715 of the outer cover 711 is disposed adjacent to an outer surface 749 of the wall 747 of the cap 741.
In the exemplary embodiment of
Existing outer covers typically require 1.17 mL of resin compared to 0.85 mL of resin for outer cover 711 and cap 741 of the exemplary embodiment of
Production rates of the pen needle assemblies may be increased by using caps, as shown in
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the scope of the present invention. The description of an exemplary embodiment of the present invention is intended to be illustrative, and not to limit the scope of the present invention. Various modifications, alternatives and variations will be apparent to those of ordinary skill in the art, and are intended to fall within the scope of the invention as defined in the appended claims and their equivalents.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/150,681, filed Feb. 6, 2009, the entire content of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/00304 | 2/4/2010 | WO | 00 | 10/12/2011 |
Number | Date | Country | |
---|---|---|---|
61150681 | Feb 2009 | US |