This invention relates generally to internal combustion engine spark ignition systems, and more particularly relates to individual ignition coil assemblies mounted directly to an internal combustion engine.
Known internal combustion engines typically comprise cylinder blocks containing individual cylinders that are closed at one end by an engine cylinder head that is attached to the engine block. In a spark-ignition engine, the cylinder head contains threaded spark plug holes, each of which is open to a respective cylinder. A respective spark plug is threaded into the respective hole to close the hole. Each spark plug includes a central electric terminal that is available for electric connection with a mating terminal of an ignition coil assembly or module.
One general category of ignition coils are individual coils inserted in substantially inside the spark plug insertion hole in the cylinder head of an internal combustion engine. These assemblies have been variously called a pencil coil, a stick coil, a plug hole coil and cigar coil. Generally, such ignition coil assemblies comprise both a wound primary coil and a wound secondary coil concentrically aligned with a ferromagnetic core. Some ignition coil assemblies place the primary coil inside the secondary coil, while others place the secondary coil inside the primary coil, both of which are suitable for use with the present invention.
In operation, an electric current flows through the primary coil creating a large magnetic field. At the proper time in the engine operating cycle for firing a particular spark plug, the electric current is abruptly interrupted, and the rapid change in the magnetic field induces a voltage in the secondary coil sufficiently high to create a spark across gapped electrodes of the spark plug.
Most known pencil coils incorporate electrical, mechanical and thermal isolation between the magnetic core and the closest coil. Typically, the coil is formed on an insulative bobbin, however additional isolation is provided. One known method is the application of heat-shrink tubing around the ferromagnetic core. Another method is a direct casting of rubber or other material inside the bobbin and outside the ferromagnetic core. Unfortunately, both of these methods and their structures have drawbacks.
For example, the bobbin containing the coil typically has a round or cylindrical interior wall. However, the ferromagnetic core may be frustoconical shaped or oval-shaped in its cross-section, and that shape is continued after the plastic sleeve has been heat-shrinked to the ferromagnetic core, resulting in a mis-match of shapes. With direct casting of rubber into the space between the bobbin and ferromagnetic core, the process is very messy. Further, the process of pouring a viscous gel into a tightly constricted space is extremely slow, and also requires significant time and heat for curing. Additionally, this process can result in the trapping of air within the assembly, thereby forming poorly insulated points. In both cases, precise control over the exterior shape of the ferromagnetic core and isolation layer is extremely difficult and potentially expensive.
Accordingly, there exists a need to provide an ignition coil assembly having electrical and thermal isolation between the magnetic core and the bobbin in which the exterior shape is precisely controlled as well as permitting unique and various shapes, while providing a faster, cleaner and more efficient method of manufacturing the ignition coil assembly.
The present invention provides a magnetic core assembly for an ignition coil assembly which allows unique exterior shapes to be formed by an outer insulation layer, while speeding up the manufacturing process. Generally, the magnetic core assembly comprises a core of ferromagnetic material and an overmold over the exterior of the core. The overmold generally comprises an insulating layer that is injection molded over the core. A projection may be formed on the core to define a gripping surface for providing a holding force on the core during injection molding. Thus, the projection extends through the overmold.
Accordingly to more detailed aspects, the projection preferably tapers as the projection extends radially away from the core and defines a gripping surface that is axially facing. Preferably, a plurality of projections are circumferentially spaced about an outer surface of the core. The overmold may include a plurality of depressions for providing radial support to the core during injection molding. Preferably, the plurality of depressions are axially located in the middle of the overmold and at a point of low electric potential. When the core includes a permanent magnet aligned with a steel cylinder, a second plurality of depressions provide radial support to the permanent magnet.
Another embodiment of the invention provides an ignition coil assembly generally comprising a bobbin and a core. The bobbin has a coil wound thereon, while the core assembly includes a magnetic core and a core overmold. A projection extends radially from the magnetic core. The bobbin defines an inner surface having an upper portion and a lower portion. The diameter of the upper portion is larger than the diameter of the lower portion, and the upper portion is sized to receive the projection.
According to more detailed aspects, the projection extends through the core overmold and defines a gripping surface for providing a holding force on the magnetic core during injection molding to form the core overmold. A secondary layer is injection molded between the core assembly and the bobbin. The secondary layer substantially covers the projections and is preferably of an insulative material. When the core overmold includes a plurality of depressions for providing radial support to the core assembly, the secondary layer preferably fills in the plurality of depressions.
A method is provided according to the present invention for manufacturing an ignition coil assembly. The method includes the steps of winding wire around a secondary bobbin and inserting the wound secondary bobbin within a primary bobbin. Wire is then wound around the primary bobbin. A core is overmolded with an insulating layer. The overmolded core is inserted within the secondary bobbin. A final step includes overmolding the core, primary bobbin, and secondary bobbin with a second insulating layer.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
Turning now to the figures,
The core overmold 24 generally comprises a layer of insulative material, and preferably a dielectric material. More specifically, the core overmold 24 may comprise an elastomer, the most preferred being a liquid silicone rubber material. Plastics such as thermoplastics may also be utilized as well as other dielectric or insulative materials capable of injection molding.
In accordance with the present invention, the magnetic core 22 is overmolded with the core overmold 24 prior to assembly into the entire ignition coil assembly 10. Accordingly, the magnetic core 22 has been provided with structure to facilitate injection molding to form the overmold 24. More specifically, and as best seen in
As best seen in
To provide radial support to the magnetic core 22, the mold detail includes āVā block type features which support the magnetic core 22. More specifically, these block features leave a first plurality of depressions 40 at about the middle of the core assembly 20 and magnetic core 22. This middle location is selected because this axial point has the lowest electric potential and can best tolerate a reduced thickness in the overmold 24.
When permanent magnet cylinder 28 is employed, a second plurality of depressions 42 are formed with additional āVā block type features in the mold for providing radial support to the magnet 28.
Turning now to
It can also be seen that an upper portion 60 of the secondary bobbin 50 has an inner surface 62. The upper portion 60 and its inner surface 62 has a diameter sized larger than the diameter of the inner surface of the remaining or lower portion of the secondary bobbin 50. In this way, the upper portion 60 of the secondary bobbin 50 is sized to receive the upper portion of the core assembly 20, including radial extending projections 30.
In a final step of the assembly process, the core assembly 20, primary bobbin 54 and secondary bobbin 50 are overmolded with a second insulating layer. Preferably, the liquid silicone rubber material used for overmold 24 is again utilized to form the secondary insulating layer. The secondary insulating layer forms environmental shield 64 and flange 66, as well as other outer housing features. Notably, the second insulating layer also fills the intersties between the core assembly 20 and the inner surface of the secondary bobbin 50. In this way, the chamber defined by the inner surface 62 of the upper portion 60 of the bobbin is filled, substantially covering the projections 30. Likewise, the first and second plurality of depressions 40, 42 are also filled in with the second insulating layer. Finally, the conduits 38 formed in the upper end of the overmold 24 is also filled with the silicone rubber of the second insulating layer.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
5285761 | Hancock et al. | Feb 1994 | A |
5977856 | Maekawa et al. | Nov 1999 | A |
6191674 | Adachi et al. | Feb 2001 | B1 |
6208231 | Oosuka et al. | Mar 2001 | B1 |
6332458 | Shimada et al. | Dec 2001 | B1 |
6343595 | Nakabayashi et al. | Feb 2002 | B1 |
6508239 | Shimada et al. | Jan 2003 | B1 |
20020014940 | Kondo et al. | Feb 2002 | A1 |
20020026929 | Shimada et al. | Mar 2002 | A1 |
20020046746 | Nakabayashi et al. | Apr 2002 | A1 |
20020057170 | Skinner et al. | May 2002 | A1 |
20020067233 | Kondo et al. | Jun 2002 | A1 |
20020175796 | Kawai et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
0 859 383 | Aug 1998 | EP |
2000-91144 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050035839 A1 | Feb 2005 | US |