The present invention relates to a composite material which includes a carbon nanotube, and plural pentacene molecules bonded to the carbon nanotube, and more particularly, to a method of forming a semiconductor device including forming a channel region which includes a carbon nanotube-pentacene composite layer.
Organic semiconductors have been studied extensively for use as channel materials in thin film transistors. In particular, solution processed pentacene thin film transistors (TFT) have been formed using soluble pentacene precursors which after deposition on the surface could be converted to pentacene by moderate heating. For example, see U.S. Pat. No. 6,963,080 to Afzali-Ardakani et al. entitled “THIN FILM TRANSISTORS USING SOLUTION PROCESSED PENTACENE PRECURSOR AS ORGANIC SEMICONDUCTOR”, and U.S. Pat. No. 7,125,989 to Afzali-Ardakani et al. entitled “HETERO DIELS-ALDER ADDUCTS OF PENTACENE AS SOLUBLE PRECURSORS OF PENTACENE”, which are commonly assigned with the present Application and incorporated by reference herein.
However, the charge carrier mobility of these organic thin film transistors (OFET) are limited and usually in the range of 10−2 cm2/V·sec to 10−1 cm2/V·sec.
On the other hand, carbon nanotubes have been demonstrated to have charge carrier mobility far superior to that of single crystal silicon but are very difficult to fabricate integrated circuits.
In view of the foregoing and other problems, disadvantages, and drawbacks of the aforementioned compositions, methods and devices, it is a purpose of the exemplary aspects of the present invention to provide, inter alia, a method of forming a semiconductor device including forming a channel region which includes a carbon nanotube-pentacene composite layer.
An exemplary aspect of the present invention is directed to a composite material including a carbon nanotube, and plural pentacene molecules bonded to the carbon nanotube.
Another exemplary aspect of the present invention is directed to a method of forming a carbon nanotube-pentacene composite layer. The method includes depositing on a substrate a dispersion of soluble pentacene precursor and carbon nanotubes, heating the dispersion to remove solvent from the dispersion; and heating the substrate to convert the pentacene precursor to pentacene and form the carbon nanotube-pentacene composite layer.
Another exemplary aspect of the present invention is directed to a field effect transistor which includes source, drain and gate electrodes formed on a substrate, and a channel region formed on the substrate, the channel region including a carbon nanotube-pentacene composite layer.
Still another exemplary aspect of the present invention is directed to a method of forming a field effect transistor. The method includes forming source, drain and gate electrodes on a substrate, and forming a channel region on the substrate, the channel region including a carbon nanotube-pentacene composite layer.
With its unique and novel features, the exemplary aspects of the present invention may provide a method of forming a semiconductor device including forming a channel region including a carbon nanotube-pentacene composite layer.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of the embodiments of the invention with reference to the drawings, in which:
Referring now to the drawings,
As illustrated in
The present invention may combine the superior transfer properties of carbon nanotubes with the ease of processing of organic semiconductors to obtain a semiconductor device (e.g., a field effect transistor) with much higher mobility than that of organic semiconductors by using a dispersion (e.g., a highly stable dispersion) of carbon nanotubes in solution of pentacene precursors in an organic solvent.
The carbon nanotube 110 may include, for example, an electrically semiconductive, single-walled nanotube (SWNT), and the plural pentacene molecules 120 may be bonded to the carbon nanotube 110 by π-π bonding and/or electrostatic bonding.
In particular, the pentacene may be bonded to (e.g., grafted to) the outer surface of the nanotube such that the double bonds of the CNT are essentially unaffected, thereby ensuring that the electrical and mechanical properties of the CNT are unaffected.
The method 200 may also include reacting pentacene with a dienophile to form a pentacene precursor (e.g., a soluble pentacene precursor). It should be noted that although the present invention is described as including pentacene, other polycyclic aromatic compounds may also be used instead of pentacene.
The dienophile may include, for example, a compound that has at least one heteroatom such as N, O or S, connected by a double bond to a second heteroatom or carbon. In particular, the dienophile may include an N-sulfinylamide. For example, the dienophile may include N-sulfinyl acetamide.
The pentacene may be reacted with the dienophile at low to moderate temperatures and in the presence of a catalyst such as a Lewis acid catalyst to form the pentacene precursor. The Lewis acid catalyst may include, for example, titanium tetrachloride, silver tetrafluoroborate and methyl rhenium trioxide. Any residue from the dienophile remaining in the product of the reaction may be removed either by washing with a solvent or by vacuum drying.
The carbon nanotubes (CNTs) of the present invention may be formed by any one of several processes including, for example, arc discharge, laser ablation, high pressure carbon monoxide (HiPCO), and chemical vapor deposition (CVD) (e.g., plasma enhanced CVD).
For example, using CVD, a metal catalyst layer of metal catalyst (e.g., including nickel, cobalt, iron, or a combination thereof), is formed on a substrate (e.g., silicon). The metal nanoparticles may be mixed with a catalyst support (e.g., MgO, Al2O3, etc) to increase the specific surface area for higher yield of the catalytic reaction of the carbon feedstock with the metal particles. The diameters of the nanotubes that are to be grown may be controlled by controlling the size of the metal particles, such as by patterned (or masked) deposition of the metal, annealing, or by plasma etching of a metal layer.
The substrate including the metal catalyst layer may be heated to approximately 700° C. The growth of the CNTs may then be initiated at the site of the metal catalyst by introducing at least two gases into the reactor: a process gas (e.g., ammonia, nitrogen, hydrogen or a mixture of these) and a carbon-containing gas (e.g., acetylene, ethylene, ethanol, methane or a mixture of these).
A plasma may be also be used to enhance the growth process (plasma enhanced chemical vapor deposition), in which case the nanotube growth may follow the direction of the plasma's electric field. By properly adjusting the geometry of the reactor it is possible to synthesize aligned carbon nanotubes.
Generally, the CNTs of the present invention may be electrically and thermally conductive, and have an essentially uniform diameter which is in a range from 1 μm to 3 μm and a length which is in a range from 1 μm to 10 μm. The CNTs may also be single-walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs) (e.g., double-walled nanotubes (DWNTs)). The CNTs may also have a zigzag, an armchair, or a chiral arrangement, so long as the resulting CNT-pentacene composite should exhibit good charge carrier mobility (e.g., in the range of 1 cm2/V·sec to 1000 cm2/V·sec).
The CNTs may also be purified (e.g., by washing in a sodium hypochlorite solution) to remove any contaminants.
The pentacene precursor (e.g., obtained from a Diels-Alder reaction of pentacene with an N-sulfinylamide) and the purified carbon nanotubes may be dissolved in a solvent to form a mixture of soluble pentacene precursors and carbon nanotubes.
The solvent may include, for example, chloroform, tetrachloroethane, tetrahydrofuran (THF), toluene, ethyl acetate, methyl ethyl ketone (MEK), dimethyl formamide, dichlorobenzene, propylene glycol monomethyl ether acetate (PGMEA) or mixtures of any of these.
The mixture of purified carbon nanotubes and pentacene-N-sulfinylacetamide in an organic solvent may then be sonicated and centrifuged to remove un-coordinated nanotube as sediment. The supernatant liquid remaining after sonicating/centrifuging may serve as the stable dispersion of pentacene precursors and carbon nanotubes in the present invention.
The supernatant liquid may then be deposited on a substrate, for example, by spin coating, drop cast, etc. The supernatant liquid may be deposited, for example, on the substrate at a location which is intended for the CNT-pentacene composite.
After the stable dispersion of soluble pentacene precursors and carbon nanotubes has been deposited on a substrate, the substrate including the layer of dispersion may be heated at a low temperature (e.g., in a range from 50° C. to 100° C). to remove the solvent from the layer of dispersion and to form a pentacene precursor coated CNT.
As illustrated in
As illustrated in
The dispersion of pentacene precursors and carbon nanotubes may be deposited (e.g., by spin coating, drop cast, etc.) on the insulation layer 404 (e.g., between the source and drain electrodes 406, 408). The solvent is removed (e.g., by heating at low temperature such as in a range from 50° C. to 100° C). to form the pentacene precursor-coated-CNT 412 on the insulation layer 404 (e.g., between the source and drain electrodes 406, 408), as illustrated in
After removal of the solvent, the substrate is then heated (e.g., in a range from 100° C. to 200° C.) under nitrogen until all the pentacene precursor decoration are converted to pentacene resulting in a CNT-pentacene composite layer 414 formed on the insulation layer 404 and in the channel area (e.g., between the source and drain electrodes 406, 408). That is, the CNT-pentacene composite layer 414 may serve as the channel material in the device 450. The CNT-pentacene composite layer 414 may have a thickness in a range from 10 nm to 200 nm.
In addition to converting the pentacene precursor-coated-CNT 412 to the CNT-pentacene composite layer 414, the heating may also help to bond the CNT-pentacene composite layer to an adjacent feature (e.g., source and drain electrodes, insulating layer, etc.).
It should be noted that although
It should also be noted that although the
As illustrated in
As illustrated in
Further, as illustrated in
It should also be noted that although the present invention is described herein as being used to form a transistor, the invention may be used to form other semiconductor devices which utilize a layer having good charge carrier mobility (e.g., diodes, photovoltaics, etc.).
With its unique and novel features, the exemplary aspects of the present invention may provide a method of forming a semiconductor device including forming a channel region including a carbon nanotube-pentacene composite layer.
While the invention has been described in terms of one or more embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Specifically, one of ordinary skill in the art will understand that the drawings herein are meant to be illustrative, and the design of the inventive assembly is not limited to that disclosed herein but may be modified within the spirit and scope of the present invention.
Further, Applicant's intent is to encompass the equivalents of all claim elements, and no amendment to any claim in the present application should be construed as a disclaimer of any interest in or right to an equivalent of any element or feature of the amended claim.
The present Application is related to U.S. patent application Ser. No. 13/077,216, to Afzali-Ardakani et al., entitled “METHOD OF PLACING A SEMICONDUCTING NANOSTRUCTURE AND SEMICONDUCTOR DEVICE INCLUDING THE SEMICONDUCTING NANOSTRUCTURE” (U.S. Patent Pub. No. 2011-0180777 A1), and U.S. patent application Ser. No. 12/195,524, to Afzali-Ardakani et al., entitled “METHOD OF PLACING A SEMICONDUCTING NANOSTRUCTURE AND SEMICONDUCTOR DEVICE INCLUDING THE SEMICONDUCTING NANOSTRUCTURE” (U.S. Pat. No. 8,138,102), which are commonly assigned with the present Application and are incorporated by reference herein. The present Application is a Divisional Application of U.S. patent application Ser. No. 12/113,064, which was filed on Apr. 30, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 12113064 | Apr 2008 | US |
Child | 13617420 | US |