Peptide derivatization method to increase fragmentation information from MS/MS spectra

Information

  • Patent Application
  • 20080026479
  • Publication Number
    20080026479
  • Date Filed
    July 27, 2006
    18 years ago
  • Date Published
    January 31, 2008
    16 years ago
Abstract
A method of facilitating analysis of a peptide in a mass spectrometer comprising derivatizing the C-terminus of the peptide with an amino acid residue via a reaction with a carbodiimide reagent, yielding a derivative peptide, ionizing the derivative peptide with a double charge, and fragmenting the ionized derivative peptide in a mass spectrometry system, wherein binary fragments of the ionized derivative each include a charge, facilitating sequence analysis of the peptide.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic illustration of an embodiment of the peptide derivatization method of the present invention



FIG. 2A shows an exemplary chemical formula for peptide synthesis via a carbodiimide reagent.



FIG. 2B illustrates potential chemical pathways of the peptide synthesis process via a carbodiimide reagent summarized in the formula of FIG. 2A.



FIG. 3A is a mass spectrum of a methionine-enkephalin molecule derivatized with arginine methyl ester.



FIG. 3B is a fragment spectrum of the doubly-charged ion of methionine-enkephalin molecule derivatized with arginine methyl ester.



FIG. 3C is a mass spectrum of un-derivatized methionine-enkephalin.



FIG. 3D is a fragmentation of a single-charged precursor ion of methionione-enkaphalin.



FIG. 4 showing the various fragmentation ions of an example peptide including three alanine molecules.





DETAILED DESCRIPTION

As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


According to the present invention, a peptide to be analyzed, that is not digestible using trypsin, is modified by coupling an arginine or lysine derivative to the C-terminus of the peptide. During ionization, the peptide modified in this manner becomes doubly-charged since the C-terminus of the modified peptide includes a basic arginine or lysine residue which tends to pick up a protein during ionization. This modification provides favorable fragmentation behavior, enabling the recovery of strong b- and y-ion abundances that appear in fragment spectra. From this informative data, the amino acid sequence of the peptide can be identified.



FIG. 1 is a schematic illustration of an embodiment of the method of the present invention. A peptide 10 having an N-terminus 11, a C-terminus 12 and a number of linked amino acid residues is presented for analysis. For the purposes set forth, the peptide 10 may include no or few arginine or lysine residues, rendering digestion of the peptide with trypsin unfeasible. If the length of peptide 10 is too large to be accommodated by most mass spectrometers, it can be broken into smaller peptides by digestion using other enzymes and/or chemical reagents.


In a first process 100 arginine and/or lysine are derivatized using techniques well known in the art to yield arginine and/or lysine derivatives 17, 18 which include an arginine or lysine residue coupled via the N-terminal to an organic molecule, such as an ester, or additional amino residues. In a second process, the arginine 17 and/or lysine 18 derivative is coupled to the C-terminus 12 of peptide 10 in the presence of one or more reagents 25 using a peptide synthesis technique 200. According to one exemplary embodiment, the peptide synthesis is performed using carbodiimide reagents described with reference to FIG. 2 below. It is noted that other peptide synthesis techniques may also be employed to couple the peptide 10 with the arginine and/or lysine derivative 17, 18. The result of the synthesis 200 is a modified peptide 20 that includes an arginine or lysine residue at its C-terminus 22. In solution or during ionization, both the N-terminus 21 and the arginine/lysine residue at the C-terminus 21 of the modified peptide 20 tend to pick up a proton (+), so that the original peptide 10 which would tend to become singly-charged without modification, is converted to enable double-charging.


As noted, during MS/MS the modified peptide is fragmented. Since the charges on the modified peptide are located at either of the N— and C-terminals, the fragments are composed of ion pairs constituting one ion on the left side of a cleavage and another on the right side of the cleavage. Ions that retain their charge on the N-terminus after fragmentation between the “XXXX” bond of the precursor are denoted as y-ions, and those that retain their charge on the C-terminus after fragmentation between the “XXXX” bond of the precursor are denote as b-ions. The difference in m/z values between consecutive ions within a given series corresponds to the difference in the sequences of the two fragments. Because the consecutive ions within a series represent peptide fragments that differ in exactly one amino acid, and each amino acid residue has a unique normal weight (expect for leucine and isoleucine), the pattern of m/z values of y- and b-ions corresponds to the amino acid sequence of the precursor peptide.


It is noted that while CID is the most commonly used fragmentation mechanism in MS/MS, other fragmentation techniques can be employed in the context of the present invention to fragment the derivatized peptide ions such as electron capture dissociation (ECD) and electron transfer dissociation (ETD). In ECD, positively charged peptides capture low-energy electrons emitted from an electron source. The capture of the electron brings about the formation of radical species that causes the peptide to cleave. It has been found that this technique is particularly applicable to studying post-translational modifications that are often not preserved during the more robust CID process. In ETD, singly-charged anions with low electron affinity transfer an electron to positively charged peptides by ion/ion interaction. This technique is also particularly useful in the study of post-translational modifications, and has the advantage that it may be easier to apply this technique in standard mass analyzers because anions are more easily trapped by RF fields than electrons.



FIG. 2A illustrates, in general form, an exemplary chemical formula through which the process of coupling an arginine or lysine residue to a peptide may be implemented, which makes use of a carbodiimide reagent. In this process an amide bond is created between the C-terminal a first peptide 101 having a residue R1 (which may include one or more amino acids) and the N-terminal of a second peptide 102 having a residue R2, which may be arginine or lysine, creating a modified peptide 110 including both R1 and R2. This process occurs through the intermediary participation of a carbodiimide molecule 105. Carbodiimides that may be used in this context include N,N′-dicyclehexyl-carbodiimide (DCC) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC).



FIG. 2B illustrates an exemplary carbodiimide amide formation mechanism in greater detail. In a first step, the carbodiimide 105 reacts with the C-terminal of the first peptide 101 in an acid base reaction, whereby the peptide donates a proton to the carbodiimide. After the proton exchange, the first peptide and the carbodiimide combine to form an intermediate product, O-acylisourea 114, which is a carboxylic ester. The O-acylisourea 114 will react with the N-terminal of the second peptide 102 to produce the modified peptide 110 sought and urea 118. In side reactions, O-acylisourea 114 can react with the C-terminal of remaining first peptide 101 to produce a carboxylic anhydride 122, which can react further with the N-terminal of the second peptide 102 to yield the desired modified peptide 110. However, the intermediate O-acylisourea 114 can also stabilize through rearrangement into N-acylurea 124. Since this pathway does not lead to the formation of the modified peptide 110, it is preferable to take steps to prevent this side reaction from occurring. It has been found that using a solvent with a low dielectric constant such as dichloromethane or chloroform minimizes this undesired side reaction.


While peptide synthesis through carbodiimide chemistry is thought to be particularly suitable for the peptide derivatization method disclosed herein, it is emphasized that other peptide synthesis methods may also be used in the context of the present invention.


EXAMPLE

A pentapeptide, methionine-enkephalin was used as an exemplary hydrophobic peptide containing no basic or acidic groups except at its C and N terminals. Arginine was derivatized and through addition of a carbodiimide reagent, an arginine methyl ester was formed. The arginine methyl ester was then coupled to the methionine-enkephalin to produce a peptide with six residues (hexapeptide) bearing arginine methyl ester at the C-terminus. FIG. 3A illustrates a mass spectrum of the hexapeptide prior to fragmentation. This mass spectrum shows both doubly charged 301 and singly charge 303 ions. FIG. 3B illustrates a fragment spectrum of the doubly-charged precursor having a complete y-ion series and most of the b-ions (eight out of ten total). This may be contrasted with spectra of the original methionine-enkephalin peptide that was not derivatized with an arginine or lysine residue. FIG. 3C shows that the methionine-enkephaline produces only a singly-charged ion 305 while in the corresponding fragment spectrum, shown in FIG. 3D, few b- and y-ions appear (four of ten), and all are of low abundance.


Having described the present invention with regard to specific embodiments, it is to be understood that the description is not meant to be limiting since further modifications and variations may be apparent or may suggest themselves to those skilled in the art. It is intended that the present invention cover all such modifications and variations as fall within the scope of the appended claims.

Claims
  • 1. A method of facilitating analysis of a peptide having an N-terminus and a C-terminus in a mass spectrometer comprising: derivatizing the C-terminus of the peptide with an amino acid residue via a reaction with a carbodiimide reagent, yielding a derivative peptide;ionizing the derivative peptide with a double charge; andfragmenting the ionized derivative peptide in a mass spectrometry system;wherein binary fragments of the ionized derivative each include a charge, facilitating sequence analysis of the peptide.
  • 2. The method of claim 1, wherein the amino acid residue includes at least one of lysine and arginine.
  • 3. The method of claim 1, wherein the N and C terminals of the derivative peptide are charged by the ionizing.
  • 4. The method of claim 3, wherein the fragmenting of the derivative peptide produces a substantial majority of a y-ion series and a b-ion series.
  • 5. The method of claim 1, wherein the peptide prior to derivatization is hydrophobic.
  • 6. The method of claim 5, wherein the peptide does not include lysine or arginine residues prior to derivatization.
  • 7. The method of claim 6, wherein the peptide comprises a membrane protein.
  • 8. The method of claim 1, wherein the fragmenting step is performed by collision-induced dissociation (CID).
  • 9. The method of claim 1, wherein the fragmenting step is performed by electron-capture dissociation (ETD).
  • 10. The method of claim 1, wherein the fragmenting step is performed by electron-transfer dissociation (ETD).