The present invention relates to methods for the preparation of α-hydroxyacyl compounds, and peptides for the catalyzed formation of α-hydroxyacyl compounds as well as their use in the preparation of α-hydroxyacyl compounds.
One of biotechnology's central goals is the synthesis of multicarbon compounds under mild and sustainable conditions from renewable resources. This requires biocatalysts and methods that enable selective C—C bond formation (carboligation) between two carbon units.
Moreover, optically active compounds are useful for optical resolving agents. For example, optically active compounds can be used for optically resolving agents of medical or agriculture supplies such as 2-amino-1-butanol which is a starting material of the antituberculous drug ethambutol, diltiazem hydrochloride which is a coronary vasodilator and tetramizol which is effective as an anthelmintic. Further, optically active compounds can also be used as starting materials or intermediates for the synthesis of optically pure therapeutic agents.
In the international patent application WO 2016/069929 A1, the formation of α-hydroxyacyl-CoA thioester using α-hydroxyacyl-CoA lyase (HACL1) is disclosed, and is thus not directed to aromatic α-hydroxyacyl-CoA or even less to aromatic α-hydroxy carboxylic acids such as mandelic acid or its derivatives. The conversion and even less the yield of the product is not taught. Furthermore, the enantioselectivity of the reaction and the stereochemical information of the stereocenter of the product are not described.
The US patent application US 2003/0119173 A1 refers to the synthesis of mandelic acid derivatives by enzymatic reduction of α-keto acids. It is not described that the reaction can be performed enantioselective.
In the scientific publication Metabolic Engineering Communications 2018, 1-9, the production of hydroxycarboxylic acids, especially mandelic acid starting from a phenylpyruvate is disclosed. For the production, yeast, especially S. cerevisae, is modified with the help of so-called metabolic engineering.
Albeit enantioselective synthesis of (R)-mandelic acid derivatives is well known in the state of the art, the enzymatic enantioselective synthesis of (S)-mandelic acid derivatives is very limited. In the US patent application US 2010/0036150 the synthesis of (S)-mandelic acid derivatives are described, wherein the reaction starts from acetylated α-hydroxy carboxylic acid ester.
Therefore, there is an interest in further synthesis procedure for the preparation of aromatic α-hydroxy carboxylic acids, salts thereof or their esters in particular enantioselective and especially selective for the (S)-configuration.
It is the objective of the present invention to provide methods and peptides for the preparation of aromatic α-hydroxy carboxylic acids, salts thereof or their esters in particular enantioselective, and especially selective for the (S)-enantiomer.
The objective of the present invention is solved by the teaching of the independent claims. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, the figures, and the examples of the present application.
The objective of the present invention can be solved by a method for the preparation of an α-hydroxyacyl compound of the formula (I′)
wherein R represents
wherein R1, R2, R3, R4, R5, R6, R7, R8, and R9 represent independently of each other —H, —F, —Cl, —Br, —I, -Ph, —OH, —OCH3, —OC2H5, —OC3H7, —OCH(CH3)2, —OC4H9, —OCH(CH3)CH2CH3, —OCH2CH(CH3)2, —OC(CH3)3, —O-cyclo-C3H5, —O-cyclo-C4H7, —O-cyclo-C5H9, —O-cyclo-C6H11, —OPh, —OCH2-Ph, —OCH2CH2-Ph —OCH═CH2, —OCH2—CH═CH2, —OCH2CH2—CH═CH2, —OCF3, —OC2F5, —SCH3, —SC2H5, —SC3H7, —SCH(CH3)2, —SC4H9, —SCH(CH3)CH2CH3, —SCH2CH(CH3)2, —SC(CH3)3, —NO2, —NH2, —NHCH3, —NHC2H5, —NHC3H7, —NH-cyclo-C3H5, —NHCH(CH3)2, —NHC(CH3)3, —N(CH3)2, —N(C2H5)2, —N(C3H7)2, —N(C4H9)2, —N(cyclo-C3H5)2, —N[CH(CH3)2]2, —N[C(CH3)3]2, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—CH3, —C(CH3)2—C2H5, —C6H13, —CH(CH3)—C4H9, —CH2—CH(CH3)—C3H7, —CH2—CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—C2H5, —C(CH3)2—C3H7, —C7H15, —CH(CH3)—C5H11, —CH2—CH(CH3)—C4H9, —CH2—CH2—CH2—CH2—CH(CH3)2, —C8H17, —C9H19, —C10H21, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, —CH2F, —CF2I, —CHF2, —CF3, —CH2I, —CH2Br, —CH2I, —CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH2—CH2I, —CH2—CH2Br, —CH2—CH2I, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COO-cyclo-C4H7, —COO-cyclo-C5H9, —COO-cyclo-C6H11, —COOCH(CH3)2, —COOC(CH3)3, —O—COOCH3, —O—COOC2H5, —O—COOC3H7, —O—COO-cyclo-C3H5, —O—COOCH(CH3)2, —O—COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON [CH(CH3)2]2, —CON[C(CH3)3]2, —NHCOCH3, —NHCOC2H5, —NHCOC3H7, —NHCO-cyclo-C3H5, —NHCO—CH(CH3)2, —NHCO—C(CH3)3, —SOCH3, —SOC2H5, —SOC3H7, —SO-cyclo-C3H5, —SOCH(CH3)2, —SOC(CH3)3, —SO2CH3, —SO2C2H5, —SO2C3H7, —SO2-cyclo-C3H5, —SO2CH(CH3)2, —SO2C(CH3)3, —SO3H, —SO3Na, —SO3K, —SO3CH3, —SO3C2H5, —SO3C3H7, —SO3-cyclo-C3H5, —SO3CH(CH3)2, —SO3C(CH3)3, —SO2NH2, —NHCO—OCH3, —NHCO—OC2H5, —NHCO—OC3H7, —NHCO—O-cyclo-C3H5, —NHCO—OCH(CH3)2, —NHCO—OC(CH3)3, —NH—CO—NH2, —NH—CO—NHCH3, —NH—CO—NHC2H5, —NH—CO—NHC3H7, —NH—CO—NH-cyclo-C3H5, —NH—CO—NH[CH(CH3)2], —NH—CO—NH[C(CH3)3], —NH—CO—N(CH3)2, —NH—CO—N(C2H5)2, —NH—CO—N(C3H7)2, —NH—CO—N(cyclo-C3H5)2, —NH—CO—N[CH(CH3)2]2, —NH—CO—N[C(CH3)3]2, —NH—CS—NH2, —NH—CS—NHCH3, —NH—CS—NHC2H5, —NH—CS—NHC3H7, —NH—CS—N H-cyclo-C3H5, —NH—CS—NH[CH(CH3)2], —NH—CS—NH[C(CH3)3], —NH—CS—N(CH3)2, —NH—CS—N(C2H5)2, —NH—CS—N(C3H7)2, —NH—CS—N(cyclo-C3H5)2, —NH—CS—N[CH(CH3)2]2, —NH—CS—N[C(CH3)3]2, —B(OH)2, —B(OR22),
R11 to R16 represents independently of each other:
—H, —NH2, —OH, —OCH3, —OC2H5, —OC3H7, —OCF3, —CF3, —F, —Cl, —Br, —I, —CH3, —C2H5, —C3H7, —CH(CH3)2, -Ph, or —CN;
R10, R17, R18, R19, R20, and R21 represents independently of each other —H, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, -cyclo-C3H5, -cyclo-C4H7, -cyclo-C5H9, -cyclo-C6H11, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COOCH(CH3)2, —COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, preferably R21 cannot be —H;
R22 represents —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, -cyclo-C3H5,
X represents —OH, —O− or —SCoA,
wherein n is an integer 1, 2, or 3; or a salt thereof,
comprising or consisting of:
An embodiment of the present invention is directed to a method for the preparation of an α-hydroxyacyl compound of the formula (I′)
wherein R represents
wherein R1, R2, R3, R4, R5, R6, R7, R8, and R9 represent independently of each other —H, —F, —Cl, —Br, —I, -Ph, —OH, —OCH3, —OC2H5, —OC3H7, —OCH(CH3)2, —OC4H9, —OCH(CH3)CH2CH3, —OCH2CH(CH3)2, —OC(CH3)3, —O-cyclo-C3H5, —O-cyclo-C4H7, —O-cyclo-C5H9, —O-cyclo-C6H11, —OPh, —OCH2-Ph, —OCH2CH2-Ph —OCH═CH2, —OCH2—CH═CH2, —OCH2CH2—CH═CH2, —OCF3, —OC2F5, —SCH3, —SC2H5, —SC3H7, —SCH(CH3)2, —SC4H9, —SCH(CH3)CH2CH3, —SCH2CH(CH3)2, —SC(CH3)3, —NO2, —NH2, —NHCH3, —NHC2H5, —NHC3H7, —NH-cyclo-C3H5, —NHCH(CH3)2, —NHC(CH3)3, —N(CH3)2, —N(C2H5)2, —N(C3H7)2, —N(C4H9)2, —N(cyclo-C3H5)2, —N[CH(CH3)2]2, —N[C(CH3)3]2, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—CH3, —C(CH3)2—C2H5, —C6H13, —CH(CH3)—C4H9, —CH2—CH(CH3)—C3H7, —CH2—CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—C2H5, —C(CH3)2—C3H7, —C7H15, —CH(CH3)—C5H11, —CH2—CH(CH3)—C4H9, —CH2—CH2—CH2—CH2—CH(CH3)2, —C8H17, —C9H19, —C10H21, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, —CH2F, —CF2I, —CHF2, —CF3, —CH2I, —CH2Br, —CH2I, —CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH2—CH2I, —CH2—CH2Br, —CH2—CH2I, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COO-cyclo-C4H7, —COO-cyclo-C5H9, —COO-cyclo-C6H11, —COOCH(CH3)2, —COOC(CH3)3, —O—COOCH3, —O—COOC2H5, —O—COOC3H7, —O—COO-cyclo-C3H5, —O—COOCH(CH3)2, —O—COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, —NHCOCH3, —NHCOC2H5, —NHCOC3H7, —NHCO-cyclo-C3H5, —NHCO—CH(CH3)2, —NHCO—C(CH3)3, —SOCH3, —SOC2H5, —SOC3H7, —SO-cyclo-C3H5, —SOCH(CH3)2, —SOC(CH3)3, —SO2CH3, —SO2C2H5, —SO2C3H7, —SO2-cyclo-C3H5, —SO2CH(CH3)2, —SO2C(CH3)3, —SO3H, —SO3CH3, —SO3C2H5, —SO3C3H7, —SO3-cyclo-C3H5, —SO3CH(CH3)2, —SO3C(CH3)3, —SO2NH2, —NHCO—OCH3, —NHCO—OC2H5, —NHCO—OC3H7, —NHCO—O-cyclo-C3H5, —NHCO—OCH(CH3)2, —NHCO—OC(CH3)3, —NH—CO—NH2, —NH—CO—NHCH3, —NH—CO—NHC2H5, —NH—CO—NHC3H7, —NH—CO—NH-cyclo-C3H5, —NH—CO—NH[CH(CH3)2], —NH—CO—NH[C(CH3)3], —NH—CO—N(CH3)2, —NH—CO—N(C2H5)2, —NH—CO—N(C3H7)2, —NH—CO—N(cyclo-C3H5)2, —NH—CO—N[CH(CH3)2]2, —NH—CO—N[C(CH3)3]2, —NH—CS—NH2, —NH—CS—NHCH3, —NH—CS—NHC2H5, —NH—CS—NHC3H7, —NH—CS—NH-cyclo-C3H5, —NH—CS—NH[CH(CH3)2], —NH—CS—NH[C(CH3)3], —NH—CS—N(CH3)2, —NH—CS—N(C2H5)2, —NH—CS—N(C3H7)2, —NH—CS—N(cyclo-C3H5)2, —NH—CS—N[CH(CH3)2]2, —NH—CS—N[C(CH3)3]2,
R11 to R16 represents independently of each other:
—H, —NH2, —OH, —OCH3, —OC2H5, —OC3H7, —OCF3, —CF3, —F, —Cl, —Br, —I, —CH3, —C2H5, —C3H7, —CH(CH3)2, -Ph, or —CN;
R10, R17, R18, R19, R20, and R21 represents independently of each other —H, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COOCH(CH3)2, —COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, preferably R21 cannot be —H,
X represents —OH, —O− or —SCoA,
wherein n is an integer 1, 2, or 3; or a salt thereof,
comprising or consisting of:
An example for the carbon-carbon-bond formation is depicted in
The use of oxalyl-CoA decarboxylase from Methylobacterium extorquens or a mutant thereof (3a) were not known in the state of the art. Remarkably, the oxalyl-CoA decarboxylase is normally used for the carbon-carbon-bond cleavage. In particular, the oxalyl-CoA decarboxylase from Methylobacterium extorquens exhibits a high activity towards aromatic aldehydes in comparison to aliphatic aldehydes (example 7, and table 4).
Methylobacterium extorquens is also known as Methylorubrum extorquens.
A further aspect of the present invention is related to the use of peptide OXCMe encoded by a gene from Methylobacterium extorquens or mutant thereof for the carbon-carbon-bond formation in particular for the synthesis of an α-hydroxy carboxylic acid, salts thereof or an α-hydroxyacyl-CoA thioester.
In addition, it could be shown that the α-hydroxyacyl-CoA thioester formed can be hydrolyzed by a hydrolase YciA from E. coli (4) to yield an α-hydroxy carboxylic acid, or its salts. The process can be carried out either in subsequent manner or in one pot.
Surprisingly, the hydrolase YciA from E. coli is selective for aromatic α-hydroxyacyl-CoA thioester, i.e. the hydrolysis of oxalyl-CoA or formyl-CoA is slower than for α-hydroxyacyl-CoA thioester.
A further aspect of the present invention is related to the use of a composition comprising a peptide oxalyl-CoA decarboxylase OXCMe encoded by a gene from Methylobacterium extorquens or a mutant thereof for the preparation of an α-hydroxy carboxylic acid, salt thereof or α-hydroxyacyl-CoA thioester starting from oxalyl-CoA and an aldehyde.
“Aromatic aldehydes”, as used herein, refer to a compound of the formula (I), (I′), (II), (II″), (3), (3′), wherein the substituent R is an aromatic substituent including benzyl, homo-benzyl and bis-homo-benzyl substituents.
“Aliphatic aldehydes”, as used herein, refer to a compound of (I), (I′), (II), (II″), (3), (3′), wherein the substituent R is an aliphatic substituent.
The substituent —SCoA as used herein refers to the coenzyme, and not to the disulfide. The sulphur is depicted in order to emphasize the position where it bonds.
The stereochemistry of formula (I), formula (II) and formula (3) as depicted in the following refers to an enantiomeric excess of the depicted enantiomer.
Thus, the compounds can also be a mixture of enantiomers but with an excess of the depicted enantiomer.
It could be shown that the enantiomer having the (S)-configuration can be prepared in an enantiomeric excess. Thus, the methods according to the invention preferably lead to α-hydroxyacyl compound of the formula (I)
Thus, an embodiment of the invention is related to a method for preparation of the compounds according to a method described herein represented by formula (I)
The methods according to the invention are preferably used to prepare an α-hydroxyacyl compound of the formula (I) with an enantiomeric excess of the (S)-enantiomer.
More preferably the method according to the invention is used to prepare a compound of the formula (I), wherein the compound can be mixture of the enantiomers, and wherein the (S)-enantiomer is present in an enantiomeric excess. Preferably, the enantiomeric excess (ee) is at least 5%, preferably 10%, more preferably 15%, more preferably 20%, more preferably 25%, more preferably 30%, more preferably 35%, more preferably 40%, more preferably 45%, more preferably 50%, more preferably 55%, more preferably 60%, more preferably 65%, more preferably 65%, more preferably 70%, more preferably 75%, more preferably 80%, more preferably 85%, more preferably 90%, more preferably 91%, more preferably 92%, more preferably 93%, more preferably 94%, more preferably % 95%, more preferably 96%, more preferably 97%, more preferably 98%, and most preferably 99%.
Moreover, the methods according to the invention preferably lead to α-hydroxyacyl compound of the formula (3)
The methods according to the invention are preferably used to prepare an α-hydroxyacyl compound of the formula (I) with an enantiomeric excess of the (S)-enantiomer.
More preferably the method according to the invention is used to prepare a compound of the formula (3), wherein the compound can be mixture of the enantiomers, and wherein the (S)-enantiomer is present in an enantiomeric excess. Preferably, the enantiomeric excess (ee) is at least 5%, preferably 10%, more preferably 15%, more preferably 20%, more preferably 25%, more preferably 30%, more preferably 35%, more preferably 40%, more preferably 45%, more preferably 50%, more preferably 55%, more preferably 60%, more preferably 65%, more preferably 65%, more preferably 70%, more preferably 75%, more preferably 80%, more preferably 85%, more preferably 90%, more preferably 91%, more preferably 92%, more preferably 93%, more preferably 94%, more preferably % 95%, more preferably 96%, more preferably 97%, more preferably 98%, and most preferably 99%.
Moreover, the methods according to the invention preferably lead to α-hydroxyacyl compound of the formula (II)
The methods according to the invention are preferably used to prepare an α-hydroxyacyl compound of the formula (II) with an enantiomeric excess of the (S)-enantiomer
More preferably the method according to the invention is used to prepare a compound of the formula (II), wherein the compound can be mixture of the enantiomers, and wherein the (S)-enantiomer is present in an enantiomeric excess. Preferably, the enantiomeric excess (ee) is at least 5%, preferably 10%, more preferably 15%, more preferably 20%, more preferably 25%, more preferably 30%, more preferably 35%, more preferably 40%, more preferably 45%, more preferably 50%, more preferably 55%, more preferably 60%, more preferably 65%, more preferably 65%, more preferably 70%, more preferably 75%, more preferably 80%, more preferably 85%, more preferably 90%, more preferably 91%, more preferably 92%, more preferably 93%, more preferably 94%, more preferably % 95%, more preferably 96%, more preferably 97%, more preferably 98%, and most preferably 99%.
Therefore, an embodiment according to the invention is related to a method for the preparation of an α-hydroxyacyl compound of the formula (I)
comprising:
The peptide in a method according to the invention is preferably used in its isolated form, i.e. the peptide is isolated from the microbe or it is not contained in a microbe.
Herein, the first time the enantioselective carbon-carbon-formation of an α-hydroxyacyl compound according to formula (I), formula (II) or formula (3) by means of an oxalyl-CoA decarboxylase could be shown. In particular, the conditions are suitable for the synthesis of the (S)-enantiomer (example 14, table 5).
It could be shown that the synthesis of α-hydroxyacyl-CoA thioester is faster when oxalyl-CoA thioester is provided as a C1-unit source (see
Thus, an embodiment of the invention is related to a method for the preparation of the compounds according to a method described herein represented by formula (I′)
and wherein in step A) an acyl-CoA (2) is provided
wherein Y represents —COO−.
A further embodiment of the invention is related to a method for the preparation of the compounds according to a method described herein represented by formula (I)
and wherein in step A) an acyl-CoA (2) is provided
wherein Y represents —COO−.
The oxally-CoA according to formula (2)
wherein Y represents —COO− is also represented by formula (2′)
The α-hydroxyacyl-CoA thioester according to formula (I′)
wherein X represents —S—CoA is also represented by formula (3′)
A compound according to formula (I′)
wherein X represents —OH or O− is also represented by formula (II′)
The (S)-α-hydroxyacyl-CoA thioester according to formula (I)
wherein X represents —S—CoA is also represented by formula (3)
A compound according to formula (I)
wherein X represents —OH or O− is also represented by formula (II)
Thus, an embodiment of the invention is directed to a method for preparation of a compound of the formula (I′)
comprising:
Further, an embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein X represents —S—CoA, and the oxalyl-CoA decarboxylase (3a) is a peptide encoded by a gene selected from Methylobacterium extorquens or a mutant thereof; and optionally comprising the additional step C)
The method according to the invention is preferably used to synthesis a compound of the formula (II′)
and preferably a compound according to formula (II)
Thus, a preferred embodiment of the present invention is related to a method for preparation of a compound of the formula (II′)
comprising:
A more preferred embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
wherein R1, R2, R3, R4, R5, R6, R7, R8, and R9 represent independently of each other —H, —F, —Cl, —Br, —I, -Ph, —OH, —OCH3, —OC2H5, —OC3H7, —OCH(CH3)2, —OC4H9, —OCH(CH3)CH2CH3, —OCH2CH(CH3)2, —OC(CH3)3, —O-cyclo-C3H5, —O-cyclo-C4H7, —O-cyclo-C5H9, —O-cyclo-C6H11, —OPh, —OCH2-Ph, —OCH2CH2-Ph —OCH═CH2, —OCH2—CH═CH2, —OCH2CH2—CH═CH2, —OCF3, —OC2F5, —SCH3, —SC2H5, —SC3H7, —SCH(CH3)2, —SC4H9, —SCH(CH3)CH2CH3, —SCH2CH(CH3)2, —SC(CH3)3, —NO2, —NH2, —NHCH3, —NHC2H5, —NHC3H7, —NH-cyclo-C3H5, —NHCH(CH3)2, —NHC(CH3)3, —N(CH3)2, —N(C2H5)2, —N(C3H7)2, —N(C4H9)2, —N(cyclo-C3H5)2, —N[CH(CH3)2]2, —N[C(CH3)3]2, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—CH3, —C(CH3)2—C2H5, —C6H13, —CH(CH3)—C4H9, —CH2—CH(CH3)—C3H7, —CH2—CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—C2H5, —C(CH3)2—C3H7, —C7H15, —CH(CH3)—C5H11, —CH2—CH(CH3)—C4H9, —CH2—CH2—CH2—CH2—CH(CH3)2, —C8H17, —C9H19, —C10H21, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, —CH2F, —CF2I, —CHF2, —CF3, —CH2I, —CH2Br, —CH2I, —CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH2—CH2I, —CH2—CH2Br, —CH2—CH2I, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COO-cyclo-C4H7, —COO-cyclo-C5H9, —COO-cyclo-C6H11, —COOCH(CH3)2, —COOC(CH3)3, —O—COOCH3, —O—COOC2H5, —O—COOC3H7, —O—COO-cyclo-C3H5, —O—COOCH(CH3)2, —O—COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, —NHCOCH3, —NHCOC2H5, —NHCOC3H7, —NHCO-cyclo-C3H5, —NHCO—CH(CH3)2, —NHCO—C(CH3)3, —SOCH3, —SOC2H5, —SOC3H7, —SO-cyclo-C3H5, —SOCH(CH3)2, —SOC(CH3)3, —SO2CH3, —SO2C2H5, —SO2C3H7, —SO2-cyclo-C3H5, —SO2CH(CH3)2, —SO2C(CH3)3, —SO3H, —SO3Na, —SO3K, —SO3CH3, —SO3C2H5, —SO3C3H7, —SO3-cyclo-C3H5, —SO3CH(CH3)2, —SO3C(CH3)3, —SO2NH2, —NHCO—OCH3, —NHCO—OC2H5, —NHCO—OC3H7, —NHCO—O-cyclo-C3H5, —NHCO—OCH(CH3)2, —NHCO—OC(CH3)3, —NH—CO—NH2, —NH—CO—NHCH3, —NH—CO—NHC2H5, —NH—CO—NHC3H7, —NH—CO—NH-cyclo-C3H5, —NH—CO—NH[CH(CH3)2], —NH—CO—NH[C(CH3)3], —NH—CO—N(CH3)2, —NH—CO—N(C2H5)2, —NH—CO—N(C3H7)2, —NH—CO—N(cyclo-C3H5)2, —NH—CO—N[CH(CH3)2]2, —NH—CO—N[C(CH3)3]2, —NH—CS—NH2, —NH—CS—NHCH3, —NH—CS—NHC2H5, —NH—CS—NHC3H7, —NH—CS—NH-cyclo-C3H5, —NH—CS—NH[CH(CH3)2], —NH—CS—NH[C(CH3)3], —NH—CS—N(CH3)2, —NH—CS—N(C2H5)2, —NH—CS—N(C3H7)2, —NH—CS—N(cyclo-C3H5)2, —NH—CS—N[CH(CH3)2]2, —NH—CS—N[C(CH3)3]2, —B(OH)2, —B(OR22),
R11 to R16 represents independently of each other:
—H, —NH2, —OH, —OCH3, —OC2H5, —OC3H7, —OCF3, —CF3, —F, —Cl, —Br, —I, —CH3, —C2H5, —C3H7, —CH(CH3)2, -Ph, or —CN;
R10, R17, R18, R19, R20, and R21 represents independently of each other —H, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, -cyclo-C3H5, -cyclo-C4H7, -cyclo-C5H9, -cyclo-C6H11, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COOCH(CH3)2, —COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, preferably R21 cannot be —H;
R22 represents —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, -cyclo-C3H5,
wherein n is an integer 1, 2, or 3; or a salt thereof, comprising:
A more preferred embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
wherein R1, R2, R3, R4, R5, R6, R7, R8, and R9 represent independently of each other —H, —F, —Cl, —Br, —I, -Ph, —OH, —OCH3, —OC2H5, —OC3H7, —OCH(CH3)2, —OC4H9, —OCH(CH3)CH2CH3, —OCH2CH(CH3)2, —OC(CH3)3, —O-cyclo-C3H5, —O-cyclo-C4H7, —O-cyclo-C5H9, —O-cyclo-C6H11, —OPh, —OCH2-Ph, —OCH2CH2-Ph —OCH═CH2, —OCH2—CH═CH2, —OCH2CH2—CH═CH2, —OCF3, —OC2F5, —SCH3, —SC2H5, —SC3H7, —SCH(CH3)2, —SC4H9, —SCH(CH3)CH2CH3, —SCH2CH(CH3)2, —SC(CH3)3, —NO2, —NH2, —NHCH3, —NHC2H5, —NHC3H7, —NH-cyclo-C3H5, —NHCH(CH3)2, —NHC(CH3)3, —N(CH3)2, —N(C2H5)2, —N(C3H7)2, —N(C4H9)2, —N(cyclo-C3H5)2, —N[CH(CH3)2]2, —N[C(CH3)3]2, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—CH3, —C(CH3)2—C2H5, —C6H13, —CH(CH3)—C4H9, —CH2—CH(CH3)—C3H7, —CH2—CH2—CH2—CH(CH3)2, —CH(CH3)—CH(CH3)—C2H5, —C(CH3)2—C3H7, —C7H15, —CH(CH3)—C5H11, —CH2—CH(CH3)—C4H9, —CH2—CH2—CH2—CH2—CH(CH3)2, —C8H17, —C9H19, —C10H21, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, —CH2F, —CF2I, —CHF2, —CF3, —CH2I, —CH2Br, —CH2I, —CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH2—CH2I, —CH2—CH2Br, —CH2—CH2I, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COO-cyclo-C4H7, —COO-cyclo-C5H9, —COO-cyclo-C6H11, —COOCH(CH3)2, —COOC(CH3)3, —O—COOCH3, —O—COOC2H5, —O—COOC3H7, —O—COO-cyclo-C3H5, —O—COOCH(CH3)2, —O—COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, —NHCOCH3, —NHCOC2H5, —NHCOC3H7, —NHCO-cyclo-C3H5, —NHCO—CH(CH3)2, —NHCO—C(CH3)3, —SOCH3, —SOC2H5, —SOC3H7, —SO-cyclo-C3H5, —SOCH(CH3)2, —SOC(CH3)3, —SO2CH3, —SO2C2H5, —SO2C3H7, —SO2-cyclo-C3H5, —SO2CH(CH3)2, —SO2C(CH3)3, —SO3H, —SO3CH3, —SO3C2H5, —SO3C3H7, —SO3-cyclo-C3H5, —SO3CH(CH3)2, —SO3C(CH3)3, —SO2NH2, —NHCO—OCH3, —NHCO—OC2H5, —NHCO—OC3H7, —NHCO—O-cyclo-C3H5, —NHCO—OCH(CH3)2, —NHCO—OC(CH3)3, —NH—CO—NH2, —NH—CO—NHCH3, —NH—CO—NHC2H5, —NH—CO—NHC3H7, —NH—CO—NH-cyclo-C3H5, —NH—CO—NH[CH(CH3)2], —NH—CO—NH[C(CH3)3], —NH—CO—N(CH3)2, —NH—CO—N(C2H5)2, —NH—CO—N(C3H7)2, —NH—CO—N(cyclo-C3H5)2, —NH—CO—N[CH(CH3)2]2, —NH—CO—N[C(CH3)3]2, —NH—CS—NH2, —NH—CS—NHCH3, —NH—CS—NHC2H5, —NH—CS—NHC3H7, —NH—CS—NH-cyclo-C3H5, —NH—CS—NH[CH(CH3)2], —NH—CS—NH[C(CH3)3], —NH—CS—N(CH3)2, —NH—CS—N(C2H5)2, —NH—CS—N(C3H7)2, —NH—CS—N(cyclo-C3H5)2, —NH—CS—N[CH(CH3)2]2, —NH—CS—N[C(CH3)3]2,
R11 to R16 represents independently of each other:
—H, —NH2, —OH, —OCH3, —OC2H5, —OC3H7, —OCF3, —CF3, —F, —Cl, —Br, —I, —CH3, —C2H5, —C3H7, —CH(CH3)2, -Ph, or —CN;
R10, R17, R18, R19, R20, and R21 represents independently of each other —H, —CH3, —C2H5, —C3H7, —CH(CH3)2, —C4H9, —CH2—CH(CH3)2, —CH(CH3)—C2H5, —C(CH3)3, —C5H11, —CH(CH3)—C3H7, —CH2—CH(CH3)—C2H5, —CH(CH3)—CH(CH3)2, —C(CH3)2—C2H5, —CH2—C(CH3)3, —CH(C2H5)2, —C2H4—CH(CH3)2, CH2—CH2F, —CH2—CHF2, —CH2—CF3, —CH═CH2, —CH2—CH═CH2, —C(CH3)═CH2, —CH═CH—CH3, —C2H4—CH═CH2, —C7H15, —C8H17, —CH2—CH═CH—CH3, —CH═CH—C2H5, —CH2—C(CH3)═CH2, —CH(CH3)—CH═CH, —CH═C(CH3)2, —C(CH3)═CH—CH3, —CH═CH—CH═CH2, —C3H6—CH═CH2, —C2H4—CH═CH—CH3, —CH2—CH═CH—C2H5, —CH═CH—C3H7, —CH2—CH═CH—CH═CH2, —CH═CH—CH═CH—CH3, —C≡CH, —C≡C—CH3, —CH2—C≡CH, —C2H4—C≡CH, —CH2—C≡C—CH3, —C≡C—C2H5, —C3H6—C≡CH, —C2H4—C≡C—CH3, —CH2—C≡C—C2H5, —C≡C—C3H7, —CHO, —COCH3, —COC2H5, —COC3H7, —CO-cyclo-C3H5, —COCH(CH3)2, —COC(CH3)3, —COOH, —COOCH3, —COOC2H5, —COOC3H7, —COO-cyclo-C3H5, —COOCH(CH3)2, —COOC(CH3)3, —CONH2, —CONHCH3, —CONHC2H5, —CONHC3H7, —CONH-cyclo-C3H5, —CONH[CH(CH3)2], —CONH[C(CH3)3], —CON(CH3)2, —CON(C2H5)2, —CON(C3H7)2, —CON(cyclo-C3H5)2, —CON[CH(CH3)2]2, —CON[C(CH3)3]2, preferably R21 cannot be —H,
wherein n is an integer 1, 2, or 3; or a salt thereof,
comprising:
Step B) can be performed for at least 0.5 hour, preferably 1 hour, more preferably 2 hours, more preferably 3 hours, more preferably 4 hours, more preferably 5 hours, more preferably 6 hours, more preferably 7 hours, more preferably 8 hours, more preferably 9 hours, more preferably 10 hours, more preferably 11 hours, more preferably 12 hours, more preferably 13 hours, more preferably 14 hours, more preferably 15 hours, more preferably 16 hours, more preferably 17 hours, more preferably 18 hours, more preferably 19 hours, more preferably 20 hours, more preferably 21 hours, more preferably 22 hours, more preferably 23 hours, more preferably 24 hours, more preferably 25 hours, more preferably 26 hours, more preferably 27 hours, and more preferably 28 hours.
Step B) can be performed from 0.5 hour to 48 hours, preferably from 1 hour to 40 hours, more preferably from 2 hours to 35 hours, more preferably from 3 hours to 30 hours, more preferably from 4 hours to 28 hours, more preferably from 5 hours to 26 hours, more preferably from 6 hours to 24 hours, more preferably from 8 hours to 24 hours, more preferably from 10 hours to 24 hours, more preferably form 12 hours to 24 hours, more preferably from 14 hours to 24 hours, more preferably from 16 hours to 24 hours, and most preferably form 18 hours to 24 hours.
In general, after performing step B), i.e. the carbon-carbon-bond forming step, the formed α-hydroxyacyl-CoA thioester can be isolated, and hydrolyzed in a subsequent step C) to obtain the α-hydroxy carboxylic acid, or salts thereof.
In order to increase the efficiency of the method, the steps in particular the steps A), B) and C) of a method according to invention described herein can be carried out as cascade reaction in one-pot system. If in a method according to the invention the steps A), B) and C) is performed as cascade reaction in one-pot system preferably ATP, coenzyme A and/or carboxylate such as oxalate and formate is added last. More preferably oxalate is added last.
For this, an enzyme such as thioesterase capable of hydrolyzing the non-natural metabolite aromatic α-hydroxyacyl-CoA thioester in particular mandelic acid and its derivatives, and it particular capable of selectively hydrolyzing said compound would be necessary since the acyl-CoA (2) as well as the α-hydroxyacyl-CoA thioester encompass a thioester moiety.
Surprisingly, it could be found that YciA from E. coli has shown a relatively high α-hydroxyacyl-CoA in particular mandelyl-CoA thioesterase activity, low activity with formyl-CoA and no activity with oxalyl-CoA (example 11,
A further aspect of the invention is directed to a composition comprising or consisting of a peptide oxalyl-CoA decarboxylase (OXCMe) encoded by a gene from Methylobacterium extorquens or a mutant thereof, wherein in the mutant at least one tyrosine or serine is replaced independently of each other by alanine, phenylalanine, and/or glycine, and a thioesterase YciA encoded by a gene selected from E. coli. Preferably, at least one tyrosine or serine is replaced by alanine. It could be shown that the formation of mandelyl-CoA is higher using said mutant than the wild type OXCMe (example 9, and
Further, an aspect of the present invention is directed to use of YciA for the hydrolysis of non-natural α-hydroxyacyl-CoA thioester in particular mandelyl-CoA or for the synthesis non-natural α-hydroxy carboxylic acids, or salts thereof in particular mandelic acid and its derivatives.
Another aspect of the present invention is related to use of a composition comprising a peptide oxalyl-CoA decarboxylase (OXCMe) encoded by a gene from Methylobacterium extorquens or a mutant thereof, wherein in the mutant at least one tyrosine or serine is replaced by an amino acid selected independently of each other from the group comprising or consisting of alanine, phenylalanine and glycine and a thioesterase YciA encoded by a gene selected from E. coli for the preparation of an α-hydroxy carboxylic acid, or its salt preferably starting from oxalyl-CoA and an aldehyde. Preferably, at least one tyrosine or serine is replaced by alanine.
A preferred embodiment of the invention is directed to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A), B) and C) are carried out as cascade reaction in one-pot system.
In the methods according to invention as described herein, the acyl-CoA (2) can be prepared by the following step A′):
The carboxylate (2a) can be an oxalate or a formate. As a source for the carboxylate the protonated form of the carboxylate can be used if the carboxylate is generated in solution. In case of the oxalate it is possible to use an oxalic acid (H2C2O4) or a hydrogen oxalate (HC2O4−) as a source for the oxalate. For the formate, formic acid could be used as a source for the formate.
Thus, in the methods according to invention as described herein, the acyl-CoA (2) can be prepared by the following step A′):
In the methods according to invention as described herein, the oxalyl-CoA (2′) or the formyl-CoA (2″) can be prepared by the following step A′):
The steady-state kinetic parameters are shown in
Thus, the step A′) is preferably included in the method according to the invention as described herein.
The term “acyl-CoA synthetase” refers to an enzyme capable of catalyzing the formation of acyl-CoA (2) starting from a carboxylate (2a). This includes oxalyl-CoA synthetase, acetyl-CoA synthetase and formyl-CoA synthetase.
The oxalyl-CoA synthetase is preferably encoded by a gene selected from Methylobacterium extorquens preferably having the sequence SEQ ID NO. 5 (
Therefore, another aspect of the invention is related to the use of an oxalyl-CoA synthetase encoded by a gene selected from Methylobacterium extorquens preferably having the sequence SEQ ID NO. 5 (
As a formyl-CoA synthetase, an acyl-CoA-synthetase can be used preferably encoded by a gene selected from Erythrobacter sp. having the sequence SEQ ID NO. 18 (
Thus, another aspect of the invention is directed to a mutant of the acyl-CoA synthetase encoded by a gene selected from Erythrobacter sp. having the sequence SEQ ID NO. 19. A further aspect is related to the use of a mutant of the acyl-CoA synthetase encoded by a gene selected from Erythrobacter sp. having the sequence SEQ ID NO. 19 as an oxalyl-CoA synthetase.
An embodiment according to the invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
A more preferred embodiment of the invention is directed to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A), B) and C) are carried out as cascade reaction in one-pot system.
In general, the compounds generated in step A′) or B) can be isolated, and used in step C). In order to increase the efficiency of the method, the steps A′), A), and B) or A′), A), B), and C) of a method according to the invention can be carried out as cascade reaction in one-pot system. Preferably, A′), A), B), and C) of a method according to the invention can be carried out as cascade reaction in one-pot system.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein steps A′), A), and B), or steps A′), A), and B), and C) are carried out as cascade reaction in one-pot system.
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein steps A′), A), and B), or steps A′), A), and B), and C) are carried out as cascade reaction in one-pot system.
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system.
Since the coenzyme A is cleaved during the hydrolysis of the α-hydroxyacyl-CoA thioester, the free coenzyme A can be used in small amounts (catalytic amounts). Thus, the tree enzymes form a catalytic cycle (
In order to receive a method in which the coenzyme A can be used in small amounts (catalytic amounts) or in other words a catalytic cycle, an enzyme composition has to be provided which is adapted to the various reaction demands such as selectivity, activity or stability of the enzyme, the starting material or the product.
Another aspect of the invention is thus directed to a composition comprising or consisting of a peptide OXCMe encoded by a gene from Methylobacterium extorquens or a mutant thereof, wherein in the mutant at least one tyrosine or serine is replaced by alanine, phenylalanine, and/or glycine, and a thioesterase YciA encoded by a gene selected from E. coli, and an acyl-CoA synthetase in particular oxalyl-CoA synthetase. Preferably, tyrosine or serine is replaced by alanine, and more preferably, the at least one tyrosine or serine is replaced by alanine.
A further aspect of the present invention is related to use of a composition comprising or consisting of a peptide OXCMe encoded by a gene from Methylobacterium extorquens or its mutant, wherein in the mutant at least one tyrosine or serine is replaced by alanine, phenylalanine, and/or glycine, and a thioesterase YciA encoded by a gene selected from E. coli, and an acyl-CoA synthetase in particular oxalyl-CoA synthetase for the preparation of an α-hydroxy carboxylic acid or salts thereof in particular starting from an oxalate, hydrogen oxalate, or oxalic acid and an aldehyde. Preferably, at least one tyrosine or serine is replaced by alanine.
An embodiment according to the invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
comprising:
wherein the steps A′), A), and B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In a method according to the invention wherein the steps A′), A), B), and C) are carried out as cascade reaction in one-pot system a ratio of the carboxylate (2a) and the free coenzyme A (2b) is preferably 10 to 10,000.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein the steps A′), A), and B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of the carboxylate (2a) and the free coenzyme A (2b) is preferably 10 to 10,000.
In a method according to the invention, wherein the steps A′), A), B), and C) are carried out as cascade reaction in one-pot system a ratio of the oxalate (2a′) and the free coenzyme A (2b) is preferably 10 to 10,000.
The reduction of the used amount of the free coenzyme A leads to a substrate economic procedure. Moreover, due to the reduction of the amount of starting material solvent can be reduced, and in total a higher amount of the starting material aldehyde can be transformed in an apparatus of the same size.
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of the oxalate (2a′) and the free coenzyme A (2b) is 10 to 10,000.
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of the oxalate (2a′) and the free coenzyme A (2b) is 10 to 10,000.
In step A) of a method according to the invention, a concentration of R—CHO (1) can be in the range of 5 mM to 50 mM. Preferably the concentration is in the range of 10 mM to 45 mM, more preferably 15 mM to 40 mM, more preferably 20 mM to 35 mM, more preferably 20 mM to 30 mM, more preferably 22.5 mM to 30 mM, and most preferably 25 mM to 30 mM.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 10,000.
In step B) of a method according to invention as described herein, a molar ratio of the thiamine diphosphate (3b) compared to R—CHO (1) can be from 0.001 to 0.01, preferably from 0.002 to 0.008, more preferably from 0.003 to 0.006 with a concentration in the range of 0.05 mM to 0.5 mM, and most preferably 0.1 mM to 0.25 mM.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In step A) of a method according to the invention, the pH-value of the buffer solution is preferably in the range of 6.5 to 7.5, and more preferably in the range of 6.7 to 7.0.
In general, in step A) any buffer can be used to adjust the pH value, notably sodium or potassium phosphate buffer. The buffer solution can contain at least one compound selected from the group comprising or consisting of 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES), 2-(N-morpholino)ethanesulfonic acid (MES), 2-[Bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris), 2-[(2-amino-2-oxoethyl)-(carboxymethyl)amino]acetic acid (ADA), 2-(carbamoylmethylamino)ethanesulfonic acid (ACES), 1,4-Piperazinediethanesulfonic acid (PIPES), 3-Morpholino-2-hydroxypropanesulfonic acid (MOPSO), 2,2′-(Propane-1,3-diyldiimino)bis[2-(hydroxymethyl)propane-1,3-diol] (BTP), N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 3-Morpholinopropane-1-sulfonic acid (MOPS), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), potassium phosphate, sodium phosphate, and imidazole, preferably 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES).
The buffer can be prepared by use of a base such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and/or caesium hydroxide. Preferably, potassium hydroxide is used.
In step A) of a method according to the invention, the buffer solution can comprise at least one compound selected from the group comprising or consisting of 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid, 2-(N-morpholino)ethanesulfonic acid (MES), 2-[Bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris), 2-[(2-amino-2-oxoethyl)-(carboxymethyl)amino]acetic acid (ADA), 2-(carbamoylmethylamino)ethanesulfonic acid (ACES), 1,4-Piperazinediethanesulfonic acid (PIPES), 3-Morpholino-2-hydroxypropanesulfonic acid (MOPSO), 2,2′-(Propane-1,3-diyldiimino)bis[2-(hydroxymethyl)propane-1,3-diol] (BTP), N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 3-Morpholinopropane-1-sulfonic acid (MOPS), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), potassium phosphate, sodium phosphate, and imidazole in the range of 0.25 wt % to 2.5 wt %, preferably 1 wt % to 2 wt %
Preferably, in step A) of a method according to the invention, the buffer solution can comprise at least one compound selected from the group comprising or consisting 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES), 2-(N-morpholino)ethanesulfonic acid (MES), 2-[Bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris), 2-[(2-amino-2-oxoethyl)-(carboxymethyl)amino]acetic acid (ADA), 2-(carbamoylmethylamino)ethanesulfonic acid (ACES), 1,4-Piperazinediethanesulfonic acid (PIPES), 3-Morpholino-2-hydroxypropanesulfonic acid (MOPSO), 2,2′-(Propane-1,3-diyldiimino)bis[2-(hydroxymethyl)propane-1,3-diol] (BTP), N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), 3-Morpholinopropane-1-sulfonic acid (MOPS), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), potassium phosphate, sodium phosphate, and imidazole in the range of 0.25 wt % to 2.5 wt %, preferably 1 wt % to 2 wt %
In step A) of a method according to the invention, the buffer solution can comprise 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES) in the range of 0.25 wt % to 2.5 wt %, preferably 1 wt % to 2 wt % and the pH-value is in the range of 6.5 to 7.5, and preferably 6.7 to 7.0.
In step A) of a method according to the invention, the buffer solution can comprise 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES) in the range of 0.25 wt % to 2.5 wt %, preferably 1 wt % to 2 wt % and the pH-value is in the range of 5.0 to 7.5, preferably in the range of 6.5 to 7.5, and more preferably in range of 6.7 to 7.0.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
A further embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A more preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In step B) of a method according to the invention, a concentration of the oxalyl-CoA decarboxylase can be in the range of 1 to 25 μM (5 μM), preferably 5 to 20 and/or a concentration of the magnesium (II) cation is in the range of 2.5 mM to 20 mM, preferably 5 mM to 10 mM.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In step B), the mutant can be selected from a group comprising or consisting of OXCMe-Y497A having the sequence SEQ ID NO. 2, OXCMe-S568A having the sequence SEQ ID NO. 3 or OXCMe-Y497A-S568A having the sequence SEQ ID NO. 4. Preferably, the used peptide is OXCMe-Y497A having the sequence SEQ ID NO. 2 and/or OXCMe-S568A, and most preferably OXCMe-Y497A having the sequence SEQ ID NO. 2.
An embodiment of the invention is related to a method for the preparation of a-hydroxyacyl compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
It is especially preferred, when the oxalyl-CoA decarboxylase (3a) is selected from a group comprising or consisting of OXCMe, OXCMe-Y497A, OXCMe-S568A or OXCMe-Y497A-S568A.
Decarboxylation of oxalyl-CoA proceeds via formation of the thiamine-α-hydroxyl-CoA adduct (see
In OXCMe variants OXCMe-Y497A and OXCMe-S568A, formyl-CoA formation was decreased 20 to 50-fold (
When the steps A′), A), B) and C) are carried out as cascade reaction in one-pot system, the reaction time could also be reduced significantly along with a higher enantiomeric excess by means of OXCMe-Y497A in comparison to OXCMe.
The variant OXCMe-Y497A-S568A is also suitable for the carbon-carbon-bond formation. The kinetic data are shown example 6, table 3, and
Thus, another aspect of the present invention is directed to a mutant of a peptide OXCMe encoded by a gene from Methylobacterium extorquens having a sequence according to SEQ ID No. 1 (
The present invention is thus also directed to a peptide having a sequence SEQ ID NO. 1 (
A preferred embodiment according to the invention is related to a peptide OXCMe-Y497A having a sequence SEQ ID NO.2, OXCMe-S568A having the sequence SEQ ID NO. 3 or OXCMe-Y497A-S568A having the sequence SEQ ID NO. 4.
Thus, a preferred embodiment according to the invention is directed to a peptide having a sequence SEQ ID NO. 2 (
An embodiment of the present invention is related to a mutant of the peptide oxalyl-CoA decarboxylase OXCMe encoded by a gene from Methylobacterium extorquens, wherein preferably the position 497 and/or 568 of OXCMe having the sequence SEQ ID NO. 1 is replaced independently of each other by amino acid selected from the group comprising or consisting of alanine, phenylalanine, and glycine, preferably alanine.
A preferred embodiment according to the present invention is related to the use of peptide having a sequence SEQ ID NO. 2 (
A preferred embodiment according to the invention is directed to a composition comprising or consisting of a peptide having a sequence SEQ ID NO. 2 (
A preferred embodiment according to the present invention is related to the use of a composition comprising or consisting of a peptide having a sequence SEQ ID NO. 2 (
Another preferred embodiment according to the invention is thus directed to a composition comprising or consisting of a peptide having a sequence SEQ ID NO. 2 (
Another preferred embodiment according to the invention is related to the use of a composition comprising or consisting of a peptide having a sequence SEQ ID NO. 2 (
A further aspect of the present invention is related to a method for preparation of a mutant of oxalyl-CoA decarboxylase from Methylobacterium extorquens (OXCMe), wherein OXCMe have the sequence SEQ ID NO. 1, comprising the following steps:
“Vector”, as used herein, refers to a natural or synthetic single or double stranded plasmid or viral nucleic acid molecule, or any other nucleic acid molecule that can be transfected or transformed into cells and replicate independently of, or within, the host cell genome. A nucleic acid can be inserted into a vector by cutting the vector with restriction enzymes and ligating the pieces together. The nucleic acid molecule can be RNA or DNA. Preferably the nucleic acid molecule is DNA. Preferably, the vector is a plasmid. Preferably, the plasmid is pET-16b.
The host cell can be any cell being suitable for the expression of a mutated oxalyl-CoA decarboxylase from Methylobacterium extorquens. Preferably, the host cell is E. coli.
In step VI) or in a step VI″), further ingredients can be added to the cell culture including induction agent for the protein expression and selection agent.
As an induction agent for protein expression L-(+)-Arabinose or Isopropyl β-D-1-thiogalactopyranoside (IPTG) can be used. Preferably, the induction agent for protein expression is IPTG.
As a selection agent an antibiotic can be used. Preferably, the antibiotic is ampicillin or chloramphenicol.
If a selection agent is used, the method contains a step VII″) after step VII) cultivation of the host cells containing the ligated vector.
“Primer”, as used herein, has a nucleotide sequence complementary to a portion of a targeted nucleic acid molecule, i.e., a priming sequence. The term “complementary” used herein refers to “substantially complementary”, which indicates that a primer is sufficiently complementary to a template or targeted nucleic acid sequence to be selectively hybridized with the template or targeted nucleic acid sequence. Thus, the primer may have at least one mismatch with the template as long as it functions as a primer.
Preferably, the at least one primer is selected from the group comprising or consisting of the following sequences:
Further, in order to accelerate the carbon-carbon formation in step B) or within the cascade reaction in a one-pot system according to a method of invention since the oxalyl-CoA which is partially transformed to formyl-CoA via the protonation of the thiamine adduct during the reaction can be regenerated by means of formyl-CoA:oxalate transferase (
Moreover, in case of a cascade reaction in a one pot system when using oxalyl-CoA the hydrolysis of the formed formyl-CoA by the thioesterase YciA can be prevented, and thus the consumption of ATP being needed for the hydrolysis by the thioesterase YciA (
In case of a cascade reaction in a one pot system when using oxalyl-CoA it is further preferred if the acyl-CoA thioester hydrolase YciA (4) encoded by a gene selected from E. coli and/or α-hydroxyacyl-CoA:oxalate CoA-transferase is used.
A “formyl-CoA:oxalate transferase” (“FRC”) transfers the coenzyme A moiety from the formyl-CoA to the oxalate, and thus forms oxalyl-CoA.
Thus, preferably in step B) according to a method of the present invention a formyl-CoA:oxalate transferase (FRC) is used in addition to the oxalyl-CoA decarboxylase. More preferably, the formyl-CoA:oxalate transferase which can be used in step B) according to a method of the present invention is a formyl-CoA:oxalate transferase encoded by a gene selected from Oxalobacter formigenes or a mutant thereof.
In step C) of a method according to the invention, the cleavage of the coenzyme A moiety can be performed by a hydrolase such as the acyl-CoA thioester hydrolase (thioesterase) YciA (4).
Alternative, in step C) of a method according to the invention the cleavage can be performed by a α-hydroxyacyl-CoA:oxalate CoA-transferase or α-hydroxyacyl-CoA:formate CoA-transferase. In this case, a carboxylic acid or a salt thereof is generated by the transfer of the coenzyme A moiety to an oxalate or formate.
Thus, in step C) the coenzyme A moiety can be cleaved from the α-hydroxyacyl-CoA thioester in particular (S)-α-hydroxyacyl-CoA thioester by transferring of said moiety to an oxalate or a formate through α-hydroxyacyl-CoA:oxalate CoA-transferase and/or α-hydroxyacyl-CoA:formate CoA-transferase, or by hydrolysing the α-hydroxyacyl-CoA thioester by a hydrolase, wherein the hydrolase is acyl-CoA thioester hydrolase YciA (4) encoded by a gene selected from E. coli.
Hydrolysing said α-hydroxyacyl-CoA thioester (3′) by a hydrolase to obtain the compound of the formula (II′) or a salt thereof
wherein the hydrolase is acyl-CoA thioester hydrolase YciA (4) encoded by a gene selected from E. coli in step C) is preferred.
Hydrolysing said (S)-α-hydroxyacyl-CoA thioester (3) by a hydrolase to obtain the compound of the formula (II) or a salt thereof
wherein the hydrolase is acyl-CoA thioester hydrolase YciA (4) encoded by a gene selected from E. coli in step C) is more preferred.
“α-hydroxyacyl-CoA:oxalate CoA-transferase” refers a peptide catalyzing the transfer of the coenzyme A of the mandelyl-CoA thioester or a derivative thereof to the oxalate, and thus forms an oxalyl-CoA thioester and a carboxylic acid or or salts thereof.
“α-hydroxyacyl-CoA:formate CoA-transferase” refers a peptide catalyzing the transfer of the coenzyme A of the mandelyl-CoA thioester or a derivative thereof to the formate, and thus forms a formyl-CoA thioester and a carboxylic acid or salts thereof.
In case the method is carried out as a cascade reaction in one-pot system, the catalytic cycle using oxalate and formate is depicted in
“Mandelyl-CoA:oxalate CoA-transferase” refers a peptide catalyzing the transfer of the coenzyme A of the mandelyl-CoA thioester or a derivative thereof to the oxalate, and thus forms an oxalyl-CoA thioester and the mandelic acid or mandelic acid derivative or salts thereof.
“Mandelyl-CoA:formate CoA-transferase” refers a peptide catalyzing the transfer of the coenzyme A of the mandelyl-CoA thioester or a derivative thereof to the formate, and thus forms a formyl-CoA thioester and the mandelic acid or mandelic acid derivative or salts thereof.
The α-hydroxyacyl-CoA:oxalate CoA-transferase or α-hydroxyacyl-CoA:formate CoA-transferase can be a mutant of formyl-CoA:oxalate CoA-transferase in particular encoded by a gene selected from Oxalobacter formigenes, a cinnamoyl-CoA:phenyllactate transferase or a mutant thereof in particular encoded by a gene selected from Clostridium botulinum, isocaprenoyl-CoA:α-hydroxyisocaproate CoA-transferase or a mutant thereof in particular encoded by a gene selected from Clostridium difficile.
The mandelyl-CoA:oxalate transferase or mandelyl-CoA:formate transferase can be a mutant of formyl-CoA:oxalate CoA-transferase in particular encoded by a gene selected from Oxalobacter formigenes, a cinnamoyl-CoA:phenyllactate transferase or a mutant thereof in particular encoded by a gene selected from Clostridium botulinum, isocaprenoyl-CoA:α-hydroxyisocaproate CoA-transferase or a mutant thereof in particular encoded by a gene selected from Clostridium difficile.
A preferred embodiment of the present invention is thus directed to method for the preparation of an α-hydroxyacyl compound of the formula (I′)
comprising:
Another preferred embodiment of the present invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
wherein the hydrolase is acyl-CoA thioester hydrolase YciA (4) encoded by a gene selected from E. coli.
A further preferred embodiment of the present invention is directed to a method for preparation of a compound of the formula (I′)
comprising:
Further, a preferred embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another preferred embodiment of the present invention is related to a method for preparation of a compound of the formula (II′)
comprising:
and
In step C) of a method according to the invention as described herein, a concentration of the acyl-CoA thioester hydrolase YciA encoded by a gene selected from E. coli (4) can be in the range of 0.25 to 5 μM, preferably 0.5 to 3, and more preferably 1 to 2.5.
An embodiment of the invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In the methods according to the invention, in step A′) a concentration of the carboxylate (2a) can be in the range of 1 to 100 mM, preferably 5 mM to 50 mM, more preferably 10 mM to 25 mM, and/or a concentration of acyl-CoA synthetase (2c) can be in the range of 1 to 25 μM, preferably 2 to 15, more preferably 5 to 10, and/or ATP can be in the range of 1 mM to 50 mM preferably 5 to 25, more preferably 10 to 20.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
wherein the steps A′), A), and B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of the carboxylate (2a) and the free coenzyme A (2b) is preferably 10 to 10,000
In the methods according to the invention, in step A′) a concentration of the oxalate can be in the range of 1 to 100 mM and/or a concentration of oxalyl-CoA synthetase (2c′) can be in the range of 1 to 25 μM (5 μM) and/or ATP can in the range of 1 mM to 50 mM.
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
and
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
In step A′) of the method according to the invention, the carboxylate (2a) have a cationic counterion selected from the group comprising or consisting of NH4+, Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Zn2+, Fe2+, Mn2+, Ni2+, Cu2+, and Co2+. Preferably NH4+, Na+, K+, Mg2+, and Ca2+.
An embodiment of the present invention is directed to a method for preparation of a compound of the formula (I)
comprising:
In step A′) of the method according to the invention, the oxalate (2a′) can be selected from the group comprising or consisting of (NH4)2C2O4, Li2C2O4, Na2C2O4, K2C2O4, Rb2C2O4, Cs2C2O4, MgC2O4, CaC2O4, ZnC2O4, FeC2O4, MnC2O4, NiC2O4, CuC2O4, and CoC2O4.
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
comprising:
In principal each co-solvent can be used when it does not denaturize the enzyme under the used conditions. A skilled person in the art knows how to choose a suitable co-solvent. A co-solvent can be selected from the group comprising or consisting of dimethyl sulfoxide, acetone, acetonitrile (ACN), 2-butanol, tert-butyl alcohol, 1,2-dimethoxy-ethane (DME), dimethyl-formamide (DMF), 1,4-dioxane, ethanol, methanol, 1-propanol, 2-propanol, tetrahydrofuran (THF), and ethylene glycol (EG). Preferably, one of the at least one co-solvent is dimethyl sulfoxide. Preferably, the at least one co-solvent is dimethyl sulfoxide.
Preferably, R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and n represents an integer 1.
An embodiment of the invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
wherein R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and represents an integer 1; or a salt thereof.
comprising:
A preferred embodiment of the invention is related to a method for the preparation of α-hydroxyacyl compound of the formula (I)
wherein R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and represents an integer 1; or a salt thereof.
comprising:
An embodiment of the invention is directed to a method for preparation of a compound of the formula (I)
wherein R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and represents an integer 1; or a salt thereof.
comprising:
Another embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and represents an integer 1; or a salt thereof.
comprising:
A preferred embodiment of the present invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
and
R1, R2, R3, R4, R5, R6 and R7 represents independently of each other —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, and represents an integer 1; or a salt thereof.
comprising:
A preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
and
wherein R−1, R2, R3, R4, R5, R6 and R7 represent independently —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, wherein n represents an integer 1; or a salt thereof.
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
A more preferred embodiment of the invention is related to a method for preparation of a compound of the formula (II)
wherein R represents
and
wherein R1, R2, R3, R4, R5, R6 and R7 represent independently —H, —Cl, —OH, —OCH3, —NO2, —N(CH3)2, —C≡CH, —CHO, —COCH3 or —COOH, wherein n represents an integer 1; or a salt thereof.
comprising:
wherein steps A′), A), B), and C) are carried out as cascade reaction in one-pot system, and wherein a ratio of R—CHO (1) and the free coenzyme A (2b) is 10 to 1000.
The method according to the invention as described herein can further be improved when employing a whole-cell catalysts which provides not only the cascade enzymes but also ATP regeneration and a CoA pool without addition of purified enzymes and cofactors.
Abbreviations
Chemicals
Unless stated otherwise, standard laboratory reagents were obtained from Sigma-Aldrich® (Steinheim, Germany) or Carl Roth GmbH & Co. KG (Karlsruhe, Germany) with the highest purity available. Propionaldehyde, Vanillin, (R)-mandelic acid were (S)-mandelic acid were obtained from Tokyo Chemical Industry (Zwijndrecht, Belgium). 4-chloromandelic acid was obtained from Alfa Aesar (ThermoFisher (Kandel) GmbH; Kandel, Germany).
Method for Detection of α-Hydroxyacyl-CoA Thioester (that is the Method Described in LC-MS Detection of CoA Esters) or α-Hydroxy Carboxylic Acids (that is the Method Described in LC-MS Detection of Mandelic Acid Derivatives)
LC-MS analyses was used to investigate the formation of the product and side products.
LC-MS Analyses
Samples were prepared for LC-MS analysis by quenching an aliquot of a reaction with formic acid (final concentration 4%) and centrifuging for 10 min at 17,000 rcf, to remove precipitated proteins. LC-MS data were analyzed and quantified using MassHunter Qualitative Navigator and Quantitative Analysis software (Agilent, Waldbronn, Germany).
LC-MS Detection of CoA Esters
Samples were diluted 1:10 in H2O. UPLC-high resolution MS of CoA esters was performed as described previously.[5] CoA esters were analyzed using an Agilent 6550 iFunnel Q-TOF LC-MS system equipped with an electrospray ionization source set to positive ionization mode. Compounds were separated on a RP-18 column (50 mm×2.1 mm, particle size 1.7 μm, Kinetex EVO C18, Phenomenex) using a mobile phase system comprised of 50 mM ammonium formate pH 8.1 (A) and methanol (B). Chromatographic separation was carried out using the following gradient condition at a flow rate of 250 μl/min: 0 min 2.5% B; 2.5 min 2.5% B; 8 min 23% B; 10 min 80% B; 11 min 80%; 12 min 2.5% B; 12.5 min 0% B. The column oven was set to 40° C. and autosampler was maintained at 10° C. Standard injection volume was 1 μl. Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying (13 l/min, 225° C.) and sheath gas (12 l/min, 400° C.). The time of flight (kindly confirm) (TOF) was calibrated using an ESI-L Low Concentration Tuning Mix (Agilent) before measurement (residuals less than 2 ppm for five reference ions) and was recalibrated during a run using 922.0908 m/z as reference mass. The scan range for MS and MS/MS data is 100-1000 m/z and 50-1000 m/z respectively. Collision energy used for MS/MS fragmentation was 35 eV.
The MS/MS spectra are depicted in
LC-MS Detection of Mandelic Acid Derivatives
Samples were diluted 1:10 in H2O. UPLC-high resolution MS analyses were performed on an Agilent 6550 iFunnel QTOF LC/MS system equipped with an electrospray ionization source to negative ionization mode. The analytes were isocratically chromatographed on a chiral column (100 mm×2.1 mm, particle size 2.7 μm, Poroshell 120 Chiral-T, Agilent) kept at ambient temperature using a mobile phase system comprised of 30:70 20 mM ammonium formate pH 4/methanol at a flow rate of 250 μl/min for 10 min. Samples were held at 10° C. and injection volume was 1 μl. Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying (13 l/min, 225° C.) and sheath gas (12 l/min, 400° C.). MS data were acquired with a scan range of 100-1100 m/z. For quantification the calculated m/z value of [M-H]− was used to obtain the extracted ion count from the total ion count.
Enzyme Assays with LC-MS Detection
Unless noted otherwise, all LC-MS assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP.
Kinetic Investigations
Spectrophotometric enzyme assays Assays were performed on a Cary-60 UV/Vis spectrophotometer (Agilent) at 30° C. using quartz cuvettes (10 mm path length; Hellma, Müllheim, Germany). For the determination of steady-state kinetic parameters, each concentration was measured in triplicates and the obtained curves were fit using GraphPad Prism 7. Hyperbolic curves were fit to the Michaelis-Menten equation to obtain apparent kcat and KM values.
Formyl-CoA was synthesized as described previously (W. S. Sly, E. R. Stadtman, J. Biol. Chem. 1963, 238, 2632-2638; b) S. Jonsson, S. Ricagno, Y. Lindqvist, N. G. Richards, J. Biol. Chem. 2004, 279, 36003-36012.). After Extraction with diethylether formyl-CoA was purified by preparative HPLC-MS with an acetonitrile gradient in 25 mM ammonium formate pH 4.2. The fractions containing the product were lyophilized and stored at −20° C. Formyl-CoA was dissolved in aq. HCl (pH 4). The concentration was determined by enzymatic depletion with PduP (J. Zarzycki, M. Sutter, N. S. Cortina, T. J. Erb, C. A. Kerfeld, Sci. Rep. 2017, 7, 42757.), following NADH consumption at 340 nm.
Oxalyl-CoA was synthesized enzymatically with OXS. A 5 mL reaction containing 50 mg mM CoA (0.064 mmol, 1 eq.), 52 mg ATP (0.086 mmol, 1.3 eq.), 10 mg disodium oxalate (0.075 mmol, 1.2 eq.) in buffer (100 mM MES-KOH pH 6.8, 15 mM MgCl2) was started by adding OXS to a final concentration of 0.4 mg/mL and incubated at 30° C. for 1 hour. The reaction was quenched with 250 μL formic acid and the enzyme removed by centrifugation (4,000×g, 4° C., 10 min). Oxalyl-CoA was purified by preparative HPLC-MS with an acetonitrile gradient in 25 mM ammonium formate pH 4.2. The fractions containing the product were lyophilized and stored at −20° C. Oxalyl-CoA was dissolved in 10 mM acetate buffer pH 4.5. The concentration was determined spectrophotometrically, using the extinction coefficient for saturated CoA esters (ε260nm=16.4 cm−1 mM−1) or by enzymatic depletion with PanE2, following NADPH consumption at 340 nm.
Mandelyl-CoA and (S)-mandelyl-CoA were synthesized chemically with the carbonyldiimidazole (CDI) CoA-acylation method described previously (D. M. Peter, B. Vögeli, N. S. Cortina, T. J. Erb, Molecules 2016, 21, 517.). 21 mg CDI (0.127 mmol, 4 eq.) was dissolved in 1 mL tetrahydrofuran, mandelic acid or (S)-mandelic acid was added (0.127 mmol, 4 eq.) and the mixture stirred at 22° C. for 15 min. 25 mg CoA (0.032 mmol, 1 eq.) was dissolved in 1 mL 0.5 M NaHCO3 and added to the reaction mixture, followed by stirring at 22° C. for 30 min. THF was removed by applying vacuum (100 mbar) for 5 min. The mixture was then purified by preparative HPLC with a methanol gradient in 25 mM ammonium formate pH 8.0. The fractions containing the product were lyophilized and stored at −20° C. Mandelyl-CoA was dissolved in 10 mM acetate buffer pH 4.5. The concentration was determined spectrophotometrically, using the extinction coefficient for saturated CoA esters (ε260nm=16.4 cm−1 mM−1). The concentration was confirmed by enzymatic depletion with YciA, detecting the liberated CoA with Ellman's reagent (ε412nm=14.15 cm−1 mM−1).
Oligonucleotides were obtained from Eurofins Genomics (Ebersbach, Germany). oxc (MexAM1_META1p0990), oxs (MexAM1_META1p2130), and panE2 (MexAM1_META1p3141) were PCR-amplified from M. extorquens chromosomal DNA using the corresponding primers (Table 1). The purified PCR products were digested with NdeI and BamHI and ligated into pET-16b. Correct cloning was confirmed by sequencing (Eurofins Genomics).
The gene encoding eryACS-1 (GenBank: EAQ27819.1) was obtained by gene synthesis performed by the Joint Genome Institute (Walnut Creek, Calif., USA). The gene was codon optimized for E. coli and sub-cloned into pSEVA141.
Human Hacl1 (GenBank: CAB60200.1) was obtained by gene synthesis (Table 2), performed by BaseClear (Leiden, The Netherlands). The gene was codon optimized for E. coli and sub-cloned into pET-16b.
adk, paal, tesB and yciA were obtained from the ASKA collection ([M. Kitagawa, T. Ara, M. Arifuzzaman, T. Ioka-Nakamichi, E. Inamoto, H. Toyonaga, H. Mori, DNA Res. 2005, 12, 291-299).
Point mutations were introduced into oxc by PCR using mismatch primers (Table 1). A 50 μL reaction contained 60 ng of pET-16b_OXCMe, 0.25 μM forward and reverse primer, 200 μM dNTP, 5 μL 10× reaction buffer, 1 μL Phusion polymerase (2 U/μL). Template plasmid was removed by DpnI digest (10 U) at 37° C. immediately after PCR amplification. Mutations were confirmed by sequencing.
E. coli (SEQ ID
All proteins except HACLHs and FCS were heterologously produced in E. coli BL21 (DE3). 500 mL TB containing 100 μg/mL ampicillin (in the case of OXCMe, OXS, FRC, PduP, PanE2, eryACS-1) or 34 μg/mL chloramphenicol (AdK, Paal, TesB and YciA) was inoculated with freshly-transformed cells and incubated at 37° C. After reaching an OD600 of 0.8, expression was induced by adding IPTG to a final concentration of 0.25 mM and the incubation temperature was lowered to 25° C. FCS was produced in E. coli BL21-AI (ThermoFisher Scientific) in which the peptidyl-lysine N-acetyltransferase gene patZ had been replaced by a kanamycin resistance cassette kanR. 1 L TB containing 100 μg/mL ampicillin and 50 μg/mL kanamycin was inoculated with freshly-transformed cells and incubated at 37° C. After reaching an OD600 of 0.6, L-arabinose was added to a final concentration of 0.2% (w/v) and the incubation temperature was lowered to 25° C. After 30 minutes, expression was induced by IPTG to a final concentration of 0.5 mM. HACLHs was produced in E. coli ArcticExpress (DE3). 1 L LB containing 100 μg/mL ampicillin and 15 μg/mL gentamycin was inoculated with freshly-transformed cells and incubated at 37° C. After reaching an OD600 of 0.8 the culture was cooled on ice for 15 min. Then expression was induced by adding IPTG to a final concentration of 0.1 mM and the incubation temperature was lowered to 15° C. Cells were harvested after 16 h (24 h for HACLHs) by centrifugation (4500×g, 10 min) and resuspended in buffer A (500 mM KCl, 50 mM HEPES-KOH pH 7.6). If not used immediately, cell pellets were flash-frozen in liquid nitrogen and stored at −20° C. The cell lysate obtained by sonication was clarified by centrifugation 75,000×g at 4° C. for 45 min. The supernatant was filtered through a 0.4 μm syringe tip filter (Sarstedt, Nümbrecht, Germany). Ni-affinity purification was performed with an Äkta FPLC system from GE Healthcare (GE Healthcare, Freiburg, Germany). The filtered soluble lysate was loaded onto a 1 mL Ni-Sepharose Fast Flow column (HisTrap FF, GE Healthcare, Little Chalfont, UK) that had been equilibrated with 10 mL buffer A. After washing with 20 mL 85% buffer A, 15% buffer B (500 mM KCl, 50 mM HEPES-KOH pH 7.6, 500 mM imidazole), the protein was eluted with 100% buffer B. Fractions containing purified protein were pooled and the buffer was exchanged to storage buffer (150 mM KCl, 50 mM HEPES-KOH pH 7.6) with a desalting column (HiTrap, GE Healthcare). Proteins were concentrated by ultrafiltration (Amicon Ultra). Concentration was determined on a NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, Mass., USA) using the extinction coefficient at 280 nm, as calculated by protparam (https://web.expasy.org/protparam/). Enzyme purity was confirmed by SDS-PAGE. The purified proteins were stored in 50 vol % glycerol at −20° C. OXCMe wild-type and mutants were flash-frozen in liquid nitrogen and stored at −80° C.
Kinetic Investigations
Oxalyl-CoA production was followed by coupling OXS to purified PanE2, an NADPH-dependent oxalyl-CoA reductase from M. extorquens. An assay containing 50 mM potassium phosphate pH 6.5, 0.3 mM NADPH, 10 mM MgCl2, 1 mM ATP, 2.5 mM CoA, 1.2 μM PanE2, 176 nM OXS was preincubated for 2 min and the reaction started by adding disodium oxalate to a final concentration of 5, 10, 25, 100, 250, 1′000 μM, respectively. Reaction procedure was monitored by following the oxidation of NADPH at 340 nm.
Result: The steady-state kinetic parameters are shown in
Formyl-CoA production was followed by coupling OXC to purified PduP, a promiscuous CoA-dependent aldehyde dehydrogenase that reduces formyl-CoA to formaldehyde under NADH consumption. An assay containing 50 mM MES-KOH pH 6.5, 0.3 mM NADH, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 5 μM PduP, and OXCMe or mutant thereof like OXCMe-Y497A, OXCMe-S568A or OXCMe-Y497A-S568A (concentration depending on the mutant) was preincubated for 2 min and the reaction started by adding oxalyl-CoA (concentrations depending on the mutant). Reaction procedure was monitored by following the oxidation of NADH at 340
The formyl-CoA formed after the decarboxylation of the oxalyl-CoA by ThDP and OXCMe was removed from the reaction mixture in order to investigate the decarboxylation without the influence of the equilibrium.
Results: The results are depicted in the following table 3 and in curve of the kinetic investigations in
[a]Michaelis-Menten graphs are shown in FIG. 13.
In OXCMe variants OXCMe-Y497A having the sequence SEQ ID NO. 2, and OXCMe-S568A having the sequence SEQ ID NO. 3, formyl-CoA formation was decreased 20 to 50-fold, while the KM of both variants was largely unaffected (Table 3 and
The mutation Y497A increased the ratio of carboligation to decarboxylation by a factor of approximately 400 compared to the wild-type
In reaction buffer, 1 mM formyl-CoA and 10 mM aldehyde (formaldehyde, acetaldehyde, glycolaldehyde, propionaldehyde, glyceraldehyde, glyoxylate, succinic semialdehyde, benzaldehyde, phenylacetaldehyde, and acetone) was mixed with 5 μM OXCMe or HACLHs. The reaction was stopped after 1 h and products analyzed with the CoA ester method described above.
Result: Glyceraldehyde, glyoxylate and acetone were not accepted by OXCMe, i.e. a carbon-carbon-bond was not formed. The results are listed in table 4:
[b]Product not detected.
[c]Relative activity in %. Relative activity refers to the comparison of OXC and HACL.
Oxalyl-CoA decarboxylation activity of OXCMe and HACLHs. Assays were carried out at 30° C. in 100 mM MES-KOH pH 6.8 and contained 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.05 μM OXCMe or 1 μM HACLHs or no enzyme. The reaction was started by adding 0.5 mM oxalyl-CoA. Samples were taken after 1, 15, 30, 60 min and analyzed with the LC-MS detection of CoA esters.
Results: The results are depicted in
Assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP and 25 mM benzaldehyde, 1 μM OXCMe or 1 μM OXCMe-Y497A. The reaction was started by adding either 1 mM formyl-CoA or 1 mM oxalyl-CoA. Samples were taken after 0, 2, 5, 10 and 20 minutes and analyzed with the LC-MS detection of CoA esters. CoA esters were quantified by comparison to synthetic standards of formyl-CoA, oxalyl-CoA and mandelyl-CoA, respectively. Concentration of CoA-esters was determined by comparison to a standard curve obtained from chemically synthesized formyl-CoA, oxalyl-CoA and mandelyl-CoA, respectively.
Results: The results are depicted in
Thioesterase activity of YciA towards oxalyl-CoA, formyl-CoA and racemic mandelyl-CoA. Assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP and 25 mM benzaldehyde, 2 μM YciA (A) or no YciA (B). The reaction was started by adding either 0.5 mM formyl-CoA or 0.5 mM oxalyl-CoA or 0.5 mM mandelyl-CoA. Samples were taken after 0, 1, 5 and 30 minutes and analyzed with the LC-MS detection of CoA esters. CoA esters were quantified by comparison to synthetic standards of formyl-CoA, oxalyl-CoA and mandelyl-CoA, respectively.
Results: The results are depicted in
YciA from E. coli has shown a relatively high α-hydroxyacyl-CoA in particular mandelyl-CoA thioesterase activity, low activity with formyl-CoA and no activity with oxalyl-CoA.
Screen for mandelyl-CoA Thioesterase activity. CoA formation was detected with the Ellman's reagent (5,5′-dithiobis-(2-nitrobenzoic acid)), which reacts with free thiols under release of 2-nitro-5-thiobenzoate (ε412nm=14, 150 M−1 cm−1). Assays were carried out at 30° C. in 50 mM MES-KOH pH 6.8 and contained 1 mM Ellman's reagent and 0.5 μM YciA or 0.5 μM TesB or 0.5 μM Paal. The reaction was started by adding 0.1 mM mandelyl-CoA.
Results: The result is depicted in
In a 1.5 mL microfuge tube, reaction buffer containing 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 2 μM YciA, 5 μM OXCMe and 5 μM OXS were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. For the negative controls each enzyme was omitted in a separate reaction. Samples were taken after 0, 3, 15, 40 min, 1, 2, 3 and 22 h and analyzed with the mandelic acid derivatives method described above. For quantification commercial, racemic mandelic acid was diluted in reaction buffer to appropriate concentrations to obtain a calibration curve
Assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 5 μM OXS, 5 μM OXC and 2 μM YciA. The reaction was started by adding 10 mM oxalate. As negative controls, YciA, OXS or OXC were omitted in separate reactions. Samples were taken after 0, 0.05, 0.25, 0.66, 1, 2, 3, 22 hours and analyzed with the LC-MS detection of mandelic acid derivatives.
Mandelic acid was quantified by comparison to commercially obtained standards of mandelic acid.
Results: The results are depicted in
When OXCMe is replaced by the OXCMe-Y497A variant having the sequence SEQ ID NO. 2, mandelic acid production rate increased 5-fold and yield increased 4-fold.
The aldehyde substrate screen of the OXS-OXCMe-Y497A-YciA cascade was carried out as described above (example 13), except that the aromatic aldehydes were prepared as 33 mM stocks in 20 vol % DMSO and diluted to final concentration of 25 mM into the assay. Samples were analyzed with the mandelic acid derivatives method described above. Mandelic acid (3a), 4-chloromandelic acid (3c), 2-chloromandelic acid (3d) and 3-phenyllactic acid (3b) were quantified by comparison to commercial standards.
The results are depicted in the following table 5.
[a]The reaction contained aldehyde (25 mM), disodium oxalate (10 mM), ATP (10 mM), OXS(5 μM), OXCMe-y497A (5 μM), YciA (2 μM).
[b]Determined by chiral HPLC (see Figure S5-7 for detailed quantification).
[c]Not determined.
Assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 10 mM oxalate, 5 μM OXS, 5 μM OXC and 2 μM YciA. The reaction was started by adding 25 mM aromatic aldehyde (prepared as 33 mM stock solution containing 20 vol % DMSO). The tested aromatic aldehydes are listed in Table 6. The reactions were quenched by the addition of 4% formic acid after 24 h and analyzed with the LC-MS detection of mandelic acid derivatives.
Results: The results are depicted in Table 6.
In a glass vial (25 mL reaction volume) 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP (0.0125 mmol, 5.3 mg), 0.15 mM ThDP (0.00375 mmol, 1.7 mg), 0.5 mM CoA (0.0125 mmol, 9.8 mg), 25 mM disodium oxalate (0.625 mmol, 84 mg), 25 mM aldehyde (0.625 mmol), 2 μM YciA, 10 μM OXCMe-Y497A, 5 μM OXS, 1.3 μM adenylate kinase and 25 units creatine kinase (Roth) were mixed and the reaction was initiated by the addition of 10 mM creatine phosphate. The same amount of creatine phosphate was added after 1, 2, 4 and 6 h to reach a final concentration of 50 mM (1.25 mmol, 409 mg). The vials were incubated without shaking at 30° C. for 24 h. Then the pH was lowered to 3 by adding HCl. The quenched reaction was saturated with NaCl and extracted with 25 mL diethylether. The organic phase was dried over MgSO4 and filtered. After evaporation of the ether under vacuum, 50 mg (0.331 mmol, 53%) of a white solid remained, which was confirmed to be mandelic acid by UV, HPLC and NMR. 1H NMR (300 MHz, DMSO-d6) δ 7.4 (m, 5H); 5.05 (s, 1H). 13C NMR (300 MHz, DMSO-d6) δ 174.5, 140.7, 128.6, 128.1, 127.1, 72.9.
The aldehydes 1-46 were used to prepare α-hydroxy carboxylic acid on the basis of the aforementioned procedure.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 10 mM aldehyde (formaldehyde, acetaldehyde, glycolaldehyde, propionaldehyde, glyceraldehyde, glyoxylate, succinic semialdehyde, benzaldehyde, and phenylacetaldehyde) or 10 mM acetone and 5 μM OXCMe or HACLHs, respectively. The reaction was started by adding 1 mM formyl-CoA or oxalyl-CoA. The reaction was stopped after 1 h by quenching with 4% formic acid and products analyzed with the CoA ester method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.85 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 5 μM OXCMe-Y497A and 5 μM OXS were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. Samples were taken after 0, 10, 60, 240 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
The aldehydes 1-48 according to example 14 were used to prepare α-hydroxyacyl-CoA thioesters on the basis of the aforementioned procedure.
Results: The results for the formation of mandelyl-CoA are depicted in
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 5 μM OXCMe-Y497A and 5 μM FCS were mixed and the reaction was initiated by the addition of 50 mM sodium formate. Samples were taken after 0, 10, 60, 240 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
The aldehydes 1-46 were used to prepare α-hydroxyacyl-CoA thioesters on the basis of the aforementioned procedure.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 10 mM aldehyde, 5 μM OXCMe or OXCMe-Y497A, 2 μM YciA. The reaction was started by adding 1 mM formyl-CoA or oxalyl-CoA. The reaction was stopped after 1 h by quenching with 4% formic acid and products analyzed with the mandelic acid derivatives method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 15 vol % DMSO, 50 mM TES-KOH pH 6.8, 10 mM MgCl2 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 25 mM aldehyde, 5 μM OXS, 5 μM OXCMe or OXCMe-Y497A and 2 μM YciA. The reaction was started by adding 10 mM oxalate. Samples were taken after 0, 0.05, 0.25, 0.66, 1, 2, 3, 22 hours, quenched with 4% formic acid and analyzed with the LC-MS detection of mandelic acid derivatives.
The aldehydes 1-46 were used to prepare α-hydroxy carboxylic acid on the basis of the aforementioned procedure.
The Michaelis-Menten kinetic of eryACS-1 (an acyl-CoA synthetase from Erythrobacter sp.) and variants thereof as formyl-CoA synthetase (FCS) were investigated with formate as substrate according to example 6.
AMP production was followed at 30° C. by coupling eryACS-1 to purified adenylate kinase (ADK), pyruvate kinase (PK) and lactate dehydrogenase (LDH). An assay containing 200 mM MOPS-KOH pH 7.8, 0.3 mM NADH, 10 mM MgCl2, 2 mM ATP, 0.5 mM CoA, 2.5 mM PEP, 0.2 mg/mL ADK, 15 U/mL PK from rabbit muscle (Sigma), 23 U/mL LDH from rabbit muscle (Sigma), and an appropriate concentration of eryACS-1 was preincubated for 2 min and the reaction started by adding sodium formate to a final concentration of 10, 25, 50, 100, 150, 200 mM, respectively. Reaction procedure was monitored by following the oxidation of NADH at 340 nm.
Results: The results are depicted in
Acyl-CoA synthetase from Erythrobacter sp. NAP1 (eryACS-1) exhibits a favorable activity towards formate (kcat=0.67±0.03 s−1; KM(formate)=73±8 mM). The enzyme was engineered by replacing valine 379 by isoleucine, which increased catalytic efficiency, mainly through an improved turnover number. Activity of the enzyme was further increased by expressing the gene in an E. coli strain lacking lysine acetyltransferase patZ, which inhibits acetyl-CoA synthetase, to finally obtain a highly active variant (kcat=16±1 s−1; KM(formate)=100±10 mM).
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM CoA, 10 mM ATP and 0.1 μM FCS were mixed and the reaction was initiated by the addition of 50 mM sodium formate. Samples were taken after 0, 1, 5, 20 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.85 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 5 μM OXCMe and 5 μM FCS (eryACS-1—an acyl-CoA synthetase from Erythrobacter sp.,
Results: The results are depicted in
The investigation of (S)-mandelic acid formation of the cascade FCS-OXCMe-YciA using formate as starting material were performed according to example 12.
Assays were carried out at 30° C. in reaction buffer consisting of 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 5 mM ATP, 25 mM benzaldehyde, 1 μM FCS, 2 μM OXC and 2 μM YciA. The reaction was started by adding 50 mM sodium formate. Samples were taken after 0, 2, 15, 30, 60, 120, 300 min and analyzed with the LC-MS detection of mandelic acid derivatives. Mandelic acid was quantified by comparison to commercially obtained standards of mandelic acid.
Results: The results are depicted in
The formyl-CoA synthetase can be used in a cascade reaction in a one-pot system along with a thioesterase YciA and oxalyl-CoA synthetase for obtaining mandelic acid.
The aldehydes 1-46 were used to prepare α-hydroxy carboxylic acid on the basis of the aforementioned procedure.
Formyl-CoA:oxalate CoA-transferase (FRC) from Oxalobacter formigenes (EC 2.8.3.16) catalyzes the reaction formyl-CoA+oxalate=oxalyl-CoA+formate. This reaction is fully reversible. Converting formyl-CoA into oxalyl-CoA in the context of the cascade should have 2 beneficial effects: First, YciA has (low) thioesterase activity towards formyl-CoA, but none towards oxalyl-CoA (
Results: The results are depicted in
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 10 mM disodium oxalate and 0.1 μM FRC were mixed and the reaction was initiated by the addition of 1 mM formyl-CoA. Samples were taken after 0, 1, 5, 20 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 10 mM sodium formate and 0.1 μM FRC were mixed and the reaction was initiated by the addition of 1 mM oxalyl-CoA. Samples were taken after 0, 1, 5, 20 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
In a 1.5 mL microfuge tube, reaction buffer containing 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 0.5 μM FRC, 2 μM YciA, 5 μM OXCMe and 5 μM OXS were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. For the negative control FRC was omitted in a separate reaction. Samples were taken after 0, 3, 15, 40 min, 1, 2, 3 and 22 h and analyzed with the mandelic acid derivatives method described above. For quantification commercial, racemic mandelic acid was diluted in reaction buffer to appropriate concentrations to obtain a calibration curve.
The aldehydes 1-46 were used to prepare α-hydroxy carboxylic acid on the basis of the aforementioned procedure.
In a 1.5 mL microfuge tube, reaction buffer containing 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 10 mM ATP, 7.6 mM benzaldehyde or phenylacetaldehyde, 2 μM FRC (Formyl-CoA:oxalate CoA-transferase from Oxalobacter formigenes EC 2.8.3.16), 2 μM YciA, 10 μM OXCMe-Y497A and 5 μM OXS were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. For the negative control FRC was omitted in a separate reaction. Samples were taken after 0, 15, 30, 60 min and analyzed with the mandelic acid derivatives method described above.
Results: The results are depicted in
In a 1.5 mL microfuge tube, reaction buffer containing 50 mM TES-KOH pH 6.8, 10 mM MgCl2. 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 0.25 mM ATP, 25 mM benzaldehyde, 10 μM HACOT, 5 μM OXCMe and 0.1 μM OXS were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. For the negative controls FRC was omitted in a separate reaction. Samples were taken after 0, 3, 15, 40 min, 1, 2, 3 and 22 h and analyzed with the mandelic acid derivatives method described above. For quantification commercial, racemic mandelic acid was diluted in reaction buffer to appropriate concentrations to obtain a calibration curve.
The aldehydes 1-46 were used to prepare α-hydroxy carboxylic acid on the basis of the aforementioned procedure.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.85 mM CoA, 10 mM ATP, 25 mM benzaldehyde, 1 μM OXCMe, 5 μM OXS and 20 μM FRC and were mixed and the reaction was initiated by the addition of 10 mM disodium oxalate. Samples were taken after 0, 2, 5, 10, 30 min and quenched with 4% formic acid and products analyzed with the CoA ester method described above.
Results: The results are depicted in
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 25 mM benzaldehyde, 10 mM sodium oxalate, 10 μM OXCMe-Y497A, 2 μM YciA and 2 μM FRC and were mixed and the reaction was initiated by the addition of 5 mM oxalyl-CoA. Samples were taken after 0, 15, 30, 60 min and quenched with 4% formic acid and products analyzed with the mandelic acid derivatives method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 25 mM benzaldehyde, 10 mM sodium oxalate, 10 μM OXCMe-Y497A, 10 μM HACOT and were mixed and the reaction was initiated by the addition of 5 mM oxalyl-CoA. Samples were taken after 0, 15, 30, 60 min and quenched with 4% formic acid and products analyzed with the mandelic acid derivatives method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 25 mM benzaldehyde, 10 μM OXCMe-Y497A, 2 μM YciA and were mixed and the reaction was initiated by the addition of 5 mM formyl-CoA. Samples were taken after 0, 15, 30, 60 min and quenched with 4% formic acid and products analyzed with the mandelic acid derivatives method described above.
Assays were carried out at 30° C. in a 1.5 mL microfuge tube. Reactions contained 50 mM TES-KOH pH 6.8, 10 mM MgCl2, 0.5 mM ADP, 0.15 mM ThDP, 0.5 mM CoA, 0.25 mM ATP, 25 mM benzaldehyde, 0.1 μM FCS, 10 μM OXCMe-Y497A, 10 μM HAFT and were mixed and the reaction was initiated by the addition of 50 mM sodium formate. Samples were taken after 0, 30, 60, 120 min and quenched with 4% formic acid and products analyzed with the mandelic acid derivatives method described above.
Number | Date | Country | Kind |
---|---|---|---|
EP 19194807.4 | Aug 2019 | EP | regional |
EP 19218953.8 | Dec 2019 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/074168 | 8/29/2020 | WO |