Peptides for inducing a CTL and/or HTL response to hepatitis C virus

Abstract
The present invention is directed to peptides, and nucleic acids encoding them, derived from the Hepatitis C Virus (HCV). The peptides are those which elicit a CTL and/or HTL response in a host. The invention is also directed to compositions and vaccines for prevention and treatment of HCV infection and diagnostic methods for detection of HCV exposure in patients.
Description
FIELD OF THE INVENTION

The present invention is directed to peptides or nucleic acids encoding them, derived from the Hepatitis C Virus (HCV). The peptides are those which elicit a cytotoxic and/or helper T lymphocyte response in a host. The invention is also directed to vaccines for prevention and treatment of HCV infection and diagnostic methods for detection of HCV exposure in patients.


BACKGROUND OF THE INVENTION

The about 9.6 kb single-stranded RNA genome of the HCV virus comprises a 5′- and 3′-non-coding region (NCRs) and, in between these NCRs a single long open reading frame of about 9 kb encoding an HCV polyprotein of about 3000 amino acids.


HCV polypeptides are produced by translation from the open reading frame and cotranslational proteolytic processing. Structural proteins are derived from the amino-terminal one-fourth of the coding region and include the capsid or Core protein (about 21 kDa), the E1 envelope glycoprotein (about 35 kDa) and the E2 envelope glycoprotein (about 70 kDa, previously called NS1), and p7 (about 7 kDa). The E2 protein can occur with or without a C-terminal fusion of the p7 protein (Shimotohno et al. 1995). Recently, an alternative open reading frame in the Core-region was found which is encoding and expressing a protein of about 17 kDa called F (Frameshift) protein (Xu et al. 2001; Ou & Xu in US Patent Application Publication No. US2002/0076415). In the same region, ORFs for other 14-17 kDa ARFPs (Alternative Reading Frame Proteins), A1 to A4, were discovered and antibodies to at least A1, A2 and A3 were detected in sera of chronically infected patients (Walewski et al. 2001). From the remainder of the HCV coding region, the non-structural HCV proteins are derived which include NS2 (about 23 kDa), NS3 (about 70 kDa), NS4A (about 8 kDa), NS4B (about 27 kDa), NS5A (about 58 kDa) and NS5B (about 68 kDa) (Grakoui et al. 1993).


HCV is the major cause of non-A, non-B hepatitis worldwide. Acute infection with HCV (20% of all acute hepatitis infections) frequently leads to chronic hepatitis (70% of all chronic hepatitis cases) and end-stage cirrhosis. It is estimated that up to 20% of HCV chronic carriers may develop cirrhosis over a time period of about 20 years and that of those with cirrhosis between 1 to 4%/year is at risk to develop liver carcinoma (Lauer & Walker 2001, Shiffman 1999). An option to increase the life-span of HCV-caused end-stage liver disease is liver transplantation (30% of all liver transplantations world-wide are due to HCV-infection).


Virus-specific, human leukocyte antigen (HLA) class I-restricted cytotoxic T lymphocytes (CTL) are known to play a major role in the prevention and clearance of virus infections in vivo (Houssaint et al., 2001; Gruters et al., 2002; Tsai et al., 1997; Marray et al., 1992; Lukacher et al, 1984; Tigges et al., 1993).


MHC molecules are classified as either class I or class II. Class I MHC molecules are expressed on virtually all nucleated cells. Peptide fragments presented in the context of Class I MHC molecules are recognized by CD8+ T lymphocytes (cytotoxic T lymphocytes or CTLs). CD8+ T lymphocytes frequently mature into cytotoxic effectors which can lyse cells bearing the stimulating antigen. CTLs are particularly effective in eliminating tumor cells and in fighting viral infections.


Class II MHC molecules are expressed primarily on activated lymphocytes and antigen-presenting cells. CD4+ T lymphocytes (helper T lymphocytes or HTLs) are activated with recognition of a unique peptide fragment presented by a class II MHC molecule, usually found on an antigen presenting cell like a macrophage or dendritic cell. CD4+ T lymphocytes proliferate and secrete cytokines that either support an antibody-mediated response through the production of IL-4 and IL-10 or support a cell-mediated response through the production of IL-2 and IFN-gamma.


T lymphocytes recognize an antigen in the form of a peptide fragment bound to the MHC class I or class II molecule rather than the intact foreign antigen itself. An antigen presented by a MHC class I molecule is typically one that is endogenously synthesized by the cell (e.g., an intracellular pathogen). The resulting cytoplasmic antigens are degraded into small fragments in the cytoplasm, usually by the proteasome (Niedermann et al., 1995). Antigens presented by MHC class II molecules are usually soluble antigens that enter the antigen presenting cell via phagocytosis, pinocytosis, or receptor-mediated endocytosis. Once in the cell, the antigen is partially degraded by acid-dependent proteases in endosomes (Blum et al., 1997; Arndt et al., 1997).


Functional HLAs are characterized by a deep binding groove to which endogenous as well as foreign, potentially antigenic peptides bind. The groove is further characterized by a well-defined shape and physico-chemical properties. HLA class I binding sites are closed, in that the peptide termini are pinned down into the ends of the groove. They are also involved in a network of hydrogen bonds with conserved HLA residues (Madden et al., 1992). In view of these restraints, the length of bound peptides is limited to 8-10 residues. However, it has been demonstrated by Henderson et al (1992) that peptides of up to 12 amino acid residues are also capable of binding HLA class I. Superposition of the structures of different HLA complexes confirmed a general mode of binding wherein peptides adopt a relatively linear, extended conformation.


At the same time, a significant variability in the conformation of different peptides was observed also. This variability ranges from minor structural differences to notably different binding modes. Such variation is not unexpected in view of the fact that class I molecules can bind thousands of different peptides, varying in length (8-12 residues) and in amino acid sequence. The different class I allotypes bind peptides sharing one or two conserved amino acid residues at specific positions. These residues are referred to as anchor residues and are accommodated in complementary pockets (Falk, K. et al., 1991). Besides primary anchors, there are also secondary anchor residues occupied in more shallow pockets (Matsumura et al., 1992). In total, six allele-specific pockets termed A-F have been characterized (Saper et al., 1991; Latron et al., 1992). The constitution of these pockets varies in accordance with the polymorphism of class I molecules, giving rise to both a high degree of specificity (limited cross reactivity) while preserving a broad binding capacity.


In contrast to HLA class I binding sites, class II sites are open at both ends. This allows peptides to extend from the actual region of binding, thereby “hanging out” at both ends (Brown et al., 1993). Class II HLAs can therefore bind peptide ligands of variable length, ranging from 9 to more than 25 amino acid residues. Similar to HLA class I, the affinity of a class II ligand is determined by a “constant” and a “variable” component. The constant part again results from a network of hydrogen bonds formed between conserved residues in the HLA class II groove and the main-chain of a bound peptide. However, this hydrogen bond pattern is not confined to the N- and C-terminal residues of the peptide but distributed over the whole of the chain. The latter is important because it restricts the conformation of complexed peptides to a strictly linear mode of binding. This is common for all class II allotypes. The second component determining the binding affinity of a peptide is variable due to certain positions of polymorphism within class II binding sites. Different allotypes form different complementary pockets within the groove, thereby accounting for subtype-dependent selection of peptides, or specificity. Importantly, the constraints on the amino acid residues held within class II pockets are in general “softer” than for class I. There is much more cross reactivity of peptides among different HLA class II allotypes. Unlike for class I, it has been impossible to identify highly conserved residue patterns in peptide ligands (so-called motifs) that correlate with the class II allotypes.


Peptides that bind some MHC complexes have been identified by acid elusion methods (Buus et al., 1988), chromatography methods (Jardetzky, et al., 1991 and Falk et al., 1991), and by mass spectrometry methods (Hunt, et al., 1992). A review of naturally processed peptides that bind MHC class I molecules is set forth in Rotzschke and Falk, 1991.


Of the many thousand possible peptides that are encoded by a complex foreign pathogen, only a small fraction ends up in a peptide form capable of binding to MHC class I or class II antigens and can thus be recognized by T cells if containing a matching T-cell receptor. This phenomenon is known as immunodominance (Yewdell et al., 1997). More simply, immunodominance describes the phenomenon whereby immunization or exposure to a whole native antigen results in an immune response directed to one or a few “dominant” epitopes of the antigen rather than every epitope that the native antigen contains. Immunodominance is influenced by a variety of factors that include MHC-peptide affinity, antigen processing and T-cell receptor recognition.


In view of the heterogeneous immune response observed with HCV infection, induction of a multi-specific cellular immune response directed simultaneously against multiple HCV epitopes appears to be important for the development of an efficacious vaccine against HCV. There is a need, however, to establish vaccine embodiments that elicit immune responses that correspond to responses seen in patients that clear HCV infection.


The large degree of HLA polymorphism is an important factor to consider with the epitope-based approach to vaccine development. To address this factor, epitope selection can include identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules or selection of peptides binding the most prevalent HLA types. Another important factor to be considered in HCV vaccine development is the existence of different HCV genotypes and subtypes. Therefore, HCV genotype- or subtype-specific immunogenic epitopes need to be identified for all considered genotypes or subtypes. However, it is preferred to identify epitopes covering more than one HCV genotype or subtype.


The different characteristics of class I and class II MHC molecules are responsible for specific problems associated with the prediction of potential T-cell epitopes. As discussed before, class I molecules bind short peptides that exhibit well-defined residue type patterns. This has led to various prediction methods that are based on experimentally determined statistical preferences for particular residue types at specific positions in the peptide. Although these methods work relatively well, uncertainties associated with non-conserved positions limit their accuracy.


Methods for MHC/peptide binding prediction can grossly be subdivided into two categories: “statistical methods” that are driven by experimentally obtained affinity data and “structure-related methods” that are based on available 3D structural information of MHC molecules. Alternatively, a molecular dynamics simulation is sometimes performed to model a peptide within an MHC binding groove (Lim et al., 1996). Another approach is to combine loop modeling with simulated annealing (Rognan et al., 1999). Most research groups emphasize the importance of the scoring function used in the affinity prediction step. Several MHC binding HCV peptides have already been disclosed, e.g. in WO02/34770 (Imperial College Innovations Ltd), WO01/21189 and WO02/20035 (Epimmune), WO04/024182 (Intercell), WO95/25122 (The Scripps Research Institute), WO95/27733 (Government of the USA, Department of Health and Human Services), EP 0935662 (Chiron), WO02/26785 (Immusystems GmbH), WO95/12677 (Innogenetics N.V) and WO97/34621 (Cytel Corp).


There is a need to substantially improve both the structure prediction and the affinity assessment steps of methods which predict the affinity of a peptide for a major histocompatibility (MHC) class I or class II molecule. The main problem encountered in this field is the poor performance of prediction algorithms with respect to MHC alleles for which experimentally determined data (both binding and structural information) are scarce. This is e.g. the case for HLA-C.


Accordingly, while some MHC binding peptides have been identified, there is a need in the art to identify novel MHC binding peptides from HCV that can be utilized to generate an immune response against HCV from which they originate. Also, peptides predicted to bind (and binding) with reasonable affinity need a slow off rate in order to be immunogenic (Micheletti et al., 1999; Brooks et al., 1998; van der Burg et al., 1996).


SUMMARY OF THE INVENTION

The present invention is directed to peptides or epitopes derived from the Core, E1, E2, P7, NS2, NS3, NS4 (NS4A and NS4B) and NS5 (NS5A and NS5B) protein of the Hepatitis C Virus (HCV). The peptides are those which elicit a HLA class I and/or class II restricted T lymphocyte response in an immunized host. More specific, the HLA class I restricted peptides of the present invention bind to at least one HLA molecule of the following HLA class I groups: HLA-A*01, HLA-A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-B*07, HLA-B*08, HLA-B*35, HLA-B*40, HLA-B*44, HLA-Cw03, HLA-Cw04, HLA-Cw06 or HLA-Cw07. Preferred peptides are summarized in Table 13. The HLA class II restricted peptides of the present invention bind to at least one HLA molecule of the following HLA class II groups: HLA-DRB1, -DRB2, -DRB3, -DRB4, -DRB5, -DRB6, -DRB7, -DRB8 or -DRB9. Said HLA class II groups are sometimes summarized as HLA-DRB1-9. Preferred class II restricted peptides are given in Table 14.


The HLA class I and II binding peptides of the invention have been identified by the method as described in WO03/105058-Algonomics, by the method as described by Epimmune in WO01/21189 and/or by three public database prediction servers, respectively Syfpeithi, BIMAS and nHLAPred. Each of the peptides per se (as set out in the Tables) is part of the present invention. Furthermore, it is also an inventive aspect of this application that each peptide may be used in combination with the same peptide as multiple repeats, or with any other peptide(s) or epitope(s), with or without additional linkers. Accordingly, the present invention also relates to a composition and more specific to a polyepitopic peptide.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least three peptides selected from the HLA-B and/or HLA-C binding peptides as disclosed in Table 13.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide.


In a further embodiment, the present invention relates to a polyepitopic peptide comprising at least two HLA class II binding peptides selected from the peptides as disclosed in Table 14.


In a specific embodiment of the invention, the peptides are characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.


Furthermore, the present invention relates to nucleic acids encoding the peptides described herein. More particular, the present invention relates to a “minigene” or a polynucleotide that encodes a polyepitopic peptide as described herein.


The current invention also relates to a vector, plasmid, recombinant virus and host cell comprising the nucleic acid(s) or minigene(s) as described herein.


The peptides, corresponding nucleic acids and compositions of the present invention are useful for stimulating an immune response to HCV by stimulating the production of CTL and/or HTL responses. The peptide epitopes of the present invention, which are derived from native HCV amino acid sequences, have been selected so as to be able to bind to HLA molecules and induce or stimulate an immune response to HCV. In a specific embodiment, the present invention provides “nested epitopes”. The present invention also relates to a polyepitopic peptide comprising a nested epitope.


In a further embodiment, the present invention provides polyepitopic peptides, polynucleotides, compositions and combinations thereof that enable epitope-based vaccines from which the epitopes are capable of interacting directly or indirectly with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.


In a preferred embodiment, the invention relates to a composition comprising HCV-specific CTL epitopes, HCV-specific HTL epitopes or a combination thereof. Said composition can be in the form of a minigene comprising one or more CTL epitopes, one or more HTL epitopes, or a combination thereof.


In a further embodiment, the peptides of the invention, or nucleic acids encoding them, are used in diagnostic methods such as the determination of a treatment regimen, the determination of the outcome of an HCV infection, evaluation of an immune response or evaluation of the efficacy of a vaccine.




FIGURE LEGENDS


FIG. 1: HCV 1b consensus sequence (SEQ ID NO 769), based on a selection of available HCV sequences with identification (in bold) of the parts used for the 9-mer peptide design by the method as described by Algonomics N.V.; said parts are Core, NS3 and NS5; the amino acid numbering of the 9-mers present in Tables 1-11 is based on the HCV sequence disclosed in FIG. 1.

part ofAA startAA endinterestAA startAA end#AAC1191C1191191E1192383E2384746P7747809NS28101026NS310271657NS311601657498NS4A16581711NS4B17121972NS5A19732420NS5B24213011NS5B25602850291



FIG. 2: HCV 1b consensus sequence (SEQ ID NO 770) with identification (in bold) of the parts used for the 10-mer peptide design by the method as described by Algonomics N.V., and used for determination of HCV genotype cross-reactivity; said parts are Core, NS3, NS4 and NS5. The amino acid numbering is the same as for FIG. 1. The amino acid numbering of the 10-mers present in Tables 1-11 is based on the HCV sequence disclosed in FIG. 2.



FIG. 3: Binding of HLA-A02 reference peptide FLPSDC(F1)FPSV on HLA-A02 in a cell-based binding assay.



FIG. 4: Example of a typical HLA-A02 competition experiment in a cell-based binding assay.



FIG. 5: HCV 1a consensus sequence (SEQ ID NO 771) used for determination of HCV genotype cross-reactivity.



FIG. 6: HCV 3a consensus sequence (SEQ ID NO 772) used for determination of HCV genotype cross-reactivity.



FIG. 7: Binding versus immunogenicity in HLA-DRB1*0401 Tg mice.




DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to peptides derived from the Core, E1, E2, P7, NS2, NS3, NS4 (NS4A and NS4B) or NS5 (NS5A and NS5B) protein of the Hepatitis C Virus (HCV). The peptides are those which elicit a HLA class I and/or class II restricted T lymphocyte response in an immunized host.


More specific, the HLA class I restricted peptides (CTL epitopes) of the present invention bind at least one HLA molecule of the following HLA class I groups: HLA-A*01, HLA-A*02, HLA-A*03, HLA-A*11, HLA-A*24, HLA-B*07, HLA-B*08, HLA-B*35, HLA-B*40, HLA-B*44, HLA-Cw03, HLA-Cw04, HLA-Cw06 or HLA-Cw07. Preferred peptides are summarized in Table 13. The HLA class II restricted peptides (HTL epitopes) of the present invention bind at least one HLA molecule of the following HLA class II groups: HLA-DRB1, -DRB2, -DRB3, -DRB4, -DRB5, -DRB6, -DRB7, -DRB8 or -DRB9. Said HLA class II groups are sometimes summarized as HLA-DRB1-9. Preferred HTL epitopes are given in Table 14.


Each of the HLA class I and class II peptides per se (as set out in the Tables) is part of the present invention. Furthermore, it is an aspect of the invention that each epitope may be used in combination with any other epitope.


Identification of the Peptides


Based on the hundreds of known HCV genotypes and subtypes (at least 3000 amino acids per sequence), thousands of theoretical CTL and/or HTL epitopes are predicted according to the methods as described herein. Starting from said long list, a first selection of epitopes has been made based on the predicted binding affinity.


The HLA class I and II binding peptides of the invention have been identified by the method as described in WO03/105058-Algonomics, by the method as described by Epimmune in WO01/21189 and/or by three public epitope prediction servers respectively Syfpeithi, BIMAS and nHLAPred.


A first set of CTL peptides is derived by the method as described in WO03/105058 by Algonomics N.V., Zwijnaarde, Belgium, which is incorporated herein by reference. Said method is directed to a structure-based prediction of the affinity of potentially antigenic peptides for major histocompatibility (MHC) receptors.


Initially, a HCV consensus sequence is designed. To do this, a selection of HCV sequences from HCV type 1b present in the “Los Alamos” database are clustered and aligned. The HCV Sequence Database from the Los Alamos National laboratory can be found on: http://hcv.lanl.gov/content/hcv-db/HelpDocs/cluster-help.html.


The generated multiple sequence alignments have been used to identify interesting (i.e. conserved) regions in the HCV proteins for CTL epitope prediction.



FIG. 1 discloses the HCV consensus sequence used for the 9-mer CTL epitope prediction in the present invention. Amino acid numbering for the 9-mers present in Tables 1-11 is based on said sequence.



FIG. 2 discloses the HCV consensus sequence used for the 10-mer CTL epitope prediction in the present invention. Amino acid numbering for the 10-mers present in Tables 1-11 is based on said sequence.


Predictions were made for HLA-A0101, HLA-A0201, HLA-A0301, HLA-A2402, HLA-B0702, HLA-B0801, HLA-B3501, HLA-B4403, HLA-Cw0401, HLA-Cw0602 and HLA-Cw0702.


Tables 1-11 disclose the HLA-A, HLA-B and HLA-C binding peptides of the current invention derived by the above-described algorithm. Division is made between Strong binders (S) with Kdpred <0.1 μM, Medium binders (M) with Kdpred 0.1-1 μM and Weak binders (W) with Kdpred 1-10 μM. Kdpred is the affinity (dissociation constant) as predicted by the algorithm.


A further selection is made based upon the presence of the epitopes in the most prevalent genotypes. Accordingly, those peptides that are present in

    • at least genotype 3a, or
    • at least genotype 1b, or
    • at least genotype 1a and 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in Table 13.


Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


A second set of peptides is identified by the method as described in WO01/21189 by Epimmune Inc., California, USA, which is incorporated herein by reference. Proprietary computer algorithms are used to rapidly identify potential epitopes from genomic or proteomic sequence data of viruses, bacteria, parasites or tumor-associated antigens. The program can also be used to modify epitopes (analogs) in order to enhance or suppress an immune response.


The algorithm is based on the conversion of coefficient-based scores into KD (IC50) predictions (PIC Score) thereby facilitating combined searches involving different peptide sizes or alleles. The combined use of scaling factors and exponential power corrections resulted in best goodness of fit between calculated and actual IC50 values. Because the algorithm predicts epitope binding with any given affinity, a more stringent candidate selection procedure of selecting only top-scoring epitopes, regardless of HLA-type, can be utilized.


Protein sequence data from 57 HCV isolates were evaluated for the presence of the designated supermotif or motif. The 57 strains include COLONEL-ACC-AF290978, H77-ACC-NC, HEC278830-ACC-AJ278830, LTD 1-2-XF222-ACC-AF511948, LTD6-2-XF224-ACC-AF511950, JP.HC-J1-ACC-D10749, US.HCV-H-ACC-M67463, US.HCV-PT-ACC-M62321, D89815-ACC-D89815, HC-J4-ACC-AF054250, HCR6-ACC-AY045702, HCV-CG1B-ACC-AF333324, HCV-JS-ACC-D85516, HCV-K1-R1-ACC-D50480, HCV-S 1-ACC-AF356827, HCVT050-ACC-AB049087, HPCHCPO-ACC-D45172, M1LE-ACC-AB080299, MD11-ACC-AF207752, Source-ACC-AF313916, TMORF-ACC-D89872, AU.HCV-A-ACC-AJ000009, CN.HC-C2-ACC-D10934, CN.HEBEI-ACC-L02836, DE.HCV-AD78-ACC-AJ132996, DE.HD-1-ACC-U45476, DE.NC1-ACC-AJ238800, JP.HCV-BK-ACC-M58335, JP.HCV-J-ACC-D90208, JP.HCV-N-ACC-AF139594, JP.J33-ACC-D14484, JP.JK1-full-ACC-X61596, JP.JT-ACC-D11355, JP.MD1-1-ACC-AF165045, KR.HCU16362-ACC-U16362, KR.HCV-L2-ACC-U01214, RU.274933RU-ACC-AF176573, TR.HCV-TR1-ACC-AF483269, TW.HCU89019-ACC-U89019, TW.HPCGENANTI-ACC-M84754, G2AK1-ACC-AF 169003, HC-J6CH-ACC-AF 177036, MD2A-1-ACC-AF238481, NDM228-ACC-AF169002, JP.JCH-1-ACC-AB047640, JP.JFH-1-ACC-AB047639, JP.Td-6-ACC-D00944, JPUT971017-ACC-AB030907, MD2B-1-ACC-AF238486, JP.HC-J8-ACC-D10988, BEBE1-ACC-D50409, CB-ACC-AF046866, K3A-ACC-D28917, NZL1-ACC-D17763, DE.HCVCENS 1-ACC-X76918, JP.HCV-Tr-ACC-D49374 and EG.ED43-ACC-Y11604.


Predictions were made for HLA-A0101, HLA-A0201, HLA-A1101, HLA-A2402, HLA-B0702, HLA-B-0801 and HLA-B4002. For B0801, no PIC algorithm is available but motif-positive sequences were selected.


Tables 1, 2, 3, 4, 5, 6 and 8 disclose the HLA-A and HLA-B peptides of the current invention yielding PIC Scores <100 derived by the above-described algorithm.


A further selection is made based upon the presence of the epitopes in the most prevalent genotypes. Accordingly, those peptides that are present in at least genotype 3a, or

    • at least genotype 1b, or
    • at least genotype 1a, 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in table 13. Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


A third set of peptides is identified by three publicly available algorithms.


Initially, a HCV 1b consensus sequence is designed. HCV sequences from 80 HCV type 1b sequences were retrieved from the HCV sequence database http://hcv.lanl.gov/content/hcv-db/index of the Division of Microbiology and Infectious Diseases of the National Institute of Allergies and Infectious Diseases (NIAID).


The generated multiple sequence alignments are used to identify interesting regions in the HCV proteins for CTL epitope prediction. FIG. 2 discloses the HCV consensus sequence used for the CTL epitope prediction. Amino acid numbering throughout the specification is based on said sequence.


Based on said consensus sequence, three different prediction algorithms were used for CTL epitope prediction:


A) Syfpeithi:


Hans-Georg Rammensee, Jutta Bachmann, Niels Nikolaus Emmerich, Oskar Alexander Bachor, Stefan Stevanovic: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics (1999) 50: 213-219; www.syfpeithi.de)


The prediction is based on published motifs (pool sequencing, natural ligands) and takes into consideration the amino acids in the anchor and auxiliary anchor positions, as well as other frequent amino acids. The scoring system evaluates every amino acid within a given peptide. Individual amino acids may be given the arbitrary value 1 for amino acids that are only slightly preferred in the respective position, optimal anchor residues are given the value 15; any value between these two is possible. Negative values are also possible for amino acids which are disadvantageous for the peptide's binding capacity at a certain sequence position. The allocation of values is based on the frequency of the respective amino acid in natural ligands, T-cell epitopes, or binding peptides. The maximal scores vary between different MHC alleles. Only those MHC class I alleles for which a large amount of data is available are included in the “epitope prediction” section of SYFPEITHI. SYFPEITHI does not make predictions for HLA-C alleles.


Predictions were made for HLA-A01, A0201, A03, A2402, B0702, B08 and B44. For each class, both 9- and 10-mers were predicted, except for B08, where 8- and 9-mers were predicted, but no 10-mers.


B) BIMAS:


This algorithm allows users to locate and rank 8-mer, 9-mer, or 10-mer peptides that contain peptide-binding motifs for HLA class I molecules. Said rankings employ amino acid/position coefficient tables deduced from the literature by Dr. Kenneth Parker of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH) in Bethesda, Md. The Web site (http://bimas.dcrt.nih.gov/molbio/hla_bind/) was created by Ronald Taylor of the Bioinformatics and Molecular Analysis Section (BIMAS), Computational Bioscience and Engineering Laboratory (CBEL), Division of Computer Research & Technology (CIT), National Institutes of Health, in collaboration with Dr. Parker. The initial (running) score is set to 1.0. For each residue position, the program examines which amino acid is appearing at that position. The running score is then multiplied by the coefficient for that amino acid type, at that position, for the chosen HLA molecule. These coefficients have been pre-calculated and are stored for use by the scoring algorithm in a separate directory as a collection of HLA coefficient files. The idea behind these tables is the assumption that, to the first approximation, each amino acid in the peptide contributes independently to binding to the class I molecule. Dominant anchor residues, which are critical for binding, have coefficients in the tables that are significantly different from 1. Highly favorable amino acids have coefficients substantially greater than 1, and unfavorable amino acids have positive coefficients that are less than one. Auxiliary anchor residues have coefficients that are different from 1 but smaller in magnitude than dominant anchor residues. Using 9-mers, nine multiplications are performed. Using 10-mers, nine multiplications are again performed, because the residue lying at the fifth position in the sequence is skipped. The resulting running score is multiplied by a final constant to yield an estimate of the half time of disassociation. The final multiplication yields the score reported in an output table. Predictions were made for HLA-A01, A0201, A03, A24, B07, B08, B3501, B4403, Cw0301, Cw0401, Cw0602 and Cw0702. For each class, both 9- and 10-mers were predicted, except for B08, where 8-, 9- and 10-mers were predicted.


C) nHLAPred


nHLAPred is a highly accurate MHC binders' prediction method for the large number of class I MHC alleles. (Dr. GPS Raghava, Coordinator, Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India; http://imtech.rs.in/raghava). The algorithm is partitioned in two parts ComPred and ANNpred. In the ComPred part the prediction is based on the hybrid approach of Quantitative matrices and artificial neural network. In ANNPred the prediction is solely based on artificial neural network.


ComPred: This part of the algorithm can predict the MHC binding peptides for 67 MHC alleles. The method is systematically developed as follows:


Firstly, a quantitative matrix (QM) based method has been developed for 47 MHC class I alleles having minimum 15 binders available in the MHCBN database.


Quantitative matrices provide a linear model with easy to implement capabilities. Another advantage of using the matrix approach is that it covers a wider range of peptides with binding potential and it gives a quantitative score to each peptide.


Further, an artificial neural network (ANN) based method has been developed for 30 out of these 47 MHC alleles having 40 or more binders. The ANNs are self-training systems that are able to extract and retain the patterns present in submitted data and subsequently recognize them in previously unseen input. The ANNs are able to classify the data of MHC binders and non-binders accurately as compared to other. The ANNs are able to generalize the data very well. The major constraint of neural based prediction is that it requires large data for training. In addition, the method allows prediction of binders for 20 more MHC alleles using the quantitative matrices reported in the literature.


Predictions were made for HLA-A01, A0201, A0301, A24, B0702, B08, B3501, B4403, Cw0301, Cw0401, Cw0602 and Cw0702. nHLAPred can only predict 9-mers.


For each combination of prediction algorithm, protein and HLA allele, a list of the top ranking peptides (=predicted to have the highest affinity) is retrieved.


A list was created (not shown) with all peptides for all HLA alleles in descending order of affinity. In this list, the peptides were marked according to occurrence in different HCV genotypes (1b, 1a and/or 3 a consensus sequences) and to cross-reaction between HLA alleles. For each HLA class, all peptides predicted by the different prediction servers are combined in 1 table (not shown) with the ranknumbers for each of the predictionservers per column. For each peptide the number of predictionservers that assigned a ranknumber up to 60 or 100 are counted.


Those peptides that are predicted by 2 to 4 algorithms and that are within the 60 or 100 best are finally selected. If upon binding analysis (see below) only few high affinity binding peptides are identified, additional selections can be made (e.g. from peptides predicted by the Epimmune algorithm and yielding PIC scores <1000). All these peptides are given in Table 13.


As an example, the selection of the B07 peptides has been disclosed in Example 2. A comparable procedure was followed for the other HLA-binding peptides predicted by the Epimmune algorithm and the three public algorithms.


Table 13 discloses the selection of the HLA-A, HLA-B and HLA-C peptides of the current invention that are predicted to bind to a given HLA and that are derived by the above-described procedures. The peptide and corresponding nucleic acid compositions of the present invention are useful for inducing or stimulating an immune response to HCV by stimulating the production of CTL responses.


The HLA class II binding peptides of the present invention have been identified by the method as described in WO 01/21189A1 by Epimmune Inc., California, USA, which is incorporated herein by reference. Protein sequence data from 57 HCV isolates (as for the CTL prediction) were evaluated for the presence of the designated supermotif or motif. Predictions were made using the HLA DR-1-4-7 supermotif for peptides that bind to HLA-DRB1*0401, DRB1*0101 and DRB1*0701, and using HLA DR3 motifs for peptides that bind to DRB1*0301.


The predicted HTL peptides are given in Table 12.


A further selection is made based upon the presence of the core of the class II epitopes in the most prevalent genotypes. The “core” is defined as the central 9 (uneven amount of total amino acids) or 10 (even amount of total amino acids) amino acids of the total epitope sequence. As an example, the core (9aa) of the following epitope (15α-uneven) is indicated in bold/underlined: ADLMGYIPLVGAPLG.


Accordingly, those peptides that have a core present in

    • at least genotype 3a, or
    • at least genotype 1b, or
    • at least genotype 1a, 1b, or
    • at least genotypes 1a, 1b and 3a,


      are retained for further testing. These peptides are summarized in table 14.


Furthermore, other HCV genotypes (e.g. genotype 4a) can be retained in view of prevalence and/or importance.


The relationship between binding affinity for HLA class I and II molecules and immunogenicity of discrete peptides or epitopes on bound antigens (HLA molecules) can be analyzed in two different experimental approaches (see, e.g., Sette et al, 1994). E.g. as for HLA-A0201, in the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10.000-fold range can be analyzed in HLA-A0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. Said values are not yet available for other HLA Class I alleles.


These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes.


An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al., 1998). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In this case, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.


The predicted binding affinity (Score) of the peptides of the current invention are indicated in Tables 1-11. The experimentally determined binding affinity or inhibition constant (Ki) of peptides for HLA molecules can be determined as described in Example 3. The inhibition constant (Ki) is the affinity of the peptide as determined in a competition experiment with labeled reference peptide. The Ki is calculated from the experimentally determined IC50 value according to the formula:
Ki=IC501+[F1-pep]/Kd


The binding affinities (K1 or IC50) of the peptides of the present invention to the respective HLA class I and II alleles are indicated in Tables 13 and 14.


“IC50” is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Throughout the specification, “binding data” results are often expressed in terms of IC50. Given the conditions in which the assays are run (i.e. limiting HLA proteins and labeled peptide concentrations), these values approximate Ki values. It should also be noted that the calculated Ki values are indicative values and are no absolute values as such, as these values depend on the quality/purity of the peptide/MHC preparations used and the type of non-linear regression used to analyze the binding data.


Binding may be determined using assay systems including those using: live cells (e.g., Ceppellini et al., 1989; Christnick et al., 1991; Busch et al., 1990; Hill et al., 1991; del Guercio et al., 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., 1991), immobilized purified MHC (e.g., Hill et al., 1994; Marshall et al., 1994), ELISA systems (e.g., Reay et al., 1992), surface plasmon resonance (e.g. Khilko et al., 1993); high flux soluble phase assays (Hammer et al., 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., 1990; Schumacher et al., 1990; Townsend et al., 1990; Parker et al., 1992). The binding assays used in the present invention are demonstrated in Examples 3 and 4. The results as shown in Table 13 and 14 are either results of individual experiments or are the mean of a number of experiments.


As used herein, “high affinity” or “strong binder” with respect to HLA class I and II molecules is defined as binding with a K1 or IC50 value of 100 nM or less; “intermediate affinity” or “mediate binder” is binding with a K1 or IC50 value of between about 100 and about 1000 nM.


As used herein, “threshold affinity” is the minimal affinity a peptide needs to display for a given HLA type that assures immunogenicity with high certainty in humans and/or animals. The threshold affinity can—but must not—be different for different HLA types.


Based on the data derived from the binding experiments, a further selection of candidate epitopes is made. Higher HLA binding affinity is typically correlated with higher immunogenicity. Immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high affinity binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides that bind with intermediate affinity (Sette et al., 1994; Alexander et al., 2003). Moreover, higher binding affinity peptides lead to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high affinity binding peptides (strong binders) and medium affinity peptides (medium binders) are particularly useful.


Various strategies can be utilized to evaluate immunogenicity, including:


1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth et al., 1995; Celis et al., 1994; Tsai et al., 1997; Kawashima et al., 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells.


2) Immunization of HLA transgenic mice (see, e.g., Wentworth et al., 1996; Wentworth et al., 1996; Alexander et al., 1997) or surrogate mice. In this method, peptides (e.g. formulated in incomplete Freund's adjuvant) are administered subcutaneously to HLA transgenic mice or surrogate mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.


3) Demonstration of recall T cell responses from immune individuals who have effectively been vaccinated, recovered from infection, and/or from chronically infected patients (see, e.g., Rehermann et al., 1995; Doolan et al., 1997; Bertoni et al., 1997; Threlkeld et al., 1997; Diepolder et al., 1997). In applying this strategy, recall responses are detected by culturing PBL from subjects that have been naturally exposed to the antigen, for instance through infection, and thus have generated an immune response “naturally”, or from patients who were vaccinated with a vaccine comprising the peptide of interest. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.


A given epitope is stated to be immunogenic if T cell reactivity can be shown to targets sensitized with that peptide. Immunogenicity for a given epitope can further be described by the number of individuals in a group of HLA matched infected or vaccinated subjects (e.g. human, transgenic mice, surrogate mice) that show T cell reactivity to that particular epitope, or e.g. by the number of spots detected in an ELISPOT assay, as described in examples 5-8. Based on the data derived from one of these experiments, a further selection of candidate epitopes is made according to their immunogenicity. Immunogenicity for the peptides of the invention is indicated in Tables 13 and 14. A “+” indicates T cell reactivity in at least one subject.


Vaccines having a broad coverage of the existing HCV genotypes or subtypes are preferred. Genotypes 1a, 1b and 3a are the most prevalent HCV genotypes (among HCV infected individuals) and thus important to be taken into consideration. Other genotypes (e.g. genotype 4a) can be retained in view of their prevalence and/or importance. The present invention contains all selected CTL and HTL epitopes for which immunogenicity has been shown and that are present in the consensus sequence of genotype 1b, 1a and/or genotype 3a. Said consensus sequences are shown in FIGS. 2, 5 and 6. Accordingly, the peptides of the present invention are present in the consensus sequence of:

    • at least genotype 1a,
    • at least genotype 1b,
    • at least genotype 3a,
    • at least genotype 1a, 1b,
    • at least genotype 1a and 3a,
    • at least genotype 1b and 3a, or
    • at least genotype 1a, 1b and 3a.


The epitopes obtained by the methods as described herein can additionally be evaluated on the basis of their conservancy among and/or within different HCV strains or genotypes.


In a further step of the invention, an array of epitopes is selected for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection:

  • 1) Selection of either HCV native or analoged epitopes.
  • 2) Selection of native HCV epitopes that are present in the most prevalent and/or important HCV genotypes or subtypes.
  • 3) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA class I an IC50 or Ki of 1000 nM or less, or for HLA class II an IC50 or Ki of 1000 nM or less.
  • 4) Epitopes are selected which, upon administration, induce a T cell response (CTL and/or HTL).
  • 5) Sufficient supermotif bearing-peptides and/or a sufficient array of allele-specific peptides are selected to give broad population coverage. It is a serious hurdle to find, for a given pathogen with a specific sequence, enough immunogenic epitopes so as to cover a complete HLA-locus and consequently a complete population. As such, considering immunogenic peptides for two or three HLA class I loci, i.e. HLA-A, -B and/or -C, significantly increases population coverage for a given pathogen.
  • 6) Of relevance are epitopes referred to as “nested epitopes”. Nested epitopes occur where at least two epitopes overlap partly or completely in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes, 2 or more HLA class I epitopes or 2 or more HLA class II epitopes.
  • 7) It is important to screen the epitope sequence (e.g. comparing with mammal genome sequence) in order to ensure that it does not have pathological or other deleterious biological properties in the treated subject e.g. by inducing auto-antibodies.
  • 8) When used in a polyepitopic composition, spacer amino acid residues can be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a strong response that immune responses to other epitopes are diminished or suppressed.


The term “peptide” is used interchangeably with “oligopeptide” and “polypeptide” and designates a series of amino acids, connected one to the other, typically by peptide bonds between the amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing peptides of the invention are 13 residues or less in length and usually consist of 8, 9, 10, 11 or 12 residues, preferably 9 or 10 residues. The preferred HLA class II binding peptides are less than 50 residues in length and usually consist of between 6 and 30 residues, more usually between 12 and 25, and often between 15 and 20 residues. More preferred, an HLA class II binding peptide consists of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acid residues.


The peptides of the invention can be prepared by classical chemical synthesis. “Synthetic peptide” refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology. The synthesis can be carried out in homogeneous solution or in solid phase. For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled “Methode der organischen chemie” (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974. The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled “Solid phase peptide synthesis” (IRL Press, Oxford, 1989). The polypeptides according to this invention can also be prepared by means of recombinant DNA techniques as documented below.


Conservative substitutions may be introduced in these HCV polypeptides according to the present invention. The term “conservative substitution” as used herein denotes that one amino acid residue has been replaced by another, biologically similar residue. Peptides having conservative substitutions bind the HLA molecule with a similar affinity as the original peptide and CTL's and/or HTL's generated to or recognizing the original peptide are activated in the presence of cells presenting the altered peptide (and/or vice versa). Examples of conservative substitutions include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another such as between arginine and lysine, between glutamic and aspartic acids or between glutamine and asparagine and the like. Other substitutions can be introduced as long as the peptide containing said one or more amino acid substitutions is still immunogenic. This can be analysed in ELISPOT assays as described in examples 5 and 6. Accordingly, the current invention also relates to a peptide consisting of an amino acid sequence which is at least 70, 75, 80, 85 or 90% identical to the amino acid sequence of the peptide as disclosed in Tables 13 and 14, and wherein said peptide is still capable of inducing a HLA class I and/or class II restricted T lymphocyte response to cells presenting the original peptides.


A strategy to improve the cross-reactivity of peptides between different HLA types or within a given supermotif or allele is to delete one or more of the deleterious residues present within a peptide and substitute a small “neutral” residue such as Ala, that may not influence T cell recognition of the peptide. Such an improved peptide is sometimes referred to as an analoged peptide.


The peptides can be in their natural (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications. Also included in the definition are peptides modified by additional substituents attached to the amino acids side chains, such as glycosyl units, lipids, or inorganic ions such as phosphates, as well as modifications relating to chemical conversions of the chains, such as oxidation of sulfhydryl groups. Thus, “polypeptide” or its equivalent terms is intended to include the appropriate amino acid sequence referenced, and may be subject to those of the foregoing modifications as long as its functionality is not destroyed.


With regard to a particular amino acid sequence, an “epitope” is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) molecules. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this specification “epitope” and “peptide” are used interchangeably.


The phrases “isolated” or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. An “isolated” epitope refers to an epitope that does not include the whole sequence of the antigen or polypeptide from which the epitope was derived.


It is to be understood that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are still within the bounds of the invention.


An “immunogenic peptide” is a peptide that comprises a sequence as disclosed in Tables 13 and/or 14, or a peptide comprising an allele-specific motif or supermotif, such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Immunogenic peptides of the invention comprise a peptide capable of binding to an appropriate HLA molecule and the immunogenic peptide can induce an HLA-restricted cytotoxic and/or helper T cell response to the antigen from which the immunogenic peptide is derived. A CTL response is a set of different biological responses of T cells activated by cells presenting the immunogenic peptide in the MHC-I context and includes but is not limited to cellular cytotoxicity, IFN-gamma production and proliferation. An HTL response is a set of different biological responses of T cells activated by APC presenting the immunogenic peptide in the MHC-II context and includes but is not limited to cytokine production (such as IFN-gamma or IL-4) and proliferation. In a preferred embodiment of the invention, the immunogenic peptide consists of less than 50 amino acid residues. Even more particularly, the immunogenic peptide consists of less than 45, 40, 35, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9 amino acid residues.


Sette and Sidney (1999) (incorporated herein by reference) describe the epitope approach to vaccine development and identified several HLA supermotifs, each of which corresponds to the ability of peptide ligands to bind several different HLA alleles. The HLA allelic variants that bind peptides possessing a particular HLA supermotif are collectively referred to as an HLA supertype.


A “supermotif “is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens. The term “motif” refers to the pattern of residues in a peptide of defined length, usually a peptide of 8, 9, 10, 11, 12 or 13 amino acids for a class I HLA motif and from about 6 to about 50 amino acids, or more specific a peptide of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 24, 25, 30, 35, 40 or 50 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. The family of HLA molecules that bind to the A1 supermotif (i.e. the HLA-A1 supertype) includes at least A0101, A2601, A2602, A2501 and A3201. The family of HLA molecules that bind to the A2 supermotif (i.e. the HLA-A2 supertype) is comprised of at least: A0201 A0202, A0203, A0204, A0205, A0206, A0207, A0209, A0214, A6802 and A6901. Members of the family of HLA molecules that bind the A3 supermotif (the HLA-A3 supertype) include at least A0301, A1101, A3101, A3301 and A6801. The family of HLA molecules that bind to the A24 supermotif (i.e. the A24 supertype) includes at least A2402, A3001 and A2301. The family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B0702, B0703, B0704, B0705, B1508, B3501, B3502, B3503, B3504, B3505, B3506, B3507, B3508, B5101, B5102, B5103, B5104, B5105, B5301, B5401, B5501, B5502, B5601, B5602, B6701 and B7801. Members of the family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B1801, B1802, B3701, B4001, B4002, B4006, B4402, B4403 and B4006 (WO01/21189).


According to a preferred embodiment, the immunogenic peptide of the present invention is less than 50, less than 25, less than 20 or less than 15 amino acids. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.


“Cross-reactive binding” indicates that a peptide is bound by more than one HLA molecule derived from more than one HLA allele group or locus; a synonym is degenerate binding. “Human Leukocyte Antigen” or “HLA” is a human class I or class II Major Histocompatibility Complex (see, e.g., Stites, et al, IMMUNOLOGY, 8 ED, Lange Publishing, Los Altos, Calif. (1994)). “Major Histocompatibility Complex” or “MHC” is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, PDED, Raven Press, New York, 1993. The HLA nomenclature used herein is generally known in the art and e.g. as described in “The HLA Factsbook, ed. Marsh et al., Academic Press, 2000”.


Also, information on HLA sequences and the currently used nomenclature can be found on http://www.anthonynolan.org.uk/HIG/.


Polyepitopic Peptides


The present invention also relates to the use of the peptides as described herein for the preparation of an HCV immunogenic composition and more specific to a composition comprising at least one of the peptides as provided in Tables 13-14, possibly in combination with one or more of the same or other peptides or epitopes. The peptides of the invention can be combined via linkage to form polymers (multimers), or can be formulated in a composition without linkage, as an admixture. In a specific embodiment, the peptides of the invention can be linked as a polyepitopic peptide. The linkage of the different peptides in the polyepitopic peptide is such that the overall amino acid sequence differs from a naturally occurring sequence. Hence, the polyepitopic peptide sequence of the present invention is a non-naturally occurring sequence. Accordingly, the present invention relates to a composition or polyepitopic peptide comprising at least one peptide selected from the peptides disclosed in Tables 13 and 14. Of particular interest are the peptides with K1 or IC50 <1000 nM. More preferably, the peptides of interest are these peptides having a positive immunogenicity after evaluation by the herein described strategies. Particularly preferred are the HLA class I binding peptides identified by:

    • for HLA-A: SEQ ID NO 557, 1241, 1456, 1478, 1833, 1887, 67, 922, 66, 361, 1070, 1072, 1151, 71, 1233, 1269, 75, 73, 1396, 5, 87, 91, 238, 265, 1661, 1753, 76, 81, 92, 1933, 1934, 69, 2043, 2047, 74, 63, 2053, 83, 56, 155, 156, 1205, 1206, 167, 1350, 47, 146, 1609, 144, 3, 39, 158, 16, 122, 1034, 1095, 1096, 1150, 246, 1406, 23, 1483, 1512, 87, 93, 1625, 1626, 59, 1710, 250, 81, 1885, 1916, 1938, 2048, 271, 2083, 1, 877, 17, 7, 1086, 1087, 1468, 1700 and 1894;
    • for HLA-B: SEQ ID NO 402, 836, 381, 371, 853, 370, 387, 307, 1237, 1289, 1343, 1418, 1419, 375, 1430, 380, 450, 1582, 390, 1677, 1687, 121, 386, 372, 95, 443, 396, 455, 1441, 436, 1719, 92, 394, 1969, 287, 1237, 1289, 375, 1430, 1444, 582, 1117 and 59;
    • for HLA-C: SEQ ID NO 1048, 1095, 1730, 349, 475, 111, 2066, 1511, 1454, 1100 and 907.


Preferred HLA class II binding peptides are the peptides with IC50 <500 nM identified by SEQ ID NO 2142, 2213, 2157, 2245, 2162, 2164, 2235, 2113, 2182, 2111, 2180, 2236, 2112, 2132, 2192, 2107, 2137, 2125, 2229, 2166, 2136, 2177, 2153, 2110, 2156, 2241, 2228, 2219, 2187, 2249, 2194, 2207 and 2237.


Particularly preferred HLA class II peptides are identified by SEQ ID NO 2235, 2164, 2162, 2113, 2182, 2180, 2236, 2149, 2112, 2201, 2249, 2158, 2108, 2107, 2229, 2194, 2156, 2228, 2207 and 2232.


More preferably, the composition or polyepitopic peptide comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60 or more peptides. Preferably, the peptides are selected from Tables 13 and 14. Any combination of peptides is possible, e.g., the composition can comprise at least one HLA-A binding peptide and at least one HLA-B or HLA-C binding peptide. Furthermore, the composition can also comprise at least one HLA-B binding peptide and at least one HLA-C binding peptide. More specific, the composition comprises at least one HLA-A, at least one HLA-B and at least one HLA-C binding peptide. In a preferred embodiment, the polyepitopic peptide or composition comprises at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide. In a further embodiment, the composition comprises at least two HLA-DRB binding peptides, preferably selected from Table 14.


A “HLA-A binding peptide” is defined as a peptide capable of binding at least one molecule of the HLA-A locus. Said definition can be extrapolated to the other loci, i.e. HLA-B, HLA-C, HLA-DRB1-9, etc.


In a particular, the epitopes of the invention can be combined in an HLA-group restricted polyepitope. The term “HLA-group restricted polyepitope” refers to a polyepitopic peptide comprising at least two epitopes binding to an allele or molecule of the same HLA group. The HLA nomenclature used herein is generally known in the art and e.g. as described in “The HLA Factsbook, ed. Marsh et al., Academic Press, 2000”. In a preferred embodiment, the HLA-group restricted polyepitope is a HLA-A01 restricted polyepitope, a HLA-A02 restricted polyepitope, a HLA-A03 restricted polyepitope, a HLA-A11 restricted polyepitope, a HLA-A24 restricted polyepitope, a HLA-B07 restricted polyepitope, a HLA-B08 restricted polyepitope, a HLA-B35 restricted polyepitope, a HLA-B40 restricted polyepitope, a HLA-B44 restricted polyepitope, a HLA-Cw03 restricted polyepitope, a HLA-Cw04 restricted polyepitope, a HLA-Cw06 restricted polyepitope, a HLA-Cw07 restricted polyepitope, a HLA-DRB1*01 restricted polyepitope, HLA-DRB1*03 restricted polyepitope or HLA-DRB1*04 restricted polyepitope.


The number of epitopes in a HLA-group restricted polyepitope is not limited and can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25 or more. An HLA-group restricted polyepitope can be used in a first phase of establishing the immunogenicity of a subset of epitopes in a construct. The advantage of using such an HLA-group restricted polyepitope is that a considerable number of HLA restricted epitopes can be evaluated in one and the same construct. Furthermore, a specific selection of more than one HLA-group restricted polyepitope can be administered in order to customize treatment. More specific, the selection can comprise more than one HLA-group restricted polyepitope within a given HLA-locus or covering 2, 3 or more HLA-loci.


More particular, the composition as described herein comprises linked peptides that are either contiguous or are separated by a linker or a spacer amino acid or spacer peptide. This is referred to as a polyepitopic or multi-epitopic peptide.


“Link” or join” refers to any method known in the art for functionally connecting peptides (direct of via a linker), including, without limitation, recombinant fusion, covalent bonding, non-covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, polymerization, cyclization, electrostatic bonding and connecting through a central linker or carrier. Polymerization can be accomplished for example by reaction between glutaraldehyde and the —NH2 groups of the lysine residues using routine methodology. The peptides may also be linked as a branched structure through synthesis of the desired peptide directly onto a central carrier, e.g. a poly-lysyl core resin.


This larger, preferably poly- or multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.


The polyepitopic peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies, HTL's and/or CTLs that react with different antigenic determinants of the pathogenic organism targeted for an immune response. Multi-epitope constructs can for example be prepared according to the methods set forth in Ishioka et al., 1999; Velders et al., 2001; or as described in WO04/031210—Epimmune. The polyepitopic peptide can be expressed as one protein. In order to carry out the expression of the polyepitopic peptide in bacteria, in eukaryotic cells (including yeast) or in cultured vertebrate hosts such as Chinese Hamster Ovary (CHO), Vero cells, RK13, COS1, BHK, and MDCK cells, or invertebrate hosts such as insect cells, the following steps are carried out:

    • transformation of an appropriate cellular host with a recombinant vector, or by means of adenoviruses, influenza viruses, BCG, and any other live carrier systems, in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the cellular host or of the live carrier system and in the case of a prokaryotic host, an appropriate ribosome binding site (RBS), enabling the expression in said cellular host of said nucleotide sequence,
    • culture of said transformed cellular host under conditions enabling the expression of said insert.


The polyepitopic peptide can be purified by methods well known to the person skilled in the art.


Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to most people. Broad population coverage can be obtained through selecting peptides that bind to HLA alleles which, when considered in total, are present in most of the individuals of the population. The A2-, A3-, and B7 supertypes are each present on the average of over 40% in each of the five major ethnic groups, i.e. Caucasian, North American Black, Japanese, Chinese and Hispanic. Coverage in excess of 80% is achieved with a combination of these supermotifs. The B44-, A1-, and A24-supertypes are present, on average, in a range from 25% to 40% in these major ethnic populations. The HLA groups Cw04, Cw03, Cw06 and Cw07 are each present, on average, in a range from 13% to 54% in these major ethnic populations. Thus, by including epitopes from most frequent HLA-A, -B and/or -C alleles, an average population coverage of 90-99% is obtained for five major ethnic groups. Especially in the field of HLA-C, experimentally determined data (both binding and immunogenic) for HCV epitopes are scarce. Accordingly, the present invention relates to a composition or polyepitopic peptide comprising at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, wherein at least one peptide is a HLA-C binding peptide. More preferred, said composition or polyepitopic peptide comprises at least 2, 3, 4, 5 or more HLA-C binding peptide(s). More particularly, the one or more HLA-C binding peptides are derived from at least one of the following HCV regions: Core, E1, E2/NS1, NS2, NS3, NS4A, NS4B, NS5A and NSSB. Even more preferred is that the HLA-C binding peptides are furthermore characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a. Optionally, the composition or polyepitopic peptide can furthermore comprise at least 1, 2, 3, 4 or more HLA-B binding peptide(s) and/or at least 1, 2, 3, 4 or more HLA-A binding peptide(s) and/or at least 1, 2, 3, 4 or more HLA-DRB1-9 binding peptide(s). More preferred, the composition or the polyepitopic peptide of the present invention comprises at least 1, 2, 3, 4 or more HLA-A binding peptide(s), at least 1, 2, 3, 4 or more HLA-B binding peptide(s) and at least 1, 2, 3, 4 or more HLA-C binding peptide(s), optionally in combination with a HLA class II binding peptide. In a specific embodiment, the peptides are selected from Table 13 or 14.


Furthermore, the present invention relates to a composition comprising at least one peptide selected from Tables 13 and 14 and at least one other HLA class I binding peptide, a HLA class II binding peptide or a HCV derived peptide. Said “other” HLA class I binding peptide and said HLA class II binding peptide to be used in combination with the peptides of the present invention can be derived from HCV or from a foreign antigen or organism (non-HCV). There is no limitation on the length of said other peptides, these can have a length of e.g. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more amino acids. The “at least one” can include, e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 or more peptides. Preferably, said HLA class I binding peptide is a peptide capable of binding one or more HLA class I alleles. More specific, said peptide is selected from the group consisting of peptides binding a molecule of the following HLA groups: HLA-A1, HLA-A2, HLA-A3, HLA-A11, HLA-A24, HLA-B7, HLA-B8, HLA-B27, HLA-B35, HLA-B40, HLA-B44, HLA-B58, HLA-B62, HLA-Cw03, HLA-Cw04, HLA-Cw06 and/or HLA-Cw07.


For HLA class II, the peptides, also called HTL epitopes, are preferably selected from the group consisting of peptides binding a molecule of the HLA-loci HLA-DR, HLA-DQ and/or HLA-DP, or as described in e.g. WO95/27733, WO02/26785, WO01/21189, WO02/23770, WO03/084988, WO04/024182, Hoffmann et al., 1995, Diepolder et al., 1997, Werheimer et al, 2003 and Lamonaca et al, 1999 (incorporated herein by reference). The preferred HLA class II binding peptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues. For example, a HLA class II binding peptide consists of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acid residues. Further and preferred examples of candidate HTL epitopes to include in a polyepitopic construct for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene are enclosed in Table 14.


A “CTL inducing peptide” is a HLA Class I binding peptide that is capable of inducing a CTL response. A “HTL inducing peptide” is a HLA Class II binding peptide that is capable of inducing a HTL response.


In a specific embodiment, the present invention relates to a composition or polyepitopic peptide comprising at least two HLA class I binding peptides selected from Table 13 or at least two HLA class II binding peptides selected from Table 14. Any combination is possible. More preferred, the at least two peptides are selected to bind HLA molecules derived from the same or a different HLA locus, i.e. HLA-A, -B, -C or DRB1. Alternatively, the at least two peptides are selected to bind HLA molecules derived from the same or a different HLA-group. Preferred HLA-groups are: HLA-A01, A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06, Cw07, DRB1*01, DRB1*03 and DRB1*04.


In a more preferred embodiment, the present invention relates to a composition or polyepitopic peptide comprising at least three HLA class I binding peptides selected from Table 13. Any combination is possible, for example:

    • at least 3 HLA-A binding peptides,
    • at least 3 HLA-B binding peptides,
    • at least 3 HLA-C binding peptides,
    • at least 2 HLA-A binding peptides and at least 1 HLA-B or HLA-C binding peptide,
    • at least 2 HLA-B binding peptides and at least 1 HLA-A or HLA-C binding peptide,
    • at least 2 HLA-C binding peptides and at least 1 HLA-A or HLA-B binding peptide, or
    • at least one HLA-A, at least one HLA B and at least one HLA-C binding peptide.


More preferred and for each combination, the at least three peptides are selected to bind HLA molecules derived from the same or a different HLA-group. Preferred HLA-groups are: HLA-A01, A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06 and Cw07. More specifically, the composition or polyepitopic peptide comprises at least three peptides selected from Table 13, said at least three peptides being:

    • at least one HLA-A binding peptide selected from a HLA-A01, A02, A3, A11 or A24 binding peptide,
    • at least one HLA-B binding peptide selected from a HLA-B07, B08, B35, B40 or B44 binding peptide, and/or
    • at least one HLA-C binding peptide selected from a HLA-Cw03, Cw04, Cw06 or Cw07 binding peptide.


An HLA-A01 binding peptide is defined as a peptide capable of binding at least one molecule of the HLA-01 group. Said definition can be extrapolated to the other allele groups, i.e. A02, A03, A11, A24, B07, B08, B35, B40, B44, Cw03, Cw04, Cw06, Cw07 etc.


HLA class I binding peptides of the invention can be admixed with, or linked to, HLA class II binding peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. Accordingly, the composition or polyepitopic peptide of the present invention further comprises at least one HLA class II binding peptide. Alternatively, the composition or polyepitopic peptide of the present invention comprises at least one HLA class II binding peptide. More specific, said HLA class II binding peptide is selected from Table 14. The amount of HTL epitopes is not limiting, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more HTL epitopes can be comprised in the composition or polyepitopic peptide of the present invention. In a specific embodiment, the composition or polyepitopic peptide comprises at least three CTL peptides selected from Table 13 and at least one HTL peptide selected from Table 14.


In a further embodiment, the composition or polyepitopic peptide can also comprise the universal T cell epitope called PADRE® (Epimmune, San Diego; described, for example in U.S. Pat. No. 5,736,142 or International Application WO95/07707, which are enclosed herein by reference). A ‘PanDR binding peptide or PADRE® peptide” is a member of a family of molecules that binds more that one HLA class II DR molecule. The pattern that defines the PADRE® family of molecules can be thought of as an HLA Class II supermotif. PADRE® binds to most HLA-DR molecules and stimulates in vitro and in vivo human helper T lymphocyte (HTL) responses. Alternatively T-help epitopes can be used from universally used vaccines such as tetanos toxoid.


In a further embodiment, the peptides in the composition or polyepitopic peptide are characterized in that they are derived from a HCV protein, and more specific from at least one of the following HCV regions selected from the group consisting of Core, E1, E2/NS1, NS2, NS3, NS4A, NS4B, NS5A and NS5B. Even more preferred is that peptides are characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.


In a further embodiment the two or more epitopes in the polyepitopic peptide consist of discrete HCV amino acid sequences (discrete epitopes) or nested HCV amino acid sequences (nested epitopes). Particularly preferred are “nested epitopes”. Nested epitopes occur where at least two individual or discrete epitopes overlap partly or completely in a given peptide sequence. A nested epitope can comprise both HLA class I and HLA class II epitopes, 2 or more HLA class I epitopes (whereby the epitopes bind two or more alleles of class I loci, supertypes or groups), or 2 or more HLA class II epitopes (whereby the epitopes bind two or more alleles of class II loci, supertypes or groups). A nested epitope can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more individual epitopes. Nested epitopes enable epitope-based vaccines with broad population coverage as they provide a high number of epitopes by a limited number of amino acids. This is particular advantageous since the number of epitopes of a vaccine is limited by constraints originating from manufacturing, formulation and product stability. The length of the nested epitope varies according to the amount of individual epitopes included. Usually, a nested epitope consists of 9 to 35 amino acids. Preferably, the nested epitope consists of 35 amino acids or less, i.e 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9 amino acids. More preferred, the nested epitope consists of 9 to 30 amino acids, 9 to 25 amino acids, 10 to 30 amino acids or 10 to 25 amino acids.


Examples of nested epitopes based on 3 or more individual epitopes identified in the present invention and whereby the individual epitopes have a binding affinity of less than 11000 nM for a given HLA are shown in Table A. Said individual epitopes have an overlap of at least 3 amino acids.

TABLE AThe nested epitopes are indicated in bold. The individualepitopes are indicated in normal font.SEQHLAIDHLA class IClass IINOSequencecoveragecoverage2277GQIVGGVYLLPRRGPRLGVRATRKSER2254QIVGGVYLLPRRGPRLGVRATRKSER127GQIVGGVYLCw03616 QIVGGVYLLA02, Cw03149       YLLPRRGPRA032047       YLLPRRGPRLA02; B08132        LLPRRGPRLA24; B081442         LPRRGPRLB07; B08380         LPRRGPRLGB07450         LPRRGPRLGVB072149             GPRLGVRATRKSERDRB1387             GPRLGVRATB07144               RLGVRATRKA032255KTSERSQPRGRRQPIPKARR167KTSERSQPRA03390      QPRGRRQPIB07; B08159           RQPIPKARRA032256LYGNEGLGWAGWLL1487LYGNEGLGWA241150     GLGWAGWLLA24; A022257VIDTLTCGFADLMGYIPLVGAPLGGAARAL1914VIDTLTCGFAA012    LTCGFADLMA011465    LTCGFADLMGYA01236       GFADLMGYIA24; Cw041048        FADLMGYIPLCw0466          DLMGYIPLVA022038              YIPLVGAPLA02; A241289               IPLVGAPLB07; B08384                    APLGGAARAB07836                    APLGGAARALB072258NLPGCSFSIFLLALLSCLT93NLPGCSFSIA24; A021425 LPGCSFSIB07375 LPGCSFSIFB07; B351426 LPGCSFSIFLB07250     SFSIFLLALA24; Cw04, −07361         FLLALLSCLA021070         FLLALLSCLTA022259AAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGV56AAYAAQGYKA03277 AYAAQGYKVA2495  YAAQGYKVLB072107    AQGYKVLVLNPSVAADRB1, −42157      GYKVLVLNPSVAATLDRB1, −42235         VLVLNPSVAATLGFGDRB173        KVLVLNPSVA021887                VAATLGFGAYA01557                 AATLGFGAYA011831                   TLGFGAYMSKA03244                        AYMSKAHGVA242260GEIPFYGKAIPI1117GEIPFYGKAIB441283  IPFYGKAIB071553   PFYGKAIPIA242261HLIFCHSKKKCDEL148HLIFCHSKKA031228HLIFCHSKKKA03151 LIFCHSKKKA03455     HSKKKCDELB082262GLNAVAYYRGLDVSVI145GLNAVAYYRA03394    VAYYRGLDVB08; Cw06907     AYYRGLDVSVCw07271      YYRGLDVSVCw07; A242083      YYRGLDVSVIA24; Cw07, −062263TPGERPSGMFDSSVLCECY372TPGERPSGMB071687    RPSGMFDSSVB0771       GMFDSSVLCA0217          DSSVLCECYA012264LRAYLNTPGLPVCQDHLEF1454LRAYLNTPGLCw07434 RAYLNTPGLCw032048   YLNTPGLPVA02; A241444         LPVCQDHLEFB352265EFWESVFTGLTHIDAHFL1010EFWESVFTGLCw04234 FWESVFTGLCw04; A2476    SVFTGLTHIA02258        GLTHIDAHFA245         LTHIDAHFLA022266FPYLVAYQATVCARA443FPYLVAYQAB08; B352052  YLVAYQATVA0283      YQATVCARAA022267APPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAV381APPPSWDQMB35; B07279    SWDQMWKCLCw04; A241804    SWDQMWKCLICw04238       QMWKCLIRLA02; A24122           CLIRLKPTLA24205            LIRLKPTLHB082164                KPTLHGPTPLLYRLGDRB11343                KPTLHGPTPLB07; B351587                 PTLHGPTPLLYA0181                  TLHGPTPLLA02; A241833                  TLHGPTPLLYA01219                   LHGPTPLLYCw07307                     GPTPLLYRLB35; B07389                       TPLLYRLGAB071851                       TPLLYRLGAVB072268VTLTHPITKYIMA21VTLTHPITKA0323  LTHPITKYIA24396    HPITKYIMAB08; B352269FWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAF2278FWAKHMWNFISGIQYLAGLSTLPGNPA1095FWAKHMWNFA24; Cw041096FWAKHMWNFIA241993 WAKHMWNFIB081233    HMWNFISGIA021521       NFISGIQYLA24; Cw04DRB1, −4, −52162            IQYLAGLSTLPGNPA1625             QYLAGLSTLA241428                     LPGNPAIASLB071527                        NPAIASLMAB071528                        NPAIASLMAFB07; B352270KVLVDILAGYGAGVAGALVAFK1350KVLVDILAGYA031478  LVDILAGYGAA011269     ILAGYGAGVA022166      LAGYGAGVAGALVAFDRB11193            GVAGALVAFKA031890             VAGALVAFKA032271VNLLPAILSPGALVVGV2236VNLLPAILSPGALVVGDRB1, −41418   LPAILSPGALB07; B351275      ILSPGALVVA021759        SPGALVVGVB072272GRKPARLIVFPDLGVRVCEKMALYDVVSTL1182GRKPARLIVFCw071336  KPARLIVFB07643    ARLIVFPDLCw071661     RLIVFPDLGVA02349        VFPDLGVRVCw04632              VRVCEKMALCw073               RVCEKMALYA0367                     ALYDVVSTLA02; A242273VMGSSYGFQYSPGQRVEFLVNAWKSKKCPMGFSY1938VMGSSYGFA242153  GSSYGFQYSPGQRVEDRB1, −3, −5111       FQYSPGQRVCw061626        QYSPGQRVEFA24373          SPGQRVEFLB07; B081710              RVEFLVNAWA24146                  LVNAWKSKKA031739                        SKKCPMGFSYCw072274EARQAIRSLTERLYIGGPLT388EARQAIRSLB08; B07624     IRSLTERLYCw07; Cw0679           RLYIGGPLTA022275YRRCRASGVL475YRRCRASGVB08; Cw062066YRRCRASGVLCw07; Cw062276PVNSWLGNIIMYAPTLWARMILMTHFFS256PVNSWLGNIA2462    WLGNIIMYAA0287       NIIMYAPTLA02; A24; Cw03246        IIMYAPTLWA2484         IMYAPTLWAA021511          MYAPTLWARMCw07852            APTLWARMB07371            APTLWARMIB07853            APTLWARMILB07854            APTLWARMILMB072194             PTLWARMILMTHFFSDRB1, −492              TLWARMILMA02; B081483               LWARMILMTHFA24287                WARMILMTHB081997                WARMILMTHFCw07641                 ARMILMTHFCw07864                 ARMILMTHFFCw0759                  RMILMTHFFA24; B44


Accordingly, the present invention encompasses a nested epitope consisting of 9 to 35 amino acids and comprising at least 2 epitopes selected from Tables 13 and 14. More specific, the nested epitope comprises 2 or more individual epitopes as given in Table A. More preferred, the nested epitope comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more epitopes selected from Tables 13 and 14. Examples of such nested epitopes are presented in Table A. The present invention thus relates to a nested epitope consisting of 9 to 35 amino acids and selected from the group consisting of SEQ ID NO 2254 to 2278, or a part thereof, characterized in that the nested epitope or the part thereof comprises at least 2 individual CTL and/or HTL epitopes. More preferred, said nested epitope or part thereof comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more individual CTL and/or HTL epitopes as presented in Table A.


The applications of the nested epitopes in the present invention, i.e. possible combinations, modifications, compositions, kits, therapeutic and diagnostic use, are the same as described for the (polyepitopic) peptides of the present invention.


In a preferred embodiment, the present invention relates to a polyepitopic peptide comprising at least one nested epitope or a fragment thereof as described herein.


The peptides or polypeptides or polyepitopic peptides can optionally be modified, such as by lipidation (e.g. a peptide joined to a lipid), addition of targeting or other sequences. In the HCV peptides as described herein, one cysteine residue, or 2 or more cysteine residues comprised in said peptides may be “reversibly or irreversibly blocked”.


An “reversibly blocked cysteine” is a cysteine of which the cysteine thiol-group is irreversibly protected by chemical means. In particular, “irreversible protection” or “irreversible blocking” by chemical means refers to alkylation, preferably alkylation of a cysteine in a protein by means of alkylating agents, such as, for example, active halogens, ethylenimine or N-(iodoethyl)trifluoro-acetamide. In this respect, it is to be understood that alkylation of cysteine thiol-groups refers to the replacement of the thiol-hydrogen by (CH2)nR, in which n is 0, 1, 2, 3 or 4 and R═H, COOH, NH2, CONH2, phenyl, or any derivative thereof. Alkylation can be performed by any method known in the art, such as, for example, active halogens X(CH2)nR in which X is a halogen such as I, Br, Cl or F. Examples of active halogens are methyliodide, iodoacetic acid, iodoacetamide, and 2-bromoethylamine.


A “reversibly blocked cysteine” is a cysteine of which the cysteine thiol-groups is reversibly protected. In particular, the term “reversible protection” or “reversible blocking” as used herein contemplates covalently binding of modification agents to the cysteine thiol-groups, as well as manipulating the environment of the protein such, that the redox state of the cysteine thiol-groups remains (shielding). Reversible protection of the cysteine thiol-groups can be carried out chemically or enzymatically. The term “reversible protection by enzymatical means” as used herein contemplates reversible protection mediated by enzymes, such as for example acyl-transferases, e.g. acyl-transferases that are involved in catalysing thio-esterification, such as palmitoyl acyltransferase. The term “reversible protection by chemical means” as used herein contemplates reversible protection:

  • 1. by modification agents that reversibly modify cysteinyls such as for example by sulphonation and thio-esterification;
  • 2. by modification agents that reversibly modify the cysteinyls of the present invention such as, for example, by heavy metals, in particular Zn2+, Cd2+, mono-, dithio- and disulfide-compounds (e.g. aryl- and alkylmethanethiosulfonate, dithiopyridine, dithiomorpholine, dihydrolipoamide, Ellmann reagent, aldrothiol™ (Aldrich) (Rein et al. 1996), dithiocarbamates), or thiolation agents (e.g. gluthathion, N-Acetyl cysteine, cysteineamine). Dithiocarbamate comprise a broad class of molecules possessing an R1R2NC(S)SR3 functional group, which gives them the ability to react with sulphydryl groups. Thiol containing compounds are preferentially used in a concentration of 0,1-50 mM, more preferentially in a concentration of 1-50 mM, and even more preferentially in a concentration of 10-50 mM;
  • 3. by the presence of modification agents that preserve the thiol status (stabilise), in particular antioxidantia, such as for example DTT, dihydroascorbate, vitamins and derivates, mannitol, amino acids, peptides and derivates (e.g. histidine, ergothioneine, camosine, methionine), gallates, hydroxyanisole, hydoxytoluene, hydroquinon, hydroxymethylphenol and their derivates in concentration range of 10 μM-10 mM, more preferentially in a concentration of 1-10 mM;
  • 4. by thiol stabilising conditions such as, for example, (i) cofactors as metal ions (Zn2+, Mg2+), ATP, (ii) pH control (e.g. for proteins in most cases pH ˜5 or pH is preferentially thiol pKa −2; e.g. for peptides purified by Reversed Phase Chromatography at pH ˜2).


Combinations of reversible protection as described in (1), (2), (3) and (4) may be applied.


The reversible protection and thiol stabilizing compounds may be presented under a monomeric, polymeric or liposomic form.


The removal of the reversibly protection state of the cysteine residues can chemically or enzymatically accomplished by e.g.:

    • a reductant, in particular DTT, DTE, 2-mercaptoethanol, dithionite, SnCl2, sodium borohydride, hydroxylamine, TCEP, in particular in a concentration of 1-200 mM, more preferentially in a concentration of 50-200 mM;
    • removal of the thiol stabilising conditions or agents by e.g. pH increase;
    • enzymes, in particular thioesterases, glutaredoxine, thioredoxine, in particular in a concentration of 0,01-5 μM, even more particular in a concentration range of 0,1-5 μM.;
    • combinations of the above described chemical and/or enzymatical conditions.


The removal of the reversibly protection state of the cysteine residues can be carried out in vitro or in vivo, e.g. in a cell or in an individual.


Alternatively, one cysteine residue, or 2 or more cysteine residues comprised in the HCV peptides as described herein may be mutated to a natural amino acid, preferentially to methionine, glutamic acid, glutamine or lysine.


The peptides of the invention can be combined via linkage or via a spacer amino acid to form polymers (multimers: homopolymers or heteropolymers), or can be formulated in a composition without linkage, as an admixture. The “spacer amino acid” or “spacer peptide” is typically comprised of one or more relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, Leu, Ile, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will be at least 1 residue, more usually 2, 3, 4, 5 or 6 residues, or even up to 7, 8, 9, 10, 15, 20, 30, or 50 residues. Spacer amino acid residues can be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Generally, the spacer sequence will include nonpolar amino acids, though polar residues such as Glu, Gln, Ser, His, and Asn could also be present, particularly for spacer sequences longer than three residues. The only outer limit on the total length and nature of each spacer sequence derives from considerations of ease of synthesis, proteolytic processing, and manipulation of the polypeptide.


Moreover, the present invention also contemplates a polypeptide comprising or consisting of multiple repeats of any of the peptides as defined above or combinations of any of the peptides as defined above.


Minigene


A further embodiment of the present invention relates to a nucleic acid encoding a peptide selected from Tables 13 and 14. Said nucleic acids are “isolated” or “synthetic”. The term “isolated” refers to material that is substantially free from components that normally accompany it as found in its naturally occurring environment. However, it should be clear that the isolated nucleic acid of the present invention might comprise heterologous cell components or a label and the like. The terms “nucleic acid” or “polynucleic acid” are used interchangeable throughout the present application and refer to a deoxyribonucleotide or ribonucleotide polymer in either single- or double stranded form, which may encompass known analogues of natural nucleotides.


More particular, the present invention relates to a “minigene” or a polynucleotide that encodes a polyepitopic peptide as described herein. The term “multi-epitope construct” when referring to nucleic acids can be used interchangeably with the terms “polynucleotides”, “minigene” and “multi-epitope nucleic acid vaccine,” and other equivalent phrases, and comprises multiple epitope nucleic acids that encode peptide epitopes of any length that can bind to a molecule functioning in the immune system, preferably a HLA class I and a T-cell receptor or a HLA class II and a T-cell receptor. The epitope nucleic acids in a multi-epitope construct can encode HLA class I epitopes, HLA class II epitopes, a combination of HLA class I and class II epitopes or a nested epitope. HLA class I-encoding epitope nucleic acids are referred to as CTL epitope nucleic acids, and HLA class II-encoding epitope nucleic acids are referred to as HTL epitope nucleic acids. Some multi-epitope constructs can have a subset of the multi-epitope nucleic acids encoding HLA class I epitopes and another subset of the multi-epitope nucleic acids encoding HLA class II epitopes. A multi-epitope construct may have one or more spacer nucleic acids. A spacer nucleic acid may flank each epitope nucleic acid in a construct. The spacer nucleic acid may encode one or more amino acids (spacer amino acids). Alternatively, minigenes can be constructed using the technology as described by Qi-Liang Cai et al., 2004.


Accordingly, the present invention relates to a polynucleotide or minigene encoding a polyepitopic peptide comprising at least one peptide selected from Tables 13 and 14 or comprising at least one nested epitope selected from Table A.


Furthermore, the invention also encompasses a polynucleotide or minigene encoding a polyepitopic peptide comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60 or more peptides. Preferably, the peptides are selected from Tables 13 and 14. Any combination of peptides is possible as described for the polyepitopic peptide. Hence, the polynucleotide or minigene can also encode one or more nested epitopes, or fragments thereof, for example as given in Table A.


More particular, the nucleic acids of the invention can be incorporated in an HLA-group restricted construct. Said “HLA-group restricted construct” comprises at least two nucleic acid epitopes encoding peptides binding to an allele or molecule of the same HLA group. The number of epitopes in a HLA-group restricted construct is not limited and can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25 or more. The same combinations are possible as described for the HLA-group restricted polyepitopic peptide.


In a preferred embodiment, the polyepitopic peptide encoded by the polynucleotide further comprises at least one HLA-class I binding peptide, a HLA class II binding peptide or a HCV derived peptide. Said HLA Class I binding peptide and said HLA Class II binding peptide can be derived from a foreign antigen or organism (non-HCV). There is no limitation on the length of said peptide, this can have a length of e.g. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 or more amino acids.


In a further embodiment, the polynucleotide or minigene as described herein can further comprise one or more spacer nucleic acids, i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. In a particular embodiment, the minigene further comprises one or more regulatory sequences and/or one or more signal sequences and/or one or more promotor sequences.


Polynucleotides or nucleic acids that are not commercially available can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, 1981, using an automated synthesizer, as described in Van Devanter et. al., 1984. Purification of polynucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson & Reanier, 1983. Other purification methods are reversed phase separation and hydroxyapatite and are well known to the skilled person. Chemically synthesized and purified polynucleotides can be assembled into longer polynucleotides by PCR-based methods (Stemmer et al., 1995; Kriegler et al., 1991). The epitopes of the multi-epitope constructs are typically subcloned into an expression vector that contains a promoter to direct transcription, as well as other regulatory sequences such as enhancers and polyadenylation sites. Additional elements of the vector are e.g. signal or target sequences, translational initiation and termination sequences, 5′ and 3′ untranslated regions and introns, required for expression of the multi-epitope construct in host cells.


For therapeutic or prophylactic immunization purposes, the (polyepitopic) peptides of the invention can be expressed by plasmid vectors as well as viral or bacterial vectors as already described herein. The term “vector” may comprise a plasmid, a cosmid, a prokaryotic organism, a phage, or an eukaryotic organism such as a virus, an animal or human cell or a yeast cell. The expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the multi-epitope construct in host cells. A typical expression cassette thus contains a promoter operably linked to the multi-epitope construct and signals required for efficient polyadenylation of the transcript. Additional elements of the cassette may include enhancers and introns with functional splice donor and acceptor sites.


Suitable promoters are well known in the art and described, e.g., in Sambrook et al., Molecular cloning, A Laboratory Manual (2nd ed. 1989) and in Ausubel et al, Current Protocols in Molecular Biology (1994). Eukaryotic expression systems for mammalian cells are well known in the art and are commercially available. Such promoter elements include, for example, cytomegalovirus (CMV), Rous sarcoma virus long terminal repeats (RSV LTR) and Simian Virus 40 (SV40). See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.


In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.


Medical Use


In a further embodiment, the present invention also relates to the (polyepitopic) peptide, nested epitope, nucleic acid, minigene or composition of the present invention for use as a medicament. Preferably, said medicament is a vaccine. In a specific embodiment the invention also relates to a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene as described herein for use a medicament. More specifically, the present invention relates to the use of at least one of the peptides selected from Tables 13 and 14 or the nucleic acid sequence encoding said peptide for the manufacture of a medicament for preventing or treating a HCV infection. In a specific embodiment the invention also relates to a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene as described herein for the manufacture of a medicament for preventing or treating a HCV infection.


Vaccines and Vaccine Compositions


The invention furthermore relates to compositions comprising any of the HCV (polyepitopic) peptides as described herein or the corresponding nucleic acids. In a specific embodiment, the composition furthermore comprises at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle. The terms “composition”, “immunogenic composition” and “pharmaceutical composition” are used interchangeable with “vaccine composition” or “vaccine”. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides, one or more epitopes of the invention comprised in a polyepitopic peptide, and/or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., the epitope can be bound to an HLA molecule on dendritic cells. More particularly, said immunogenic composition is a vaccine composition. Even more particularly, said vaccine composition is a prophylactic vaccine composition. Alternatively, said vaccine composition may also be a therapeutic vaccine composition. The prophylactic vaccine composition refers to a vaccine composition aimed for preventing HCV infection and to be administered to healthy persons who are not yet infected with HCV. The therapeutic vaccine composition refers to a vaccine composition aimed for treatment of HCV infection and to be administered to patients being infected with HCV.


A vaccine or vaccine composition is an immunogenic composition capable of eliciting an immune response sufficiently broad and vigorous to provoke at least one or both of:

    • a stabilizing effect on the multiplication of a pathogen already present in a host and against which the vaccine composition is targeted. A vaccine composition may also induce an immune response in a host already infected with the pathogen against which the immune response leading to stabilization, regression or resolving of the disease; and
    • an increase of the rate at which a pathogen newly introduced in a host, after immunization with a vaccine composition targeted against said pathogen, is resolved from said host.


A vaccine composition may also provoke an immune response broad and strong enough to exert a negative effect on the survival of a pathogen already present in a host or broad and strong enough to prevent an immunized host from developing disease symptoms caused by a newly introduced pathogen. In particular the vaccine composition of the invention is a HCV vaccine composition. In particular, the vaccine or vaccine composition comprises an effective amount of the peptides or nucleic acids of the present invention. In a specific embodiment, said vaccine composition comprises a vector, a plasmid, a recombinant virus or host cell comprising the nucleic acid or minigene of the present invention. Said vaccine composition may additionally comprise one or more further active substances and/or at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.


An “effective amount” of a peptide or nucleic acid in a vaccine or vaccine composition is referred to as an amount required and sufficient to elicit an immune response. It will be clear to the skilled artisan that the immune response sufficiently broad and vigorous to provoke the effects envisaged by the vaccine composition may require successive (in time) immunizations with the vaccine composition as part of a vaccination scheme or vaccination schedule. The “effective amount” may vary depending on the health and physical condition of the individual to be treated, the age of the individual to be treated (e.g. dosing for infants may be lower than for adults) the taxonomic group of the individual to be treated (e.g. human, non-human primate, primate, etc.), the capacity of the individual's immune system to mount an effective immune response, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment, the strain of the infecting pathogen and other relevant factors. It is expected that the effective amount of the vaccine composition will fall in a relatively broad range that can be determined through routine trials, i.e. 0,01-50 mg/dose; more preferably between 0,1-5 mg/dose. Usually, the amount will vary from 0,01 to 1000 μg/dose, more particularly from 0,1 to 100 μg/dose. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.


A composition or vaccine composition may comprise more than one peptide or nucleic acid, i.e., a plurality thereof, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or more, e.g., up to 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more distinct peptides or nucleic acids.


Carriers, Adjuvants and Vehicles—Delivery


Once appropriately immunogenic peptides, or the nucleic acids encoding them, have been defined, they can be sorted and delivered by various means, herein referred to as “compositions”, “vaccine compositions” or “pharmaceutical compositions”. The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are usefull for administration to mammals, particularly humans, to treat and/or prevent HCV infection. Vaccine compositions containing the peptides of the invention, or the DNA encoding them, are administered to a patient infected with HCV or to an individual susceptible to, or otherwise at risk for, HCV infection to elicit an immune response against HCV antigens and thus enhance the patient's own immune response capabilities.


Various art-recognized delivery systems may be used to deliver peptides, polyepitopic polypeptides, or polynucleotides encoding peptides or polyepitope polypeptides, into appropriate cells. The peptides and nucleic acids encoding them can be delivered in a pharmaceutically acceptable carrier or as colloidal suspensions, or as powders, with or without diluents. They can be “naked” or associated with delivery vehicles and delivered using delivery systems known in the art.


A “pharmaceutically acceptable carrier” or “pharmaceutically acceptable adjuvant” is any suitable excipient, diluent, carrier and/or adjuvant which, by themselves, do not induce the production of antibodies harmful to the individual receiving the composition nor do they elicit protection. Preferably, a pharmaceutically acceptable carrier or adjuvant enhances the immune response elicited by an antigen. Suitable carriers or adjuvantia typically comprise one or more of the compounds included in the following non-exhaustive list: large slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles; aluminium hydroxide, aluminium phosphate (see International Patent Application Publication No. WO93/24148), alum (KA1(SO4)2.12H2O), or one of these in combination with 3-0-deacylated monophosphoryl lipid A (see International Patent Application Publication No. WO93/19780); N-acetyl-muramyl-L-threonyl-D-isoglutamine (see U.S. Pat. No. 4,606,918), N-acetyl-normuramyl-L-alanyl-D-isoglutamine, N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-alanine2-(1′,2′-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy) ethylamine; RIBI (ImmunoChem Research Inc., Hamilton, Mont., USA) which contains monophosphoryl lipid A (i.e., a detoxified endotoxin), trehalose-6,6-dimycolate, and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion. Any of the three components MPL, TDM or CWS may also be used alone or combined 2 by 2; adjuvants such as Stimulon (Cambridge Bioscience, Worcester, Mass., USA), SAF-1 (Syntex); adjuvants such as combinations between QS21 and 3-de-O-acetylated monophosphoryl lipid A (see International Application No. WO94/00153) which may be further supplemented with an oil-in-water emulsion (see, e.g., International Application Nos. WO95/17210, WO97/01640 and WO9856414) in which the oil-in-water emulsion comprises a metabolisable oil and a saponin, or a metabolisable oil, a saponin, and a sterol, or which may be further supplemented with a cytokine (see International Application No. WO98/57659); adjuvants such as MF-59 (Chiron), or poly[di(carboxylatophenoxy) phosphazene] based adjuvants (Virus Research Institute); blockcopolymer based adjuvants such as Optivax (Vaxcel, Cytrx) or inulin-based adjuvants, such as Algammulin and Gammalnulin (Anutech); Complete or Incomplete Freund's Adjuvant (CFA or IFA, respectively) or Gerbu preparations (Gerbu Biotechnik); a saponin such as QuilA, a purified saponin such as QS21, QS7 or QS17, β-escin or digitonin; immunostimulatory oligonucleotides comprising unmethylated CpG dinucleotides such as [purine-purine-CG-pyrimidine-pyrimidine] oligonucleotides. These immunostimulatory oligonucleotides include CpG class A, B, and C molecules (Coley Pharmaceuticals), ISS (Dynavax), Immunomers (Hybridon). Immunostimulatory oligonucleotides may also be combined with cationic peptides as described, e.g., by Riedl et al. (2002); Immune Stimulating Complexes comprising saponins, for example Quil A (ISCOMS); excipients and diluents, which are inherently non-toxic and non-therapeutic, such as water, saline, glycerol, ethanol, wetting or emulsifying agents, pH buffering substances, preservatives, and the like; a biodegradable and/or biocompatible oil such as squalane, squalene, eicosane, tetratetracontane, glycerol, peanut oil, vegetable oil, in a concentration of, e.g., 1 to 10% or 2,5 to 5%; vitamins such as vitamin C (ascorbic acid or its salts or esters), vitamin E (tocopherol), or vitamin A; carotenoids, or natural or synthetic flavanoids; trace elements, such as selenium; any Toll-like receptor ligand as reviewed in Barton and Medzhitov (2002).


Any of the afore-mentioned adjuvants comprising 3-de-O-acetylated monophosphoryl lipid A, said 3-de-O-acetylated monophosphoryl lipid A may be forming a small particle (see International Application No. WO94/21292).


In any of the aforementioned adjuvants MPL or 3-de-O-acetylated monophosphoryl lipid A can be replaced by a synthetic analogue referred to as RC-529 or by any other amino-alkyl glucosaminide 4-phosphate (Johnson et al. 1999, Persing et al. 2002). Alternatively it can be replaced by other lipid A analogues such as OM-197 (Byl et al. 2003).


A “pharmaceutically acceptable vehicle” includes vehicles such as water, saline, physiological salt solutions, glycerol, ethanol, etc. Auxiliary substances such as wetting or emulsifying agents, pH buffering substances, preservatives may be included in such vehicles. Delivery systems known in the art are e.g. lipopeptides, peptide compositions encapsulated in poly-DL-lactide-co-glycolide (“PLG”), microspheres, peptide compositions contained in immune stimulating complexes (ISCOMS), multiple antigen peptide systems (MAPs), viral delivery vectors, particles of viral or synthetic origin, adjuvants, liposomes, lipids, microparticles or microcapsules, gold particles, nanoparticles, polymers, condensing agents, polysaccharides, polyamino acids, dendrimers, saponins, QS21, adsorption enhancing materials, fatty acids or, naked or particle absorbed cDNA.


Typically, a vaccine or vaccine composition is prepared as an injectable, either as a liquid solution or suspension. Injection may be subcutaneous, intramuscular, intravenous, intraperitoneal, intrathecal, intradermal, intraepidermal, or by “gene gun”. Other types of administration comprise electroporation, implantation, suppositories, oral ingestion, enteric application, inhalation, aerosolization or nasal spray or drops. Solid forms, suitable for dissolving in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation may also be emulsified or encapsulated in liposomes for enhancing adjuvant effect.


A liquid formulation may include oils, polymers, vitamins, carbohydrates, amino acids, salts, buffers, albumin, surfactants, or bulking agents. Preferably carbohydrates include sugar or sugar alcohols such as mono-, di-, or polysaccharides, or water-soluble glucans. The saccharides or glucans can include fructose, dextrose, lactose, glucose, mannose, sorbose, xylose, maltose, sucrose, dextran, pullulan, dextrin, alpha and beta cyclodextrin, soluble starch, hydroxethyl starch and carboxymethylcellulose, or mixtures thereof. Sucrose is most preferred. “Sugar alcohol” is defined as a C4 to C8 hydrocarbon having an —OH group and includes galactitol, inositol, mannitol, xylitol, sorbitol, glycerol, and arabitol. Mannitol is most preferred. These sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used as long as the sugar or sugar alcohol is soluble in the aqueous preparation. Preferably, the sugar or sugar alcohol concentration is between 1,0% (w/v) and 7,0% (w/v), more preferable between 2,0 and 6,0% (w/v). Preferably amino acids include levorotary (L) forms of carnitine, arginine, and betaine; however, other amino acids may be added. Preferred polymers include polyvinylpyrrolidone (PVP) with an average molecular weight between 2,000 and 3,000, or polyethylene glycol (PEG) with an average molecular weight between 3,000 and 5,000. It is also preferred to use a buffer in the composition to minimize pH changes in the solution before lyophilization or after reconstitution. Any physiological buffer may be used, but citrate, phosphate, succinate, and glutamate buffers or mixtures thereof are preferred. Most preferred is a citrate buffer. Preferably, the concentration is from 0,01 to 0,3 molar. Surfactants that can be added to the formulation are shown in EP patent applications No. EP 0 270 799 and EP 0 268 110.


Additionally, polypeptides can be chemically modified by covalent conjugation to a polymer to increase their circulating half-life, for example. Preferred polymers, and methods to attach them to peptides, are shown in U.S. Pat. Nos. 4,766,106; 4,179,337; 4,495,285; and 4,609,546. Preferred polymers are polyoxyethylated polyols and polyethylene glycol (PEG). PEG is soluble in water at room temperature and has the general formula: R(O—CH2—CH2)nO—R where R can be hydrogen, or a protective group such as an alkyl or alkanol group. Preferably, the protective group has between 1 and 8 carbons, more preferably it is methyl. The symbol n is a positive integer, preferably between 1 and 1.000, more preferably between 2 and 500. The PEG has a preferred average molecular weight between 1000 and 40.000, more preferably between 2000 and 20.000, most preferably between 3.000 and 12.000. Preferably, PEG has at least one hydroxy group, more preferably it is a terminal hydroxy group. It is this hydroxy group which is preferably activated. However, it will be understood that the type and amount of the reactive groups may be varied to achieve a covalently conjugated PEG/polypeptide of the present invention.


Water soluble polyoxyethylated polyols are also useful in the present invention. They include polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethylated glycerol (POG), etc. POG is preferred. One reason is because the glycerol backbone of polyoxyethylated glycerol is the same backbone occurring naturally in, for example, animals and humans in mono-, di-, triglycerides. Therefore, this branching would not necessarily be seen as a foreign agent in the body. The POG has a preferred molecular weight in the same range as PEG. The structure for POG is shown in Knauf et al., 1988, and a discussion of POG/IL-2 conjugates is found in U.S. Pat. No. 4,766,106.


Another drug delivery system for increasing circulatory half-life is the liposome. The peptides and nucleic acids of the invention may also be administered via liposomes, which serve to target a particular tissue, such as lymphoid tissue, or to target selectively infected cells, as well as to increase the half-life of the peptide and nucleic acids composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide or nucleic acids to be delivered is incorporated as part of a liposome or embedded, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide or nucleic acids of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide and nucleic acids compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka et al, 1980, and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.


For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated. For example, liposomes carrying either immunogenic polypeptides or nucleic acids encoding immunogenic epitopes are known to elicit CTL responses in vivo (Reddy et al., 1992; Collins et al., 1992; Fries et al., 1992; Nabel et al., 1992).


After the liquid pharmaceutical composition is prepared, it is preferably lyophilized to prevent degradation and to preserve sterility. Methods for lyophilizing liquid compositions are known to those of ordinary skill in the art. Just prior to use, the composition may be reconstituted with a sterile diluent (Ringer's solution, distilled water, or sterile saline, for example) which may include additional ingredients. Upon reconstitution, the composition is preferably administered to subjects using those methods that are known to those skilled in the art.


The approach known as “naked DNA” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite 1988; U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner et al., 1987. In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.


Further examples of DNA-based delivery technologies include facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687), DNA formulated with charged or uncharged lipids, DNA formulated in liposomes, emulsified DNA, DNA included in a viral vector, DNA formulated with a transfection-facilitating protein or polypeptide, DNA formulated with a targeting protein or polypeptide, DNA formulated with calcium precipitating agents, DNA coupled to an inert carrier molecule, and DNA formulated with an adjuvant. In this context it is noted that practically all considerations pertaining to the use of adjuvants in traditional vaccine formulation apply to the formulation of DNA vaccines.


Recombinant virus or live carrier vectors may also be directly used as live vaccines in humans. Accordingly the present invention also relates to a recombinant virus, an expression vector or a plasmid, and a host cell comprising the nucleic acid encoding at least one of the peptides as disclosed in Tables 13 and 14.


In a preferred embodiment of the invention, the nucleic acid or minigene is introduced in the form of a vector wherein expression is under control of a viral promoter. Therefore, further embodiments of the present invention are an expression vector which comprises a polynucleotide encoding at least one of the herein described peptides and which is capable of expressing the respective peptides, a host cell comprising the expression vector and a method of producing and purifying herein described peptides, pharmaceutical compositions comprising the herein described peptides and a pharmaceutically acceptable carrier and/or adjuvants. The “peptides as described herein” refer to the peptides disclosed in Tables 13 and 14.


Detailed disclosures relating to the formulation and use of nucleic acid vaccines are available, e.g. by Donnelly J. J. et al, 1997 and 1997a. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinia virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors, for example Modified Vaccinia Ankara (MVA), and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., 1991. Further examples are: Alphaviruses (Semliki Forest Virus, Sindbis Vrius, Venezuelan Equine Encephalitis Virus (VEE)), Transgene Herpes simplex Virus (HSV), replication-deficient strains of Adenovirus (human or simian), SV40 vectors, CMV vectors, papilloma virus vectors, and vectors derived from Epstein Barr virus. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.


Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression. In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of nucleic acid vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity. In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE®, Epimmune, San Diego, Calif.). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-P) may be beneficial in certain diseases.


The use of multi-epitope minigenes is described in, e.g., U.S. Pat. No. 6,534,482; An and Whitton, 1997; Thomson et al., 1996; Whitton et al., 1993; Hanke et al., 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing HCV epitopes derived from multiple regions of the HCV polyprotein sequence, the PADRE® universal helper T cell epitope (or multiple HTL epitopes from HCV), and an endoplasmic reticulum-translocating signal sequence can be engineered.


The nucleic acids or minigenes encoding the peptides or polyepitopic polypeptides, or the peptides or polyepitopic peptides themselves, can be administered alone or in combination with other therapies known in the art. In addition, the polypeptides and nucleic acids of the invention can be administered in combination with other treatments designed to enhance immune responses, e.g., by co-administration with adjuvants or cytokines (or nucleic acids encoding cytokines), as is well known in the art. Accordingly, the peptides or nucleic acids or vaccine compositions of the invention can also be used in combination with antiviral drugs such as interferon, or other treatments for viral infection.


All disclosures herein which relate to use of adjuvants in the context of protein or (poly)peptide based pharmaceutical compositions apply mutatis mutandis to their use in nucleic acid vaccination technology. The same holds true for other considerations relating to formulation and mode and route of administration and, hence, also these considerations discussed herein in connection with a traditional pharmaceutical composition apply mutatis mutandis to their use in nucleic acid vaccination technology.


In a further embodiment, the present invention relates to the use of the peptide and/or nucleic acid as described herein for inducing immunity against HCV, characterized in that said peptide and/or nucleic acid is used as part of a series of time and compounds. In this regard, it is to be understood that the term “a series of time and compounds” refers to administering with time intervals to an individual the compounds used for eliciting an immune response. The latter compounds may comprise any of the following components: a peptide or polyepitopic peptide, a nucleic acid or minigene or a vector. In this respect, a series comprises administering, either:

  • (i) a peptide or polyepitopic peptide, or
  • (ii) a nucleic acid, minigene or vector, wherein said nucleic acid, minigene or vector can be administered simultaneously, or at different time intervals, including at alternating time intervals, or
  • (iii) a peptide or polyepitopic peptide in combination with a nucleic acid, minigene or vector, wherein said peptide or polyepitopic peptide and said nucleic acid, minigene or vector can be administered simultaneously, or at different time intervals, including at alternating time intervals, or
  • (iv) either (i) or (ii), possibly in combination with other peptides or nucleic acids or vectors, with time intervals.


The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.


Use of the Peptides for Evaluating Immune Responses.


The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide, related peptides or any other HCV vaccine, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic HCV infection.


Accordingly, the present invention relates to a method of determining the outcome for a subject exposed to HCV, comprising the steps of determining whether the subject has an immune response to one or more peptides selected from Tables 13 and 14.


In a preferred embodiment of the invention, the peptides as described herein can be used as reagents to evaluate an immune response. The immune response to be evaluated can be induced by the natural infection or by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that can be used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.


For example, a peptide of the invention may be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to an antigen or an immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLS (see, e.g., Ogg et al., 1998; and Altman et al., 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention may be generated as follows: a peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and beta2-microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes. As an alternative to tetramers also pentamers or dimers can be used (Current Protocols in Immunology (2000) unit 17.2 supplement 35)


Peptides of the invention may also be used as reagents to evaluate immune recall responses. (see, e.g., Bertoni et al., 1997 and Perma et al., 1991.). For example, patient PBMC samples from individuals with HCV infection may be analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed, for example, for cytotoxic activity (CTL) or for HTL activity.


The peptides may also be used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.


The peptides of the invention may also be used to make antibodies, using techniques well known in the art (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989). Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.


Tables


The peptides of current invention are set out in Tables 1-14. As used herein, “CS_fr” and “CS_to” means Consensus Sequence “from” and “to” residue numbers of the HCV consensus sequence as disclosed in FIG. 1 or 2.


S: Strong, Kdpred <0, 1 μM; M: Medium, Kdpred 0,1-1 μM; W: Weak, Kdpred 1-10 μM

TABLE 1Predicted HLA-A*0101 binding peptidesSEQ IDProteinCS_frCS_topep_seqScoreNOAlgonomics9-mer 1NS314361444ATDALMTGYS1 2C126134LTCGFADLMS2 3NS5B25882596RVCEKMALYS3 4C130138FADLMGYIPM4 5NS315651573LTHIDAHFLM5 6NS312851293ITTGAPITYM6 7NS312101218FTDNSSPPAM7 8NS315811589DNFPYLVAYM8 9NS5B27592767FTEAMTRYSM910NS5B27952803DASGKRVYYM1011NS312881296GAPITYSTYM1112NS312411249PAAYAAQGYM1213NS315201528CYDAGCAWYM1314NS5B28352843YAPTLWARMM1415NS311971205PVESMETTMM1516NS5B26052613AVMGSSYGFM1617NS315131521DSSVLCECYM1718NS314101418LGLNAVAYYM1819NS5B27702778PGDPPQPEYM1920NS313701378NGEIPFYGKM2021NS316351643VILTHPITKM2122NS5B26072615MGSSYGFQYM2223NS316371645LTHPITKYIM2324NS315791587AGDNFPYLVM2425NS312361244KSTKVPAAYM2526NS312911299ITYSTYGKFM2627NS315321540PAETSVRLRM2728C122130VIDTLTCGFM2829NS314201428GLDVSVIPTM2930NS314661474LDPTFTIETM3031C158166LEDGVNYATW3132NS312601268ATLGFGAYMW3233NS316021610PSWDQMWKCW3334NS5B28372845PTLWARMILW3435NS314681476PTFTIETTTW3536NS5B27582766VFTEAMTRYW3637NS5B26032611PQAVMGSSYW3738NS5B27922800VAHDASGKRW3839NS5B27572765RVFTEAMTRW3940NS5B27102718GNTLTCYLKW4041NS5B25632571EVFCVQPEKW4142C172180CSFSIFLLAW4243NS5B26152623YSPGQRVEFW4344NS314341442VVATDALMTW4445C156164RVLEDGVNYW4546NS315341542ETSVRLRAYW4647NS313911399LIFCHSKKKW4748NS5B26622670CCDLAPEARW4849NS5B28262834NSWLGNIIMW4950NS312621270LGFGAYMSKW5051NS314091417ALGLNAVAYW5152NS311991207ESMETTMRSW5253NS314371445TDALMTGYTW5354NS311951203FIPVESMETW5455C109117PTDPRRRSRW5556NS312421250AAYAAQGYKW5657NS312031211TTMRSPVFTW5758NS315691577DAHFLSQTKW5859NS5B28422850RMILMTHFFW5960NS313351343QAETAGARLW6061NS316491657MSADLEVVTW61ScoreSEQ IDProteinCS_frCS_topep_seqPICNOEpimmuneMSATLCSALY221507E1VQDCNCSIY161961E1VQECNCSIY241962E1TQDCNCSIY121864DMRPYCWHY68970ASSVCGPVY56874TTDRSGAPTY881872CTWMNSTGY21947CGAPPCNIY74914E2LTPRCLVDY651474E2LTPRCLIDY321473E2FTIFKVRMY341089E2YTIFKIRMY262070E2FTIFKIRMY331088GLSPAITKY151156VLALPQQAY561926LIAVLGPLY311384LLALLGPAY301389ISGVLWTVY421304NS3CTCGSSDLY18940NS3CTCGAVDLY17938NS3CTCGSADLY21939NS3LLSPRPISY151408NS3KSTKVPAAY7125NS3PAAYAAQGY2912NS3PAAYVAQGY421544NS3ITIGAPITY136NS3ITTGSPITY151309NS3STTGEIPFY501791NS3GSEGEIPFY421185NS3GMGLNAVAY471159NS3ATDALMTGY321NS3DSSVLCECY3117NS3DSVVLCECY83987ETTVRLRAY461035NS5ACTPSPAPNY78943NS5AEVDGVRLHRY171036NS5AELDGVRLHRY231017PLSNSLLRY211560NS5BHSAKSKFGY241241NS5BHSARSKFGY251242NS5BMGSSYGFQY9122NS5BMGSAYGFQY981495NS5BKKDPMGFSY771328NS5BTSCGNTLTCY411867NS5BTSFGNTITCY451868NS5BDASGKRVYY5510NS5BGLSAFSLHSY471153NS5BGLDAFSLHTY281148NS5BGLSAFTLHSY431155NS5BLSAFSLHSY91456NS5BLDAFSLHTY321367NS5BLSAFTLHSY91457NS5BGRAAICGKY951179NS5BLLSVGVGIY471411SEQ IDProteinCS_frCS_topep_seqScoreNOAlgonomics10-merNs5b27592768FTEAMTRYSAS1087Ns5b28262835NSWLGNIIMYM1534Ns4b18481857LVDILAGYGAM1478Ns314361445ATDALMTGYTM877Ns316171626TLHGPTPLLYM1833Ns314351444VATDALMTGYM1894Ns312101219FTDNSSPPAVM1086Ns5b27572766RVFTEAMTRYM1712Ns316351644VTLTHPITKYM1976Ns312581267VAATLGFGAYM1887Ns314091418ALGLNAVAYYM822Ns316371646LTHPITKYIMM1469Ns312401249VPAAYAAQGYM1943Ns315191528ECYDAGCAWYM1002Core122131VIDTLTCGFAM1914Ns315781587QAGDNFPYLVW1596Ns5b27942803HDASGKRVYYW1216Ns314081417SALGLNAVAYW1717Ns5b26062615VMGSSYGFQYW1939Ns315541563HLEFWESVFTW1225Ns313671376LSNTGEIPFYW1459Core127136TCGFADLMGYW1815Core130139FADLMGYIPLW1048Ns314331442VVVATDALMTW1987Ns314651474SLDPTFTIETW1741Ns5b28322841IIMYAPTLWAW1268Ns313691378NTGEIPFYGKW1535Ns5b26202629RVEFLVNAWKW1711Ns5b26022611LPQAVMGSSYW1437Core157166VLEDGVNYATW1927Ns311971206PVESMETTMRW1588Ns316341643EVTLTHPITKW1041Ns5b28352844YAPTLWARMIW2028Ns315671576HIDAHFLSQTW1222Ns314901499RIGRGRRGIYW1704Ns315301539LTPAETSVRLW1471Ns5b25892598VCEKMALYDVW1897Ns315681577IDAHFLSQTKW1256Ns315221531DAGCAWYELTW953Ns315801589GDNFPYLVAYW1112Ns311921201AVDFIPVESMW882Ns5b27072716TSCGNTLTCYW1867Ns312841293TITTGAPITYW1829Ns4b19441953VTQILSSLTIW1977Ns5b27962805ASGKRVYYLTW870Ns5b27132722LTCYLKASAAW1466Ns311721181PSGHAVGIFRW1584Core182191LSCLTIPASAW1458Ns5b28332842IMYAPTLWARW1279Ns312601269ATLGFGAYMSW878Ns5b27542763ASLRVFTEAMW871










TABLE 2










Predicted HLA-A*0201 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
NS5B
2828
2836
WLGNIIMYA
S
62






 2
NS3
1585
1593
YLVAYQATV
S
63





 3
NS3
1565
1573
LTHIDAHFL
S
64





 4
C
 77
 85
AQPGYPWPL
S
65





 5
C
 132
 140
DLMGYIPLV
S
66





 6
NS5B
2594
2602
ALYDVVSTL
S
67





 7
NS5B
2598
2606
VVSTLPQAV
S
68





 8
C
 136
 144
YIPLVGAPL
S
69





 9
C
 181
 189
LLSCLTIPA
S
70





10
NS3
1510
1518
GMFDSSVLC
M
71





11
C
 150
 158
ALAHGVRVL
M
72





12
NS3
1250
1258
KVLVLNPSV
M
73





13
NS3
1542
1550
YLNTPGLPV
M
74





14
NS5B
2727
2735
KLQDCTMLV
M
75





15
NS3
1560
1568
SVFTGLTHI
M
76





16
NS3
1434
1442
VVATDALMT
M
77





17
C
 90
 98
GLGWAGWLL
M
78





18
NS5B
2679
2687
RLYIGGPLT
M
79





19
NS3
1195
1203
FIPVESMET
M
80





20
NS3
1617
1625
TLHGPTPLL
M
81





21
NS3
1252
1260
LVLNPSVAA
M
82





22
NS3
1589
1597
YQATVCARA
M
83





23
NS5B
2833
2841
IMYAPTLWA
M
84





24
NS5B
2593
2601
MALYDVVST
M
85





25
NS3
1342
1350
RLVVLATAT
M
86





26
NS5B
2831
2839
NIIMYAPTL
M
87





27
NS5B
2748
2756
GTQEDAASL
M
88





28
NS3
1325
1333
TILGIGTVL
M
89





29
NS3
1645
1653
IMACMSADL
M
90





30
C
 29
 37
QIVGGVYLL
M
91





31
NS5B
2838
2846
TLWARMILM
M
92





32
C
 168
 176
NLPGCSFSI
M
93





33
NS5B
2733
2741
MLVNGDDLV
W
94





34
NS3
1244
1252
YAAQGYKVL
W
95





35
NS3
1188
1196
GVAKAVDFI
W
96





36
NS5B
2842
2850
RMILMTHFF
W
97





37
NS3
1331
1339
TVLDQAETA
W
98





38
NS3
1637
1645
LTHPITKYI
W
99





39
NS3
1253
1261
VLNPSVAAT
W
100





40
NS3
1210
1218
FTDNSSPPA
W
101





41
NS3
1345
1353
VLATATPPG
W
102





42
NS3
1251
1259
VLVLNPSVA
W
103





43
NS3
1169
1177
LLCPSGHVV
W
104





44
NS3
1420
1428
GLDVSVIPT
W
105





45
NS3
1464
1472
FSLDPTFTI
W
106





46
NS3
1260
1268
ATLGFGAYM
W
107





47
NS5B
2835
2843
YAPTLWARM
W
108





48
NS3
1284
1292
TITTGAPIT
W
109





49
NS3
1203
1211
TTMRSPVFT
W
110





50
NS5B
2613
2621
FQYSPGQRV
W
111





51
NS3
1224
1232
QVAHLHAPT
W
112





52
NS3
1218
1226
AVPQTFQVA
W
113





53
NS3
1283
1291
RTITTGAPI
W
114





54
NS3
1245
1253
AAQGYKVLV
W
115





55
NS3
1586
1594
LVAYQATVC
W
116





56
NS3
1178
1186
GVFRAAVCT
W
117





57
C
 133
 141
LMGYIPLVG
W
118





58
NS3
1630
1638
AVQNEVTLT
W
119





59
NS3
1497
1505
GIYRFVTPG
W
120





60
NS5B
2720
2728
SAACRAAKL
W
121





61
NS3
1610
1618
CLIRLKPTL
W
122





62
NS3
1572
1580
FLSQTKQAG
W
123





63
NS3
1450
1458
SVIDCNTCV
W
124





64
NS3
1349
1357
ATPPGSVTV
W
125





65
NS5B
2815
2823
AAWETARHT
W
126





66
C
 28
 36
GQIVGGVYL
W
127





67
C
 157
 165
VLEDGVNYA
W
128





68
NS3
1555
1563
LEFWESVFT
W
129





69
NS3
1246
1254
AQGYKVLVL
W
130





70
NS5B
2734
2742
LVNGDDLVV
W
131





71
C
 36
 44
LLPRRGPRL
W
132





72
NS5B
2600
2608
STLPQAVMG
W
133





73
NS3
1425
1433
VIPTSGDVV
W
134





74
NS3
1509
1517
SGMFDSSVL
W
135





75
NS3
1648
1656
CMSADLEVV
W
136





76
NS3
1376b
1384b
YGKAIPIEV
W
137





77
NS3
1649
1657
MSADLEVVT
W
138





78
NS5B
2830
2838
GNIIMYAPT
W
139





79
NS3
1328
1336
GIGTVLDQA
W
140





80
NS3
1175
1183
HVVGVFRAA
W
141





81
NS3
1406
1414
KLSALGLNA
W
142





82
NS3
1379b
1387b
AIPIEVIKG
W
143

























Score
SEQ ID




Protein
CS_fr
CS_to
pep_seq
PIC
NO












Epimmune
















C


AQPGYPWPL
82
65








C


GLGWAGWLL
71
78







C


DLMGYIPLV
21
66







C


DLMGYIPVV
56
966







C


NLPGCSFSI
56
93







C


FLLALLSCL
24
361







C


FLLALFSCL
21
1068







C


FLLALLSCI
24
1069







C


FLLALLSCLT
87
1070










LLALLSCLTV
63
1390










HLPGCVPCV
75
1231







E1


MMMNWSPTA
55
1498







E1


MMMNWSPTT
91
1500







E1


MMMNWSPTAA
99
1499







E1


MMMNWSPTTA
90
1501










VMFGLAYFSM
78
1937










SMQGAWAKV
76
1752










LQTGFLASL
34
1451







E2


CMVDYPYRL
40
924







E2


CLVDYPYRL
41
922







E2


CLIDYPYRL
37
920







E2


CLVHYPYRL
81
923







E2


RLWHYPCTI
25
1667







E2


RLWHYPCTV
14
1669







E2


RLWHYPCTL
25
1668







E2


TLFKVRMYV
89
1830







E2


ALSTGLIHL
74
825







E2


ALSTGLLHL
64
826







E2


YLYGVGSAV
23
2056







E2


YLYGVGSAVV
43
2057







E2


YVVLLFLLL
42
2075







E2


YVVLLFLLLA
77
2076







E2


VILLFLLLA
60
1919







E2


VVLLFLLLA
77
1983







E2


LLFLLLADA
61
1395







E2


FLLLADARI
36
1071







E2


FLLLADARV
20
1072










LLLADARVCV
98
1399










MLLISQAEA
90
1497







P7


GVWPLLLLL
61
1207










ALQVWVPPL
72
824










LQVWVPPLL
45
1453










KLLLAVLGPL
83
1332










LLLAVLGPL
50
1401










LLIAVLGPL
57
1398










LLLAIFGPL
44
1400










ALLGPAYLL
46
823










AVLGPLYLI
53
892










SLLRIPYFV
18
1744










YIYNHLTPL
51
2040










YIYDHLTPM
37
2039







NS2


YVYNHLTPL
66
2079







NS2


YVYDHLTPL
26
2077










LLAPITAYA
36
1391







NS3


GLLGCIITSL
88
1151







NS3


LLGCIITSL
57
1397







NS3


FLGTTVGGV
62
1067







NS3


FLGTSISGV
66
1066







NS3


FLATCINGV
25
1065







NS3


CINGVCWTV
84
919







NS3


SISGVLWTV
61
1737







NS3


GVMWTVYHGA
100
1198







NS3


VMWTVYHGA
39
1942







NS3


VLWTVYHGA
41
1935







NS3


YLVTRHADV
79
2053







NS3


YLVTRNADV
38
2055







NS3


ATLGFGAYM
92
32







NS3


YLNTPGLPV
45
74







NS3


YLSTPGLPV
49
2049







NS3


YLVAYQATV
3
63







NS3


YLTAYQATV
5
2050







NS3


YQATVCARA
49
83







NS3


QMWKCLIRL
71
238







NS3


VMWKCLIRL
36
1940







NS3


VMWKCLTRL
61
1941







NS3


RLGAVQNEV
82
265







NS4A


VLVGGVLAA
74
1933







NS4A


VLAGGVLAA
90
1922







NS4A


VLVGGVLAAL
89
1934







NS4A


VLAGGVLAAV
47
1923







NS4A


LAGGVLAAV
99
1360







NS4A


ALAAYCLSV
7
820







NS4A


ALAAYCLTT
26
821







NS4B


HMWNFISGI
53
1233







NS4B


HMWNFVSGI
49
1234







NS4B


FISGIQYLA
20
1060







NS4B


FVSGIQYLA
25
1093







NS4B


SLMAFTASV
6
1746







NS4B


SMMAFSAAL
19
1751







NS4B


LLFNILGGWV
51
1396







NS4B


ILLNIMGGWL
87
1272







NS4B


FVVSGLAGA
77
1094







NS4B


ILAGYGAGV
28
1269







NS4B


VLAGYGAGV
30
1925







NS4B


VLAGYGAGI
54
1924







NS4B


WMNRLIAFA
97
2015







NS5A


NMWHGTFPI
21
1525







NS5A


NTWQGTFPI
99
1537







NS5A


NTWHGTFPI
87
1536










FMGGDVTRI
46
1075







NS5B


RLIVFPDLGV
83
1661







NS5B


ALYDVIQKL
56
829







NS5B


ALYDITQKL
63
828







NS5B


ALYDVVSTL
29
67







NS5B


FLVCGDDLV
43
1073







NS5B


FLVCGDDLVV
65
1074







NS5B


IQYAPTIWV
39
1299







NS5B


IMYAPTLWA
34
84







NS5B


TLWARMILM
40
92







NS5B


ILMTHFFSI
7
1273







NS5B


VLMTHFFSI
8
1928







NS5B


VLMTHFFSIL
90
1929







NS5B


ILMTHFFSIL
82
1274







NS5B


EMYGATYSV
30
1019







NS5B


EMYGAVYSV
24
1020







NS5B


RLHGLSAFT
74
1660







NS5B


RLHGLEAFSL
89
1658







NS5B


RLHGLDAFSL
73
1657







NS5B


GLDAFSLHT
67
1147







NS5B


GLYLFNWAV
33
1157







NS5B


RLLDLSSWFT
53
1663







NS5B


RLLLLGLLLL
40
1664







NS5B


HLLLCLLLL
42
1230







NS5B


LLLLGLLLL
38
1404







NS5B


LLLCLLLLT
27
1402







NS5B


LLLCLLLLTV
16
1403







NS5B


LLCLLLLTV
43
1393







NS5B


LLLLTVGVGI
70
1405







NS5B


LTVGVGIFL
89
1477


















TABLE 3










Predicted HLA-A*0301 and HLA-A*1101 binding



peptides




















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
C
 43
 51
RLGVRATRK
S
144






 2
NS3
1411
1419
GLNAVAYYR
S
145





 3
NS5B
2624
2632
LVNAWKSKK
S
146





 4
NS3
1242
1250
AAYAAQGYK
S
147





 5
NS3
1390
1398
HLIFCHSKK
S
148





 6
C
 35
 43
YLLPRRGPR
S
149





 7
NS5B
2623
2631
FLVNAWKSK
S
150





 8
NS3
1391
1399
LIFCHSKKK
S
151





 9
NS3
1635
1643
VTLTHPITK
M
152





10
NS3
1409
1417
ALGLNAVAY
M
153





11
NS5B
2584
2592
DLGVRVCEK
M
154





12
NS5B
2719
2727
ASAACRAAK
M
155





13
NS3
1183
1191
AVCTRGVAK
M
156





14
NS5B
2567
2575
VQPEKGGRK
M
157





15
C
  2
 10
STNPKPQRK
M
158





16
C
 62
 70
RQPIPKARR
M
159





17
NS5B
2757
2765
RVFTEAMTR
M
160





18
NS5B
2716
2724
YLKASAACR
M
161





19
NS5B
2710
2718
GNTLTCYLK
M
162





20
C
 96
 104
WLLSPRGSR
M
163





21
C
 10
 18
KTKRNTNRR
M
164





22
NS5B
2594
2602
ALYDVVSTL
M
165





23
NS3
1262
1270
LGFGAYMSK
M
166





24
C
 51
 59
KTSERSQPR
M
167





25
NS5B
2580
2588
IVFPDLGVR
M
168





26
C
 156
 164
RVLEDGVNY
M
169





27
NS5B
2833
2841
IMYAPTLWA
W
170





28
NS3
1288
1296
GAPITYSTY
W
171





29
NS5B
2798
2806
GKRVYYLTR
W
172





30
NS3
1389
1397
RHLIFCHSK
W
173





31
NS3
1492
1500
GRGRRGIYR
W
174





32
NS5B
2679
2687
RLYIGGPLT
W
175





33
NS5B
2634
2642
PMGFSYDTR
W
176





34
C
 59
 67
RGRRQPIPK
W
177





35
NS5B
2621
2629
VEFLVNAWK
W
178





36
NS3
1510
1518
GMFDSSVLC
W
179





37
NS3
1605
1613
DQMWKCLIR
W
180





38
NS3
1378b
1386b
KAIPIEVIK
W
181





39
NS3
1542
1550
YLNTPGLPV
W
182





40
NS5B
2588
2596
RVCEKMALY
W
183





41
C
 93
 101
WAGWLLSPR
W
184





42
NS3
1585
1593
YLVAYQATV
W
185





43
C
 90
 98
GLGWAGWLL
W
186





44
NS3
1607
1615
MWKCLIRLK
W
187





45
NS5B
2791
2799
SVAHDASGK
W
188





46
C
 47
 55
RATRKTSER
W
189





47
NS5B
2828
2836
WLGNIIMYA
W
190





48
NS3
1378
1386
KAIPIEAIK
W
191





49
NS3
1619
1627
HGPTPLLYR
W
192





50
NS5B
2563
2571
EVFCVQPEK
W
193





51
C
  1
  9
MSTNPKPQR
W
194





52
NS3
1228
1236
LHAPTGSGK
W
195





53
NS3
1482
1490
VSRSQRRGR
W
196





54
C
 31
 39
VGGVYLLPR
W
197





55
NS3
1178
1186
GVFRAAVCT
W
198





56
C
 15
 23
TNRRPQDVK
W
199





57
NS3
1624
1632
LLYRLGAVQ
W
200





58
NS3
1636
1644
TLTHPITKY
W
201





59
NS3
1420
1428
GLDVSVIPT
W
202





60
C
 105
 113
PSWGPTDPR
W
203





61
NS3
1176
1184
VVGVFRAAV
W
204





62
NS3
1611
1619
LIRLKPTLH
W
205





63
C
 45
 53
GVRATRKTS
W
206





64
C
 141
 149
GAPLGGAAR
W
207





65
C
 132
 140
DLMGYIPLV
W
208





66
NS3
1221
1229
QTFQVAHLH
W
209





67
NS3
1436
1444
ATDALMTGY
W
210





68
NS3
1577
1585
KQAGDNFPY
W
211





69
NS3
1581
1589
DNFPYLVAY
W
212





70
C
 36
 44
LLPRRGPRL
W
213





71
NS3
1231
1239
PTGSGKSTK
W
214





72
NS3
1291
1299
ITYSTYGKF
W
215





73
C
 78
 86
QPGYPWPLY
W
216





74
NS5B
2762
2770
AMTRYSAPP
W
217





75
NS3
1328
1336
GIGTVLDQA
W
218





76
NS3
1618
1626
LHGPTPLLY
W
219





77
NS3
1530
1538
LTPAETSVR
W
220





78
NS3
1485
1493
SQRRGRTGR
W
221





79
NS3
1236
1244
KSTKVPAAY
W
222





80
C
 30
 38
IVGGVYLLP
W
223





81
NS3
1490
1498
RTGRGRRGI
W
224





82
NS3
1406
1414
KLSALGLNA
W
225





83
NS5B
2613
2621
FQYSPGQRV
W
226





84
C
 74
 82
RTWAQPGYP
W
227





85
NS5B
2692
2700
QNCGYRRCR
W
228






NS3
1513
1521
DSSVLCECY
N
229

























Score
SEQ ID




Protein
CS_fr
CS_to
pep_seq
PIC
NO












Epimmune
















C


STNPKPQRK
5.6
158








C


STIPKPQRK
17
1789







C


KTSERSQPR
70
167







C


AQPGYPWPLY
365
861










RVLEDGINY
51
1713










GQAFTFRPR
383
1177







E1


QLFTFSPRR
109
1609







E1


TTQDCNCSIY
67
1877







E1


ALVVSQLLR
50
827







E1


GVLAGLAYY
26
1197







E1


GILAGLAYY
94
1142










FSMQGAWAK
3.7
1084










QTGFLASLFY
59
1620










GFIAGLFYY
57
1134










FIAGLFYYHK
11
1058










FLASLFYTHK
50
1064










TLLCPTDCFR
168
1834










LLCPTDCFRK
125
1394







E2


CTVNFTIFK
2.4
945







E2


CTVNFTLFK
2.0
946







E2


CTVNFSIFK
4.2
944










GQAEAALEK
13
1176







P7


VFFCAAWYIK
6.5
1908







P7


FFCAAWYIK
30
1056







P7


GFFTLSPWYK
44
1133







P7


FFTLSPWYK
31
1057







P7


ILTLSPHYK
32
1277










SLLRIPYFVR
112
1745










LTRVPYFVR
43
1476










LLRIPYFVR
301
1407










FVRAHALLR
71
1091










KLGALTGTY
444
1329







NS2


YVYDHLTPLR
26
2078







NS2


YVYNHLTPLR
34
2080










VIFSPMEIK
5.7
1915










RLLAPITAY
466
1662










KLLAPITAY
331
1330










ITAYAQQTR
58
1307










TVYHGAGNK
6.7
1882










AVDLYLVTR
20
884







NS3


GIFRAAVCTR
27
1141







NS3


GIFRAAVCSR
47
1140







NS3


AVCTRGVAK
5.4
156







NS3


AVCSRGVAK
2.8
881







NS3


TLGFGAYMSK
18
1831







NS3


TLGFGTYMSK
22
1832







NS3


PITYSTYGK
77
1556







NS3


KLTYSTYGK
15
1334







NS3


SITYSTYGK
2.1
1738







NS3


AITYSTYGK
2.0
818







NS3


TTGEIPFYGK
13
1873







NS3


HLIFCHSRK
95
1229







NS3


LIFCHSKKK
45
47







NS3


LIFCHSRKK
80
1385







NS3


SLGLNAVAYY
327
1742







NS3


GLNAVAYYR
4.8
145







NS3


GINAVAYYR
2.0
1143







NS3


GVNAVAYYR
0.57
1199







NS3


ATDALMTGY
48
1







NS3


KQSGENFPY
244
1347







NS3


DVMWKCLTR
62
991







NS3


DQMWKCLTR
504
983







NS3


LQGPTPLLYR
881
1448







NS3


VTLTHPITK
13
21







NS3


VVLTHPITK
9.9
1984







NS4B


MQLAEQFKQK
268
1506







NS4B


QLAEQFKQK
34
1608







NS4B


RIAEMLKSK
69
1654







NS4B


AVGSIGLGK
0.9
888







NS4B


AVGSVGLGK
1.2
889







NS4B


GVAGALVAFK
3.0
1192







NS4B


GISGALVAFK
16
1145







NS4B


GVSGALVAFK
5.2
1204







NS4B


ISGALVAFK
29
1302







NS4B


VSGALVAFK
29
1971







NS4B


AFKIMSGEK
326
801







NS4B


GVVCAAILR
19
1205







NS4B


GVICAAILR
20
1194







NS4B


GVVCAAILRR
17
1206







NS4B


GVICAAILRR
20
1195







NS4B


VVCAAILRR
6.5
1978







NS4B


VICAAILRR
23
1913










SLTITSLLR
110
1747










SLTVTQLLR
98
1748










SLTVTSLLR
103
1749










GLPFISCQK
68
1152










GIPFISCQK
28
1144










GSMRITGPK
2.4
1188










QIHRFAPTPK
34
1605










ITAEAAARR
70
1305







NS5A


ASQLSAPSLK
25
873







NS5A


SQLSAPSLK
15
1781







NS5A


SQLSAPSLR
151
1782







NS5A


NLFMGGDVTR
273 1524







NS5A


RQEMGGNITR
587 1692







NS5A


RQEMGSNITR
553 1693







NS5A


VSVPAEILRK
23
1974







NS5A


SVPAEILRK
1.5
1800







NS5A


SIPSEYLLPK
18
1736







NS5A


SSALAELATK
28
1784







NS5A


STALAELAAK
13
1786







NS5B


SLLRHHNMVY
215
1743







NS5B


TTSRSASQR
26
1879







NS5B


TTSRSASLR
61
1878







NS5B


RQKKVTFDR
955
1694







NS5B


RLQVLDDHYK
48
1665







NS5B


LQVLDDHYK
139
1452







NS5B


VQPEKGGRK
595
157







NS5B


RVCEKMALY
75
3







NS5B


RVFTEAMTR
13
39







NS5B


RVFTEAMTRY
20
1712







NS5B


SVAHDASGK
5.7
188







NS5B


SVAHDASGKR
54
1797







NS5B


SVALDPRGRR
61
1798







NS5B


IQYAPTIWVR
702
1300







NS5B


LLAQEQLEK
151
1392







NS5B


AVRASLISR
26
894







NS5B


SVRAKLLSR
36
1801







NS5B


GLYLFNWAVR
78
1158







NS5B


YLFNWAVRTK
53
2044







NS5B


YLFNWAVKTK
54
2042







NS5B


LFNWAVRTK
124
1380







NS5B


LFNWAVKTK
69
1379


















TABLE 4










Predicted HLA-A*2402 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
NS5B
2842
2850
RMILMTHFF
S
230






 2
NS5B
2838
2846
TLWARMILM
S
231





 3
NS3
1610
1618
CLIRLKPTL
S
232





 4
NS3
1617
1625
TLHGPTPLL
S
233





 5
NS3
1557
1565
FWESVFTGL
S
234





 6
C
 75
 83
TWAQPGYPW
S
235





 7
C
 129
 137
GFADLMGYI
S
236





 8
NS5B
2831
2839
NIIMYAPTL
S
237





 9
NS3
1606
1614
QMWKCLIRL
S
238





 10
N53
1643
1651
KYIMACMSA
S
239





 11
NS3
1246
1254
AQGYKVLVL
S
240





 12
NS3
1292
1300
TYSTYGKFL
S
241





 13
N53
1270
1278
KAHGVDPNI
S
242





 14
C
 85
 93
LYGNEGLGW
S
243





 15
NS3
1266
1274
AYMSKAHGV
S
244





 16
C
 90
 98
GLGWAGWLL
M
245





 17
NS5B
2832
2840
IIMYAPTLW
M
246





 18
C
 28
 36
GQIVGGVYL
M
247





 19
NS5B
2828
2836
WLGNIIMYA
M
248





 20
NS3
1338
1346
TAGARLVVL
M
249





 21
C
 173
 181
SFSIFLLAL
M
250





 22
NS3
1464
1472
FSLDPTFTI
M
251





 23
NS3
1585
1593
YLVAYQATV
M
252





 24
NS3
1384b
1392b
VIKGGRHLI
M
253





 25
NS3
1623
1631
PLLYRLGAV
M
254





 26
NS3
1325
1333
TILGIGTVL
M
255





 27
NS5B
2824
2832
PVNSWLGNI
M
256





 28
NS3
1202
1210
ETTMRSPVF
M
257





 29
NS3
1564
1572
GLTHIDAHF
M
258





 30
NS5B
2605
2613
AVMGSSYGF
M
259





 31
NS3
1162
1170
KGSSGGPLL
M
260





 32
NS5B
2727
2735
KLQDCTMLV
M
261





 33
NS3
1244
1252
YAAQGYKVL
M
262





 34
NS3
1637
1645
LTHPITKYI
M
263





 35
NS3
1374
1382
PFYGKAIPI
M
264





 36
NS3
1627
1635
RLGAVQNEV
M
265





 37
NS3
1384
1392
AIKGGRHLI
M
266





 38
NS5B
2594
2602
ALYDVVSTL
M
267





 39
C
 149
 157
RALAHGVRV
M
268





 40
C
 136
 144
YIPLVGAPL
M
269





 41
C
 36
 44
LLPRRGPRL
M
270





 42
NS3
1417
1425
YYRGLDVSV
M
271





 43
NS3
1402
1410
ELAAKLSAL
M
272





 44
NS3
1376b
1384b
YGKAIPIEV
M
273





 45
NS5B
2607
2615
MGSSYGFQY
M
274





 46
NS3
1169
1177
LLCPSGHVV
M
275





 47
NS5B
2627
2635
AWKSKKCPM
M
276





 48
NS3
1243
1251
AYAAQGYKV
M
277





 49
NS5B
2620
2628
RVEFLVNAW
M
278





 50
NS3
1603
1611
SWDQMWKCL
M
279





 51
C
 168
 176
NLPGCSFSI
M
280





 52
NS5B
2636
2644
GFSYDTRCF
M
281





 53
NS3
1217
1225
PAVPQTFQV
M
282





 54
C
 118
 126
NLGKVIDTL
M
283





 55
C
 23
 31
KFPGGGQIV
M
284





 56
NS3
1542
1550
YLNTPGLPV
M
285





 57
NS3
1604
1612
WDQMWKCLI
W
286





 58
NS5B
2840
2848
WARMILMTH
W
287





 59
C
 77
 85
AQPGYPWPL
W
288





 60
C
 29
 37
QIVGGVYLL
W
289





 61
NS3
1293
1301
YSTYGKFLA
W
290





 62
NS3
1510
1518
GMFDSSVLC
W
291





 63
NS5B
2834
2842
MYAPTLWAR
W
292





 64
C
 172
‘180
CSFSIFLLA
W
293





 65
C
 171
 179
GCSFSIFLL
W
294





 66
NS3
1188
1196
GVAKAVDFI
W
295





 67
NS5B
2613
2621
FQYSPGQRV
W
296





 68
C
 150
 158
ALAHGVRVL
W
297





 69
NS5B
2821
2829
RHTPVNSWL
W
298





 70
NS5B
2837
2845
PTLWARMIL
W
299





 71
NS3
1493
1501
RGRRGIYRF
W
300





 72
NS5B
2629
2637
KSKKCPMGF
W
301





 73
C
 179
 187
LALLSCLTI
W
302





 74
NS3
1354
1362
SVTVPHPNI
W
303





 75
NS5B
2705
2713
LTTSCGNTL
W
304





 76
NS3
1641
1649
ITKYIMACM
W
305





 77
NS3
1375
1383
FYGKAIPIE
W
306





 78
NS3
1620
1628
GPTPLLYRL
W
307





 79
NS3
1440
1448
LMTGYTGDF
W
308





 80
NS5B
2588
2596
RVCEKMALY
W
309





 81
C
 132
 140
DLMGYIPLV
W
310





 82
NS3
1385
1393
IKGGRHLIF
W
311





 83
NS3
1220
1228
PQTFQVAHL
W
312





 84
NS5B
2802
2810
YYLTRDPTT
W
313





 85
NS5B
2839
2847
LWARMILMT
W
314





 86
NS3
1250
1258
KVLVLNPSV
W
315





 87
NS3
1283
1291
RTITTGAPI
W
316





 88
NS3
1187
1195
RGVAKAVDF
W
317





 89
C
 115
 123
RSRNLGKVI
W
318





 90
NS5B
2679
2687
RLYIGGPLT
W
319





 91
NS5B
2715
2723
CYLKASAAC
W
320





 92
NS3
1527
1535
WYELTPAET
W
321





 93
NS3
1565
1573
LTHIDAHFL
W
322





 94
NS5B
2617
2625
PGQRVEFLV
W
323





 95
NS3
1406
1414
KLSALGLNA
W
324





 96
NS3
1566
1574
THIDAHFLS
W
325





 97
NS5B
2615
2623
YSPGQRVEF
W
326





 98
NS3
1579
1587
AGDNFPYLV
W
327





 99
NS3
1645
1653
IMACMSADL
W
328





100
NS3
1549
1557
PVCQDHLEF
W
329





101
NS3
1245
1253
AAQGYKVLV
W
330





102
NS3
1365
1373
IGLSNNGEI
W
331





103
NS5B
2674
2682
RSLTERLYI
W
332





104
NS3
1648
1656
CMSADLEVV
W
333





105
NS5B
2796
2804
ASGKRVYYL
W
334





106
NS3
1376
1384
YGKAIPIEA
W
335





107
NS5B
2782
2790
LITSCSSNV
W
336





108
NS3
1260
1268
ATLGFGAYM
W
337





109
NS5B
2665
2673
LAPEARQAI
W
338





110
C
 161
 169
GVNYATGNL
W
339





111
C
 156
 164
RVLEDGVNY
W
340





112
NS3
1444
1452
YTGDFDSVI
W
341





113
NS3
1640
1648
PITKYIMAC
W
342





114
NS3
1433
1441
VVVATDALM
W
343





115
NS3
1596
1604
RAQAPPPSW
W
344





116
C
 170
 178
PGCSFSIFL
W
345





117
NS3
1560
1568
SVFTGLTHI
W
346





118
NS3
1629
1637
GAVQNEVTL
W
347





119
NS3
1577
1585
KQAGDNFPY
W
348





120
NS5B
2581
2589
VFPDLGVRV
W
349





121
NS3
1462
1470
VDFSLDPTF
W
350





122
NS3
1547
1555
GLPVCQDHL
W
351





123
NS5B
2735
2743
VNGDDLVVI
W
352





124
NS3
1443
1451
GYTGDFDSV
W
353





125
NS3
1172
1180
PSGHVVGVF
W
354





126
NS5B
2598
2606
VVSTLPQAV
W
355





127
NS3
1291
1299
ITYSTYGKF
W
356





128
C
 143
 151
PLGGAARAL
W
357





129
NS3
1584
1592
PYLVAYQAT
W
358





130
NS3
1638
1646
THPITKYIM
W
359





131
NS3
1264
1272
FGAYMSKAH
W
360





132
C
 177
 185
FLLALLSCL
N
361





133
C
 174
 182
FSIFLLALL
N
362





134
C
 125
 133
TLTCGFADL
N
363





135
C
 133
 141
LMGYIPLVG
N
364





136
C
 83
 91
WPLYGNEGL
N
365





137
C
 135
 143
GYIPLVGAP
N
366





138
C
 89
 97
EGLGWAGWL
N
367





139
C
 181
 189
LLSCLTIPA
N
368





140
C
 80
 88
GYPWPLYGN
N
369





141
C
 111
 119
DPRRRSRNL
N
370

























Score
SEQ ID




Protein
CS_fr
CS_to
pep_seq
PIC
NO












Epimmune
















C


GFADLMGYI
67
236











SFSIFLLALF
69
1729







E1


CWVALTPTL
11
950










AYFSMQGAW
37
902










AWAKVVVIL
8.8
896







E2


HYAPRPCGI
9.9
1246







E2


HYPPRPCGI
11
1251







E2


HYPPKPCGI
13
1250







E2


HYPYRLWHY
3.7
1252







E2


LWHYPCTVNF
77
1484







E2


HYPCTVNFTI
66
1247







E2


HYPCTVNYTI
65
1249







E2


HYPCTVNFTL
64
1248










NYTIFKIRM
64
1543










EWAILPCSY
76
1043










KWEYVVLLF
6.5
1354










KWEWVVLLF
6.5
1353










EYVVLLFLL
23
1047










EWVVLLFLL
70
1045










EWVILLFLL
31
1044







P7


SFLVFFCAAW
67
1728







P7


WYLVAFCAAW
58
2023







P7


VFFCAAWYI
6.9
1907










HWIGRLIWW
13
1245










LYPSLIFDI
21
1489










FYPGVVFDI
2.7
1101










VFDITKWLL
55
1906










PYFVRAHVL
21
1592










PYFVRAHALL
49
1591










YFVRAHALL
1.4
2032










TYIYNHLTPL
98
1884










PMEIKVITW
73
1561










GYTSKGWKL
52
1214










AYMSKAHGI
76
904







NS3


TYSTYGKFL
97
241







NS3


YYRGLDVSI
80
2082







NS3


TFTIETTTL
66
1823







NS3


FWESVFTGL
52
234







NS3


FWEAVFTGL
56
1099







NS3


SWDVMWKCLI
59
1805







NS3


IMACMSADL
94
90







NS3


VMACMSADL
60
1936










PYIEQAQAI
58
1593










NWQKLEAFW
20
1542







NS4B


TFWAKHMWNF
50
1824







NS4B


AFWAKHMWNF
87
803







NS4B


QFWAKHMWNF
93
1604







NS4B


VFWAKHMWNF
28
1909







NS4B


FWAKHMWNF
0.23
1095







NS4B


FWANDMWNF
0.19
1097







NS4B


FWARHMWNF
0.16
1098







NS4B


NFISGIQYL
91
1521










SMMAFSAAL
96
1751







NS5A


SWLRDVWDW
26
1807







NS5A


RYAPPCKPL
32
1715







NS5A


RYAPPCKPLL
20
1716







NS5A


KFPPALPIW
5.1
1322







NS5A


KYPPALPIW
0.75
1355










DYNPPLLETW
77
996







NS5B


SYTWTGALI
20
1810







NS5B


SYSWTGALI
42
1809







NS5B


HYRDVLKEM
18
1253







NS5B


LYDVIQKLSI
68
1486







NS5B


RMILMTHFF
6.6
59







NS5B


RMVLMTHFF
13
1671







NS5B


LMTHFFSILL
80
1415


















TABLE 5










Predicted HLA-B*0702 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
NS5B
2836
2844
APTLWARMI
S
371






 2
NS3
1503
1511
TPGERPSGM
S
372





 3
NS5B
2616
2624
SPGQRVEFL
S
373





 4
C
 111
 119
DPRRRSRNL
S
374





 5
C
 169
 177
LPGCSFSIF
S
375





 6
NS3
1383b
1391b
EVIKGGRHL
M
376





 7
NS3
1383
1391
EAIKGGRHL
M
377





 8
C
 83
 91
WPLYGNEGL
M
378





 9
C
 150
 158
ALAHGVRVL
M
379





10
C
 37
 45
LPRRGPRLG
M
380





11
NS3
1599
1607
APPPSWDQM
M
381





12
NS3
1620
1628
GPTPLLYRL
M
382





13
NS3
1531
1539
TPAETSVRL
M
383





14
C
 142
 150
APLGGAARA
M
384





15
NS3
1260
1268
ATLGFGAYM
M
385





16
C
 99
 107
SPRGSRPSW
M
386





17
C
 41
 49
GPRLGVRAT
M
387





18
NS5B
2668
2676
EARQAIRSL
M
388





19
NS3
1622
1630
TPLLYRLGA
M
389





20
C
 57
 65
QPRGRRQPI
M
390





21
NS3
1244
1252
YAAQGYKVL
M
391





22
NS3
1357
1365
VPHPNIEEI
M
392





23
NS5B
2605
2613
AVMGSSYGF
M
393





24
NS3
1415
1423
VAYYRGLDV
M
394





25
NS3
1359
1367
HPNIEEIGL
M
395





26
NS3
1639
1647
HPITKYIMA
M
396





27
NS3
1230
1238
APTGSGKST
M
397





28
NS3
1560
1568
SVFTGLTHI
M
398





29
NS3
1171
1179
CPSGHVVGV
M
399





30
NS3
1413
1421
NAVAYYRGL
M
400





31
NS5B
2720
2728
SAACRAAKL
M
401





32
NS3
1404
1412
AAKLSALGL
M
402





33
C
 147
 155
AARALAHGV
M
403





34
C
  4
 12
NPKPQRKTK
W
404





35
NS5B
2666
2674
APEARQAIR
W
405





36
C
 115
 123
RSRNLGKVI
W
406





37
C
 24
 32
FPGGGQIVG
W
407





38
NS3
1289
1297
APITYSTYG
W
408





39
C
 65
 73
IPKARRPEG
W
409





40
NS3
1219
1227
VPQTFQVAH
W
410





41
NS5B
2826
2834
NSWLGNIIM
W
411





42
C
 149
 157
RALAHGVRV
W
412





43
NS3
1490
1498
RTGRGRRGI
W
413





44
NS3
1641
1649
ITKYIMACM
W
414





45
NS3
1426
1434
IPTSGDVVV
W
415





46
NS3
1616
1624
PTLHGPTPL
W
416





47
NS3
1373
1381
IPFYGKAIP
W
417





48
NS5B
2835
2843
YAPTLWARM
W
418





49
NS5B
2796
2804
ASGKRVYYL
W
419





50
NS3
1338
1346
TAGARLVVL
W
420





51
NS5B
2633
2641
CPMGFSYDT
W
421





52
NS3
1384
1392
AIKGGRHLI
W
422





53
NS3
1255
1263
NPSVAATLG
W
423





54
NS3
1325
1333
TILGIGTVL
W
424





55
NS3
1380
1388
IPIEAIKGG
W
425





56
NS3
1637
1645
LTHPITKYI
W
426





57
NS3
1252
1260
LVLNPSVAA
W
427





58
NS5B
2678
2686
ERLYIGGPL
W
428





59
NS3
1188
1196
GVAKAVDFI
W
429





60
NS5B
2568
2576
QPEKGGRKP
W
430





61
C
 104
 112
RPSWGPTDP
W
431





62
C
 161
 169
GVNYATGNL
W
432





63
NS3
1402
1410
ELAAKLSAL
W
433





64
NS3
1540
1548
RAYLNTPGL
W
434





65
NS5B
2572
2580
GGRKPARLI
W
435





66
NS3
1277
1285
NIRTGVRTI
W
436





67
NS3
1433
1441
VVVATDALM
W
437





68
NS3
1246
1254
AQGYKVLVL
W
438





69
NS3
1337
1345
ETAGARLVV
W
439





70
NS5B
2725
2733
AAKLQDCTM
W
440





71
NS3
1162
1170
KGSSGGPLL
W
441





72
C
 137
 145
IPLVGAPLG
W
442





73
NS3
1583
1591
FPYLVAYQA
N
443





74
C
 93
 101
WAGWLLSPR
N
444





75
C
 78
 86
QPGYPWPLY
N
445





76
C
 179
 187
LALLSCLTI
N
446





77
C
 154
 162
GVRVLEDGV
N
447





78
C
 77
 85
AQPGYPWPL
N
448





79
C
 38
 46
PRRGPRLGV
N
449





80
C
 37
 46
LPRRGPRLGV
S
450

























Score
SEQ ID




Protein
CS_fr
CS_to
pep_seq
PIC
NO












Epimmune
















C


LPRRGPRLGV
4.9
450








C


QPRGRRQPI
3.0
390







C


QPRRRRQPI
3.9
1617







C


QPGYPWPLY
39918
216







C


SPRGSRPSW
1.6
386







C


SPRGSRPNW
11
1772







C


SPRGSRPTW
2.8
1774







C


DPRRRSRNL
12
370







C


APLGGAARAL
3.5
836







C


APLGGVARAL
5.5
837







C


APVGGVARAL
8.1
855







C


LPGCSFSIF
101
375







C


LPGCSFSIFL
32
1426







E1


YPGHVSGHRM
264
2063







E2


APRPCGIVPA
38
847







E2


RPCGIVPAL
1.9
1675







E2


VPARSVCGPV
48
1945







E2


VPASSVCGPV
54
1947







E2


GPWLTPRCL
64
1173







E2


GPWLTPRCM
105
1175







E2


TPRCLVDYPY
238
1857







E2


TPRCMVDYPY
445
1858







E2


YPCTVNFTI
71
2059







E2


YPCTVNFSI
42
2058







E2


YPCTVNFTL
17
2061







E2


YPCTVNFTIF
307
2060










LPCSFSDLPA
100
1423










LPALSTGLL
41
1420







P7


VPGAAYALY
27777
1949







P7


WPLLLLLLAL
7.5
2018










VPYFVRAHAL
9.1
1959










TPYFVRAHVL
32
1863










SPMEKKVIV
31
1769










GPKGPVTQM
86
1166










CPSGHVVGI
62
933










CPRGHAVGI
3.6
929










CPAGHAVGIF
56
925










CPRGHAVGIF
6.9
930







NS3


VPAAYAAQGY
2734
1943







NS3


NPSVAATLGF
1610
1532







NS3


IPFYGKAIPI
29
1284







NS3


IPFYGKAIPL
7.9
1285







NS3


TPGERPSGM
834
372







NS3


TPGERPSGMF
699
1845







NS3


RPSGMFDSV
9.4
1688







NS3


RPSGMFDSSV
37
1687







NS3


RPSGMFDSVV
58
1689







NS3


LPVCQDHLEF
5715
1444







NS3


APPPSWDQM
933
381







NS3


KPTLHGPTPL
7.9
1343







NS3


KPTLVGPTPL
34
1345







NS3


KPTLQGPTPL
47
1344







NS3


HPITKYIMA
39
396







NS3


HPVTKYIMA
48
1238







NS4B


LPYIEQGMQL
43
1447







NS4B


APYIEQAQAI
44
857







NS4B


NPAIASLMAF
7.2
1528







NS4B


NPAVASMMAF
14
1530







NS4B


NPAVASLMAF
11
1529







NS4B


SPLTTNQTM
80
1766







NS4B


APPSAASAFV
76
845







NS4B


LPAILSPGAL
4.4
1418







NS4B


GPGEGAVQWM
976
1163










KPAPNFKTAI
26
1335







NS5A


EPDVAVLTSM
597
1023







NS5A


LPKSRFPPA
50
1432







NS5A


LPKSRFPPAL
14
1433







NS5A


LPIWARPDY
4290
1431







NS5A


RPDYNPPLL
73
1677







NS5A


VPPVVHGCPL
26
1953










PPRKKRTVV
31
1577







NS5B


LPINALSNSL
46
1430







NS5B


TPPHSAKSKF
699
1856







NS5B


PPHSAKSKF
9170
1568







NS5B


PPHSARSKF
4229
1569







NS5B


SPGQRVEFL
21
373







NS5B


SPAQRVEFL
7.6
1757







NS5B


LPTSFGNTI
61
1443







NS5B


PPGDPPQPEY
633519
1566







NS5B


APTLWARMI
14
371







NS5B


APTIWVRMV
19
850







NS5B


APTLWARMIL
1.2
853







NS5B


APTIWVRMVL
1.9
851







NS5B


RPRLLLLGL
0.17
1682







NS5B


RPRLLLLGLL
072
1683


















TABLE 6










Predicted HLA-B*0801 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
C
 111
 119
DPRRRSRNL
S
451






 2
C
 57
 65
QPRGRRQPI
S
452





 3
C
 65
 73
IPKARRPEG
S
453





 4
NS3
1639
1647
HPITKYIMA
S
454





 5
NS3
1395
1403
HSKKKCDEL
S
455





 6
NS3
1486
1494
QRRGRTGRG
M
456





 7
C
  4
 12
NPKPQRKTK
M
457





 8
NS5B
2798
2806
GKRVYYLTR
M
458





 9
NS3
1536
1544
SVRLRAYLN
M
459





10
C
 132
 140
DLMGYIPLV
M
460





11
NS3
1413
1421
NAVAYYRGL
M
461





12
C
 72
 80
EGRTWAQPG
M
462





13
NS3
1641
1649
ITKYIMACM
M
463





14
NS3
1494
1502
GRRGIYRFV
M
464





15
NS5B
2838
2846
TLWARMILM
M
465





16
NS5B
2640
2648
DTRCFDSTV
M
466





17
NS3
1606
1614
QMWKCLIRL
M
467





18
NS3
1611
1619
LIRLKPTLH
M
468





19
NS3
1415
1423
VAYYRGLDV
M
469





20
NS3
1637
1645
LTHPITKYI
M
470





21
NS5B
2840
2848
WARMILMTH
M
471





22
NS3
1583
1591
FPYLVAYQA
M
472





23
NS5B
2672
2680
AIRSLTERL
M
473





24
NS5B
2668
2676
EARQAIRSL
M
474





25
NS5B
2696
2704
YRRCRASGV
M
475





26
C
  8
 16
QRKTKRNTN
W
476





27
NS3
1393
1401
FCHSKKKCD
W
477





28
NS5B
2627
2635
AWKSKKCPM
W
478





29
C
 63
 71
QPIPKARRP
W
479





30
NS3
1553
1561
DHLEFWESV
W
480





31
NS5B
2797
2805
SGKRVYYLT
W
481





32
NS3
1376
1384
YGKAIPIEA
W
482





33
NS3
1234
1242
SGKSTKVPA
W
483





34
NS3
1622
1630
TPLLYRLGA
W
484





35
NS5B
2831
2839
NIIMYAPTL
W
485





36
NS3
1376b
1384b
YGKAIPIEV
W
486





37
C
 33
 41
GVYLLPRRG
W
487





38
NS5B
2761
2769
EAMTRYSAP
W
488





39
C
 89
 97
EGLGWAGWL
W
489





40
NS3
1491
1499
TGRGRRGIY
W
490





41
NS3
1384b
1392b
VIKGGRHLI
W
491





42
NS3
1387
1395
GGRHLIFCH
W
492





43
NS3
1569
1577
DAHFLSQTK
W
493





44
NS5B
2714
2722
TCYLKASAA
W
494





45
NS5B
2755
2763
SLRVFTEAM
W
495





46
NS3
1480
1488
DAVSRSQRR
W
496





47
NS3
1605
1613
DQMWKCLIR
W
497





48
NS5B
2586
2594
GVRVCEKMA
W
498





49
NS3
1237
1245
STKVPAAYA
W
499





50
NS5B
2812
2820
LARAAWETA
W
500





51
C
 36
 44
LLPRRGPRL
W
501





52
NS3
1294
1302
STYGKFLAD
W
502





53
NS5B
2572
2580
GGRKPARLI
W
503





54
NS3
1384
1392
AIKGGRHLI
W
504





55
C
 60
 68
GRRQPIPKA
W
505





56
NS3
1610
1618
CLIRLKPTL
W
506





57
NS5B
2573
2581
GRKPARLIV
W
507





58
NS5B
2833
2841
IMYAPTLWA
W
508





59
C
 115
 123
RSRNLGKVI
W
509





60
NS3
1372
1380
EIPFYGKAI
W
510





61
NS3
1277
1285
NIRTGVRTI
W
511





62
C
 35
 43
YLLPRRGPR
W
512





63
C
 147
 155
AARALAHGV
W
513





64
C
 37
 45
LPRRGPRLG
W
514











Epimmune
















C


TNRRPQDVKF

1838








C


NRRPQDVKF

685







C


DVKFPGGGQI

990







C


YLLPRRGPRL

2047







C


LLPRRGPRL

132







C


QPRGRRQPI

390







C


TDPRRRSRNL

1817







C


DPRRRSRNL

370







C


RSRNLGKVI

318







C


RNLGKVIDTL

1673







E2


WTRGERCDL

2022







E2


DLEDRDRSEL

964







E2


RDRSELSPL

1636







E2


RDRSELSPLL

1637







E2


LADARVCACL

1358







NS2


NVRGGRDAI

1538







NS2


NVRGGRDAII

1539







NS2


VRGGRDAII

1965







NS2


VRGGRDAIIL

1966







NS2


GGRDAIILL

1138







NS2


PVSARRGREI

1589







NS2


VSARRGREI

1969







NS2


VSARRGREIL

1970







NS2


SARRGREIL

1718







NS2


SARRGREILL

1719







NS2


ARRGREILL

865







NS3


QTRGLLGCI

1621







NS3


QTRGLLGCII

1622







NS3


YLVTRHADVI

2054







NS3


RRRGDSRGSL

1697







NS3


RGDSRGSLL

1648







NS3


YLKGSSGGPL

2046







NS3


RGVAKAVDF

317







NS3


RGVAKAVDFI

1653







NS3


ETTMRSPVF

257







NS3


AQGYKVLVL

130







NS3


AYMSKAHGI

904







NS3


NIRTGVRTI

436







NS3


TAGARLVVL

249







NS3


PFYGKAIPI

264







NS3


PFYGKAIPL

1554







NS3


IKGGRHLIF

311







NS3


CHSKKKCDEL

918







NS3


HSKKKCDEL

455







NS3


YYRGLDVSVI

2083







NS3


TPGERPSGMF

1845







NS3


DQMWKCLIRL

982







NS3


KCLIRLKPTL

1319







NS4B


AEQFKQKAL

794







NS4B


QFKQKALGL

1602







NS4B


QFKQKALGLL

1603







NS4B


WAKHMWNFI

1993







NS4B


IGLGKVLVDI

1267







NS4B


LGKVLVDIL

1382







NS4B


QWMNRLIAF

1623







NS5A


KGVWRGDGI

1326







NS5A


LARGSPPSL

1363







NS5A


LWRQEMGGNI

1485







NS5A


ESENKWIL

1030







NS5A


ENKWILDSF

1021







NS5A


WARPDYNPPL

1998







NS5B


RQKKVTFDRL

1695







NS5B


QKKVTFDRL

1607







NS5B


VTFDRLQVL

1975







NS5B


TIMAKNEVF

1827







NS5B


EKGGRKPARL

1015







NS5B


KGGRKPARL

1323







NS5B


KGGRKPARLI

1324







NS5B


GGRKPARLI

435







NS5B


GRKPARLIVF

1182







NS5B


RKPARLIVF

646







NS5B


PARLIVFPDL

1545







NS5B


GVRVCEKMAL

1203







NS5B


SPGQRVEFL

373







NS5B


YRRCRASGVL

2066







NS5B


LTRDPTTPL

1475







NS5B


WARMILMTHF

1997







NS5B


IERLHGLSAF

1264







NS5B


IQRLHGLSAF

1298







NS5B


CLRKLGVPPL

921







NS5B


LRKLGVPPL

1455







NS5B


RARSVRAKL

1632







NS5B


RARSVRAKLL

1633







NS5B


ARSVRAKLL

867







NS5B


NWAVKTKLKL

1540







NS5B


NWAVRTKLKL

1541







NS5B


RTKLKLTPI

1705












Algonomics



10-mer















Core
 65
 74
IPKARRPEGR
S
1287








Core
  4
 13
NPKPQRKTKR
M
1531







Ns3
1395
1403
HSKKKCDELA
M
1243







Core
 111
 120
DPRRRSRNLG
M
975







Core
 37
 46
LPRRGPRLGV
M
450







Core
  8
 17
QRKTKRNTNR
M
1618







Core
 21
 30
DVKFPGGGQI
M
990







Ns5b
2696
1655
YRRCRASGVL
M
2066







Ns5b
2626
1655
NAWKSKKCPM
M
1514







Core
 57
 66
QPRGRRQPIP
M
1616







Ns3
1491
1499
TGRGRRGIYR
M
1825







Ns3
1605
1613
DQMWKCLIRL
M
982







Ns3
1291
1299
ITYSTYGKFL
M
1310







Ns3
1234
1242
SGKSTKVPAA
M
1734







Ns3
1376
1384
YGKAIPIEVI
M
2035







Core
 35
 44
YLLPRRGPRL
M
2047







Ns5b
2797
1655
SGKRVYYLTR
M
1733







Ns3
1493
1501
RGRRGIYRFV
W
1650







Ns4b
1844
1655
LGKVLVDILA
W
1383







Core
 89
 98
EGMGWAGWLL
W
1012







Ns3
1237
1245
STKVPAAYAA
W
1790







Ns3
1189
1197
VAKAVDFIPV
W
1893







Ns3
1609
1617
KCLIRLKPTL
W
1319







Ns3
1494
1502
GRRGIYRFVT
W
1183







Ns3
1393
1401
FCHSKKKCDE
W
1051







Ns3
1637
1645
LTHPITKYIM
W
1469







Ns3
1482
1490
VSRSQRRGRT
W
1972







Ns5b
2677
1655
TERLYIGGPL
W
1820







Ns3
1340
1348
GARLVVLATA
W
1106







Ns5b
2761
1655
EAMTRYSAPP
W
999







Ns5b
2627
1655
AWKSKKCPMG
W
899







Ns5b
2573
1655
GRKPARLIVF
W
1182







Ns5b
2572
1655
GGRKPARLIV
W
1139







Ns3
1622
1630
TPLLYRLGAV
W
1851







Core
 99
 108
SPRGSRPSWG
W
1773







Ns3
1611
1619
LIRLKPTLHG
W
1387







Core
 41
 50
GPRLGVRATR
W
1170







Ns5b
2671
1655
QAIRSLTERL
W
1597







Core
 132
 141
DLMGYIPLVG
W
965







Ns5b
2586
1655
GVRVCEKMAL
W
1203







Core
 59
 68
RGRRQPIPKA
W
1651







Ns3
1488
1496
RGRTGRGRRG
W
1652







Ns3
1294
1302
STYGKFLADG
W
1795







Ns3
1486
1494
QRRGRTGRGR
W
1619







Ns3
1384
1392
VIKGGRHLIF
W
1917







Ns3
1536
1544
SVRLRAYLNT
W
1802







Ns3
1373
1381
IPFYGKAIPI
W
1284







Ns5b
2795
1655
DASGKRVYYL
W
955







Ns3
1485
1493
SQRRGRTGRG
W
1783







Ns3
1552
1560
QDHLEFWESV
W
1600







Core
 45
 54
GVRATRKTSE
W
1200







Ns5b
2716
1655
YLKASAACRA
W
2045







Ns5b
2725
1655
AAKLQDCTML
W
775







Ns3
1160
1169
YLKGSSGGPL
W
2046







Core
 113
 122
RRRSRNLGKV
W
1698







Ns3
1242
1250
AAYAAQGYKV
W
783







Ns3
1606
1614
QMWKCLIRLK
W
1610







Core
 68
 77
ARRPEGRAWA
W
866







Ns5b
2694
1655
CGYRRCRASG
W
917







Ns3
1639
1647
HPITKYIMAC
W
1236







Ns5b
2840
1655
WARMILMTHF
W
1997


















TABLE 7










Predicted HLA-B*3501 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
C
 169
177
LPGCSFSIF
S
515






 2
NS3
1464
1472
FSLDPTFTI
M
516





 3
NS5B
2605
2613
AVMGSSYGF
M
517





 4
NS3
1583
1591
EPYLVAYQA
M
518





 5
C
 24
 32
FPGGGQIVG
M
519





 6
NS5B
2607
2615
MGSSYGFQY
M
520





 7
NS3
1531
1539
TPAETSVRL
M
521





 8
C
 156
 164
RVLEDGVNY
M
522





 9
NS3
1359
1367
HPNIEEIGL
M
523





10
NS3
1581
1589
DNFPYLVAY
W
524





11
NS5B
2795
2803
DASGKRVYY
W
525





12
NS3
1456
1464
TCVTQTVDF
W
526





13
NS3
1175
1183
HVVGVFRAA
W
527





14
NS3
1522
1530
DAGCAWYEL
W
528





15
NS5B
2826
2834
NSWLGNIIM
W
529





16
NS3
1438
1446
DALMTGYTG
W
530





17
NS3
1367
1375
LSNNGEIPF
W
531





18
NS5B
2615
2623
YSPGQRVEF
W
532





19
NS5B
2840
2848
WARMILMTH
W
533





20
NS3
1357
1365
VPHPNIEEI
W
534





21
C
 78
 86
QPGYPWPLY
W
535





22
NS5B
2720
2728
SAACRAAKL
W
536





23
NS3
1289
1297
APITYSTYG
W
537





24
C
 83
 91
WPLYGNEGL
W
538





25
NS3
1620
1628
GPTPLLYRL
W
539





26
C
 174
 182
FSIFLLALL
W
540





27
NS3
1171
1179
CPSGHVVGV
W
541





28
NS5B
2633
2641
CPMGFSYDT
W
542





29
NS5B
2772
2780
DPPQPEYDL
W
543





30
NS3
1219
1227
VPQTFQVAH
W
544





31
C
 149
 157
RALAHGVRV
W
545





32
NS3
1433
1441
VVVATDALM
W
546





33
C
 137
 145
IPLVGAPLG
W
547





34
NS3
1622
1630
TPLLYRLGA
W
548





35
NS3
1240
1248
VPAAYAAQG
W
549





36
NS3
1410
1418
LGLNAVAYY
W
550





37
NS3
1578
1586
QAGDNFPYL
W
551





38
C
 18
 26
RPQDVKFPG
W
552





39
NS5B
2588
2596
RVCEKMALY
W
553





40
NS5B
2740
2748
LVVICESAG
W
554





41
C
 142
 150
APLGGAARA
W
555





42
C
 172
 180
CSFSIFLLA
W
556





43
NS3
1259
1267
AATLGFGAY
W
557





44
C
 128
 136
CGFADLMGY
W
558





45
NS5B
2794
2802
HDASGKRVY
W
559





46
NS3
1260
1268
ATLGFGAYM
W
560





47
NS3
1380b
1388b
IPIEVIKGG
W
561





48
NS5B
2751
2759
EDAASLRVF
W
562











Algonomics



10-mer














 1
Ns3
1548
1556
LPVCQDHLEF
S
1444






 2
Core
 169
 178
LPGCSFSIFL
M
1426





 3
Ns3
1196
1204
IPVESMETTM
M
1296





 4
Ns3
1408
1416
SALGLNAVAY
M
1717





 5
Ns5b
2604
1655
QAVMGSSYGF
M
1599





 6
Ns4b
1873
1655
MPSTEDLVNL
M
1505





 7
Core
 24
 33
FPGGGQIVGG
M
1077





 8
Ns3
1373
1381
IPFYGKAIPI
M
1284





 9
Ns3
1255
1263
NPSVAATLGF
M
1532





10
Ns3
1521
1529
YDAGCAWYEL
M
2030





11
Ns3
1171
1180
CPSGHAVGIF
W
932





12
Ns5b
2602
1655
LPQAVMGSSY
W
1437





13
Ns5b
2840
1655
WARMILMTHF
W
1997





14
Ns5b
2826
1655
NSWLGNIIMY
W
1534





15
Ns3
1240
1248
VPAAYAAQGY
W
1943





16
Core
 142
 151
APLGGAARAL
W
836





17
Core
 76
 85
WAQPGYPWPL
W
1996





18
Ns5b
2795
1655
DASGKRVYYL
W
955





19
Core
 74
 83
RAWAQPGYPW
W
1634





20
Ns3
1637
1645
LTHPITKYIM
W
1469





21
Ns3
1175
1184
HAVGIFRAAV
W
1215





22
Core
 81
 90
YPWPLYGNEG
W
2064





23
Ns5b
2794
1655
HDASGKRVYY
W
1216





24
Ns3
1622
1630
TPLLYRLGAV
W
1851





25
Ns5b
2836
1655
APTLWARMIL
W
853





26
Ns4b
1846
1655
KVLVDILAGY
W
1350





27
Ns5b
2757
1655
RVFTEAMTRY
W
1712





28
Ns3
1258
1266
VAATLGFGAY
W
1887





29
Ns5b
2651
1655
NDIRVEESIY
W
1515





30
Core
 83
 92
WPLYGNEGMG
W
2020





31
Ns5b
2769
1655
PPGDPPQPEY
W
1566





32
Core
 172
 181
CSFSIFLLAL
W
935





33
Core
 89
 98
EGMGWAGWLL
W
1012





34
Core
 137
 146
IPLVGAPLGG
W
1290





35
Ns3
1367
1375
LSNTGEIPFY
W
1459





36
Ns5b
2823
1655
TPVNSWLGNI
W
1862





37
Ns5b
2734
1655
LVNGDDLVVI
W
1480





38
Ns3
1639
1647
HPITKYIMAC
W
1236





39
Core
 18
 27
RPQDVKFPGG
W
1681





40
Ns5b
2580
1655
IVFPDLGVRV
W
1312





41
Ns5b
2674
1655
RSLTERLYIG
W
1702





42
Ns3
1219
1227
VPQTFQVAHL
W
1954





43
Ns3
1216
1224
PPAVPQTFQV
W
1564





44
Ns3
1242
1250
AAYAAQGYKV
W
783





45
Ns5b
2616
1655
SPGQRVEFLV
W
1765





46
Ns5b
2810
1655
TPLARAAWET
W
1850





47
Ns3
1357
1365
VPHPNIEEVA
W
1951





48
Ns3
1426
1434
IPTSGDVVVV
W
1295





49
Core
 37
 46
LPRRGPRLGV
W
450





50
Ns5b
2563
1655
EVFCVQPEKG
W
1038





51
Ns3
1337
1345
ETAGARLVVL
W
1032





52
Ns3
1245
1253
AAQGYKVLVL
W
777





53
Ns5b
2754
1655
ASLRVFTEAM
W
871





54
Ns5b
2593
1655
MALYDVVSTL
W
1492





55
Ns5b
2773
1655
PPQPEYDLEL
W
1575





56
Ns4b
1857
1655
AGVAGALVAF
W
808

















TABLE 8










Predicted HLA-B*4403 and HLA-B*4002 binding



peptides




















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
C
 77
 85
AQPGYPWPL
S
563






 2
NS3
1555
1563
LEFWESVFT
M
564





 3
C
 88
 96
NEGLGWAGW
M
565





 4
NS5B
2828
2836
WLGNIIMYA
M
566





 5
NS5B
2842
2850
RMILMTHFF
M
567





 6
NS5B
2838
2846
TLWARMILM
M
568





 7
NS3
1401
1409
DELAAKLSA
M
569





 8
C
 28
 36
GQIVGGVYL
M
570





 9
NS3
1558
1566
WESVFTGLT
W
571





10
NS3
1633
1641
NEVTLTHPI
W
572





11
NS3
1585
1593
YLVAYQATV
W
573





12
NS3
1382
1390
IEAIKGGRH
W
574





13
NS3
1382b
1390b
IEVIKGGRH
W
575





14
NS5B
2621
2629
VEFLVNAWK
W
576





15
NS5B
2817
2825
WETARHTPV
W
577





16
NS3
1606
1614
QMWKCLIRL
W
578





17
C
 90
 98
GLGWAGWLL
W
579





18
NS5B
2677
2685
TERLYIGGP
W
580





19
NS5B
2590
2598
CEKMALYDV
W
581





20
NS3
1336
1344
AETAGARLV
W
582





21
NS3
1362
1370
IEEIGLSNN
W
583





22
NS5B
2679
2687
RLYIGGPLT
W
584





23
NS3
1409
1417
ALGLNAVAY
W
585





24
NS5B
2760
2768
TEAMTRYSA
W
586





25
NS5B
2776
2784
PEYDLELIT
W
587





26
NS3
1440
1448
LMTGYTGDF
W
588





27
NS3
1518
1526
CECYDAGCA
W
589





28
NS3
1201
1209
METTMRSPV
W
590





29
NS5B
2833
2841
IMYAPTLWA
W
591





30
NS3
1260
1268
ATLGFGAYM
W
592

























Score
SEQ ID




Protein
CS_fr
CS_to
pep_seq
PIC
NO












Epimmune



















PEGRSWAQPG
21
1548











PEGRTWAQPG
62
1549










NEGLGWAGW
2452
565










NEGLGWAGWL
58
1516







E2


SELSPLLLST
8.1
1726










TEWAILPCSY
30
1822










WEWVILLFL
1.1
2007










WEWVVLLFL
2.1
2009










WEYVVLLFL
2.1
2011










WEWVILLFLL
1.2
2008










WEWVVLLFLL
0.67
2010










WEYVVLLFLL
0.75
2012










AEAALENLV
47
790










AEAALEKLV
83
788










AEAALENLVI
55
791










AEAALEKLVI
74
789










LENLVILNA
72
1373







NS2


REMAASCGG
53
1641










TEPVIFSPM
1.8
1819










REILLGPADG
72
1638







NS3


GEIQVLSTV
11
1120







NS3


GEVQVLSTA
35
1129







NS3


GEVQVVSTA
29
1131







NS3


GEIQVLSTVT
52
1121







NS3


GEVQVLSTAT
69
1130







NS3


METTMRSPV
57
590







NS3


LETTMRSPV
51
1375







NS3


AETAGVRLT
177
797







NS3


AETAGARLVV
36
796







NS3


AETAGVRLTV
70
798







NS3


GEIPFYGKA
11
1116







NS3


GEIPFYGRA
7.1
1118







NS3


GEIPFYGKAI
6.5
1117







NS3


GEIPFYGRAI
2.7
1119







NS3


DELAAALRG
284
956







NS3


YELTPAETT
94
2031







NS3


AETTVRLRA
120
800







NS3


LEFWEGVFT
72
1369







NS3


LEFWEGVFTG
91
1370







NS3


WEAVFTGLT
12
2000







NS3


WESVFTGLT
11
571







NS3


WEGVFTGLT
19
2001







NS3


GENFAYLTA
31
1122







NS3


GENLPYLVA
1.2
1126







NS3


GENFPYLVA
2.4
1124







NS3


GENFAYLTAY
35
1123







NS3


GENLPYLVAY
37
1127







NS3


GENFPYLVAY
12
1125







NS3


NEVVLTHPI
29
1520







NS3


NEITLTHPV
49
1518







NS3


NEVTLTHPI
76
572










LEVVTSTWVL
31
1378










IELGGKPAL
7.7
1257










LEQFWAKHMW
100
1374










LEVFWAKHMW
84
1376










VEDVVNLLPA
87
1898










PEFFSWVDGV
20
1547










TEVLASMLT
39
1821










AEAAARRLA
281
787










SEASSSASQL
10
1723







NS5A


VESENKVVV
97
1903







NS5A


VESENKVVI
67
1901







NS5A


VESETKVVIL
94
1905







NS5A


VESENKVVVL
95
1904







NS5A


VESENKVVIL
58
1902







NS5A


REPSIPSEY
50
1642







NS5A


REVSVAAEI
55
1644







NS5A


REISVPAEI
17
1639







NS5A


REVSVPAEI
38
1646







NS5A


REPSIPSEYL
38
1643







NS5A


REVSVAAEIL
2.6
1645







NS5A


REISVPAEIL
1.1
1640







NS5A


REVSVPAEIL
1.8
1647







NS5A


SEYLLPKSRF
6.2
1727







NS5A


AEILRKSRRF
18
792







NS5A


AELATKTFG
152
793










EEQSVVCCSM
15
1006










SEDVVCCSM
35
1724










GEDVVCCSM
14
1113










EEKLPISPL
5.6
1005










EEKLPINPL
7.9
1004










KEVRSLSRRA
3.2
1320










CEKMALYDI
99
911










EESIYQACSL
63
1007










EEARTAIHSL
91
1003







NS5B


PEYDLELIT
72
587







NS5B


WETVRHSPV
7.0
2005







NS5B


WETVRHTPV
12
2006







NS5B


WETARHTPI
20
2003







NS5B


WETARHTPV
29
577







NS5B


FEMYGATYSV
25
1054







NS5B


FEMYGAVYSV
13
1055







NS5B


IEPLDLPQI
97
1258







NS5B


IERLHGLEA
19
1261







NS5B


IERLHGLDA
20
1259







NS5B


IERLHGLSA
15
1263







NS5B


IERLHGLEAF
33
1262







NS5B


IERLHGLDAF
40
1260







NS5B


IERLHGLSAF
20
1264







NS5B


HELTRVAAA
41
1217







NS5B


HELTRVAAAL
5.8
1218







NS5B


GEINRVASCL
16
1115




























SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



10-mer















Ns3
1382
1391
IEVIKGGRHL
S
1265








Ns3
1555
1564
LEFWESVFTG
M
1371







Ns5b
2621
2630
VEFLVNAWKS
M
1900







Ns5b
2606
2615
VMGSSYGFQY
M
1939







Ns3
1558
1567
WESVFTGLTH
M
2002







Core
 88
 97
NEGMGWAGWL
M
1517







Ns5b
2677
2686
TERLYIGGPL
M
1820







Ns3
1533
1542
AETSVRLRAY
M
799







Ns3
1518
1527
CECYDAGCAW
M
910







Ns3
1201
1210
METTMRSPVF
M
1493







Ns3
1371
1380
GEIPFYGKAI
M
1117







Ns3
1409
1418
ALGLNAVAYY
W
822







Ns4b
1913
1922
VQWMNRLIAF
W
1963







Ns5b
2750
2759
QEDAASLRVF
W
1601







Ns3
1633
1642
NEVTLTHPIT
W
1519







Core
 77
 86
AQPGYPWPLY
W
861







Ns5b
2656
2665
EESIYQCCDL
W
1008







Ns5b
2679
2688
RLYIGGPLTN
W
1670







Ns5b
2667
2676
PEARQAIRSL
W
1546







Ns5b
2838
2847
TLWARMILMT
W
1837







Ns4b
1876
1885
TEDLVNLLPA
W
1818







Ns3
1605
1614
DQMWKCLIRL
W
982







Ns3
1401
1410
DELAAKLSAL
W
957







Ns3
1223
1232
FQVAHLHAPT
W
1080







Ns5b
2817
2826
WETARHTPVN
W
2004







Ns4b
1909
1918
GEGAVQWMNR
W
1114







Ns5b
2655
2664
VEESIYQCCD
W
1899







Ns3
1577
1586
KQAGDNFPYL
W
1346







Ns5b
2776
2785
PEYDLELITS
W
1552







Core
 28
 37
GQIVGGVYLL
W
1178







Ns4b
1847
1856
VLVDILAGYG
W
1932


















TABLE 9










Predicted HLA-Cw0401 binding peptides





















SEQ ID




Protein
CS_fr
CS_to
pep_seq
Score
NO












Algonomics



9-mer














 1
Ns3
1603
1611
SWDQMWKCL
S
593






 2
Core
173
181
SFSIFLLAL
M
594





 3
Ns3
1557
1565
FWESVFTGL
M
595





 4
Ns3
1292
1300
TYSTYGKFL
M
596





 5
Ns5b
2777
2785
EYDLELITS
M
597





 6
Ns3
1243
1251
AYAAQGYKV
M
598





 7
Ns5b
2581
2589
VFPDLGVRV
M
599





 8
Core
129
137
GFADLMGYI
M
600





 9
Ns3
1554
1562
HLEFWESVF
W
601





10
Ns3
1520
1528
CYDAGGAWY
W
602





11
Core
85
93
LYGNEGLGW
W
603





12
Ns5b
2842
2850
RMILMTHFF
W
604





13
Ns3
1266
1274
AYMSKAHGV
W
605





14
Ns3
1645
1653
IMACMSADL
W
606





15
Ns3
1527
1535
WYELTPAET
W
607





16
Core
23
31
KFPGGGQIV
W
608





17
Ns5b
2636
2644
GFSYDTRCF
W
609





18
Ns3
1417
1425
YYRGLDVSV
W
610





19
Ns3
1469
1477
TFTIETTTV
W
611





20
Ns5b
2758
2766
VFTEAMTRY
W
612





21
Ns3
1359
1367
HPNIEEIGL
W
613





22
Core
122
130
VIDTLTCGF
W
614





23
Ns5b
2638
2646
SYDTRCFDS
W
615





24
Core
29
37
QIVGGVYLL
N
616





25
Core
90
98
GLGWAGWLL
N
617





26
Core
125
133
TLTCGFADL
N
618





27
Core
135
143
GYIPLVGAP
N
619





28
Core
168
176
NLPGCSFSI
N
620











Algonomics



10-mer















Ns3
1603
1611
SWDQMWKCLI
S
1804








Ns3
1556
1564
EFWESVFTGL
M
1010







Core
173
182
SFSIFLLALL
M
1730







Core
130
139
FADLMGYIPL
M
1048







Ns5b
2834
1655
MYAPTLWARM
M
1511







Ns3
1463
1471
DFSLDPTFTI
M
958







Ns5b
2614
1655
QYSPGQRVEF
M
1626







Core
82
91
PWPLYGNEGM
M
1590







Ns3
1243
1251
AYAAQGYKVL
M
900







Ns5b
2816
1655
AWETARHTPV
M
897







Ns5b
2777
1655
EYDLELITSC
W
1046







Ns3
1584
1592
PYLVAYQATV
W
1594







Core
135
144
GYIPLVGAPL
W
1211







Ns3
1192
1200
AVDFIPVESM
W
882







Ns4b
1854
1655
GYGAGVAGAL
W
1210







Ns3
1292
1300
TYSTYGKFLA
W
1886







Core
176
185
IFLLALLSCL
W
1266







Ns3
1375
1383
FYGKAIPIEV
W
1100







Ns5b
2638
1655
SYDTRCFDST
W
1808







Core
85
94
LYGNEGMGWA
W
1488







Ns3
1582
1590
NFPYLVAYQA
W
1522







Ns3
1541
1549
AYLNTPGLPV
W
903







Ns4b
1914
1655
QWMNRLIAFA
W
1624


















TABLE 10










Predicted HLA-Cw0602 binding peptides





















SEQ ID



#
Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer














 1
Ns3
1292
1300
TYSTYGKFL
S
621






 2
Ns3
1244
1252
YAAQGYKVL
S
622





 3
Ns5b
2696
2704
YRRCRASGV
S
623





 4
Ns5b
2673
2681
IRSLTERLY
S
624





 5
Ns3
1494
1502
GRRGIYRFV
S
625





 6
Ns5b
2573
2581
GRKPARLIV
S
626





 7
Ns5b
2842
2850
RMILMTHFF
S
627





 8
Ns3
1417
1425
YYRGLDVSV
S
628





 9
Ns3
1606
1614
QMWKCLIRL
S
629





10
Core
 173
 181
SFSIFLLAL
M
630





11
Ns3
1603
1611
SWDQMWKCL
M
631





12
Ns5b
2587
2595
VRVCEKMAL
M
632





13
Ns3
1385
1393
IKGGRHLIF
M
633





14
Ns5b
2668
2676
EARQAIRSL
M
634





15
Ns3
1413
1421
NAVAYYRGL
M
635





16
Ns3
1383
1391
EAIKGGRHL
M
636





17
Ns3
1415
1423
VAYYRGLDV
M
637





18
Ns5b
2678
2686
ERLYIGGPL
M
638





19
Ns3
1383b
1391b
EVIKGGRHL
M
639





20
Ns3
1266
1274
AYMSKAHGV
M
640





21
Ns5b
2841
2849
ARMILMTHF
M
641





22
Ns3
1645
1653
IMACMSADL
M
642





23
Ns5b
2577
2585
ARLIVFPDL
M
643





24
Ns3
1243
1251
AYAAQGYKV
M
644





25
Ns3
1534
1542
ETSVRLRAY
M
645





26
Ns5b
2574
2582
RKPARLIVF
M
646





27
Ns3
1245
1253
AAQGYKVLV
M
647





28
Ns5b
2613
2621
FQYSPGQRV
M
648





29
Core
 29
 37
QIVGGVYLL
W
649





30
Core
 174
 182
FSIFLLALL
W
650





31
Ns3
1557
1565
FWESVFTGL
W
651





32
Ns3
1553
1561
DHLEFWESV
W
652





33
Core
 177
 185
FLLALLSCL
W
653





34
Core
 38
 46
PRRGPRLGV
W
654





35
Ns5b
2631
2639
KKCPMGFSY
W
655





36
Ns5b
2607
2615
MGSSYGFQY
W
656





37
Ns5b
2835
2843
YAPTLWARM
W
657





38
Core
 83
 91
WPLYGNEGL
W
658





39
Ns3
1522
1530
DAGCAWYEL
W
659





40
Ns5b
2796
2804
ASGKRVYYL
W
660





41
Ns3
1338
1346
TAGARLVVL
W
661





42
Ns5b
2795
2803
DASGKRVYY
W
662





43
Ns3
1376b
1384b
YGKAIPIEV
W
663





44
Ns5b
2833
2841
IMYAPTLWA
W
664





45
Ns5b
2827
2835
SWLGNIIMY
W
665





46
Core
 77
 85
AQPGYPWPL
W
666





47
Ns5b
2840
2848
WARMILMTH
W
667





48
Ns5b
2838
2846
TLWARMILM
W
668





49
Ns3
1618
1626
LHGPTPLLY
W
669





50
Ns3
1637
1645
LTHPITKYI
W
670





51
Ns3
1638
1646
THPITKYIM
W
671





52
Ns3
1440
1448
LMTGYTGDF
W
672





53
Core
 111
 119
DPRRRSRNL
W
673





54
Core
 171
 179
GCSFSIFLL
W
674





55
Core
 150
 158
ALAHGVRVL
W
675





56
Ns3
1554
1562
HLEFWESVF
W
676





57
Ns3
1404
1412
AAKLSALGL
W
677





58
Ns3
1585
1593
YLVAYQATV
W
678





59
Ns5b
2636
2644
GFSYDTRCF
W
679





60
Ns3
1583
1591
FPYLVAYQA
W
680





61
Ns3
1540
1548
RAYLNTPGL
W
681





62
Ns3
1418
1426
YRGLDVSVI
W
682





63
Core
 23
 31
KFPGGGQIV
W
683





64
Ns3
1581
1589
DNFPYLVAY
W
684





65
Core
 16
 24
NRRPQDVKF
W
685





66
Ns5b
2720
2728
SAACRAAKL
W
686





67
Ns3
1620
1628
GPTPLLYRL
W
687





68
Core
 136
 144
YIPLVGAPL
W
688





69
Core
 28
 36
GQIVGGVYL
W
689





70
Ns3
1176
1184
VVGVFRAAV
W
690





71
Ns5b
2758
2766
VFTEAMTRY
W
691





72
Core
 132
 140
DLMGYIPLV
W
692





73
Ns3
1181
1189
RAAVCTRGV
W
693





74
Ns5b
2616
2624
SPGQRVEFL
W
694





75
Ns5b
2605
2613
AVMGSSYGF
W
695





76
Ns3
1402
1410
ELAAKLSAL
W
696





77
Core
 149
 157
RALAHGVRV
W
697





78
Ns3
1246
1254
AQGYKVLVL
W
698





79
Core
 114
 122
RRSRNLGKV
W
699





80
Ns5b
2821
2829
RHTPVNSWL
W
700





81
Ns5b
2598
2606
VVSTLPQAV
W
701





82
Ns5b
2831
2839
NIIMYAPTL
W
702





83
Ns5b
2834
2842
MYAPTLWAR
W
703





84
Ns5b
2615
2623
YSPGQRVEF
W
704





85
Ns5b
2619
2627
QRVEFLVNA
W
705





86
Ns5b
2594
2602
ALYDVVSTL
W
706





87
Core
 73
 81
GRTWAQPGY
W
707





88
Ns5b
2581
2589
VFPDLGVRV
W
708





89
Ns5b
2579
2587
LIVFPDLGV
W
709





90
Ns5b
2697
2705
RRCRASGVL
W
710





91
Ns3
1571
1579
HFLSQTKQA
W
711





92
Ns3
1458
1466
VTQTVDFSL
W
712





93
Ns5b
2837
2845
PTLWARMIL
W
713





94
Ns5b
2794
2802
HDASGKRVY
W
714





95
Core
 89
 97
EGLGWAGWL
W
715











Algonomics



10-mer















Ns3
1180
1188
FRAAVCTRGV
S
1081








Ns5b
2696
1655
YRRCRASGVL
S
2066







Ns3
1243
1251
AYAAQGYKVL
S
900







Ns5b
2573
1655
GRKPARLIVF
S
1182







Ns5b
2841
1655
ARMILMTHFF
S
864







Ns5b
2820
1655
ARHTPVNSWL
S
863







Ns5b
2628
1655
WKSKKCPMGF
S
2013







Ns3
1539
1547
LRAYLNIPGL
M
1454







Ns4b
1942
1655
ARVTQILSSL
M
868







Core
 76
 85
WAQPGYPWPL
M
1996







Ns3
1492
1500
GRGRRGIYRF
M
1181







Ns5b
2834
1655
MYAPTLWARM
M
1511







Ns5b
2673
1655
IRSLTERLYI
M
1301







Ns3
1626
1634
YRLGAVQNEV
M
2065







Ns5b
2614
1655
QYSPGQRVEF
M
1626







Core
 149
 158
RALAHGVRVL
M
1629







Ns5b
2587
1655
VRVCEKMALY
M
1967







Core
 148
 157
ARALAHGVRV
M
862







Core
 22
 31
VKFPGGGQIV
M
1920







Ns3
1384
1392
VIKGGRHLIF
M
1917







Ns5b
2840
1655
WARMILMTHF
M
1997







Ns3
1244
1252
YAAQGYKVLV
M
2024







Core
 28
 37
GQIVGGVYLL
M
1178







Core
 35
 44
YLLPRRGPRL
M
2047







Ns5b
2630
1655
SKKCPMGFSY
M
1739







Ns3
1416
1424
AYYRGLDVSV
M
907







Ns3
1375
1383
FYGKAIPIEV
M
1100







Ns5b
2593
1655
MALYDVVSTL
M
1492







Core
 130
 139
FADLMGYIPL
M
1048







Core
 176
 185
IFLLALLSCL
M
1266







Ns3
1417
1425
YYRGLDVSVI
M
2083







Ns3
1242
1250
AAYAAQGYKV
W
783







Ns5b
2836
1655
APTLWARMIL
W
853







Ns5b
2792
1655
VAHDASGKRV
W
1892







Ns3
1556
1564
EFWESVFTGL
W
1010







Core
 172
 181
CSFSIFLLAL
W
935







Ns3
1291
1299
ITYSTYGKFL
W
1310







Ns5b
2795
1655
DASGKRVYYL
W
955







Core
 113
 122
RRRSRNLGKV
W
1698







Core
 173
 182
SFSIFLLALL
W
1730







Ns3
1249
1257
YKVLVLNPSV
W
2041







Core
 155
 164
VRVLEDGVNY
W
1968







Core
 77
 86
AQPGYPWPLY
W
861







Ns5b
2833
1655
IMYAPTLWAR
W
1279







Ns4b
1913
1655
VQWMNRLIAF
W
1963







Ns3
1403
1411
LAAKLSALGL
W
1356







Ns3
1382
1390
IEVIKGGRHL
W
1265







Ns3
1553
1561
DHLEFWESVF
W
960







Core
 135
 144
GYIPLVGAPL
W
1211







Core
 169
 178
LPGCSFSIFL
W
1426







Ns5b
2835
1655
YAPTLWARMI
W
2028







Ns3
1292
1300
TYSTYGKFLA
W
1886







Ns4b
1839
1655
VGSIGLGKVL
W
1911







Ns3
1335
1343
QAETAGARLV
W
1595







Ns5b
2726
1655
AKLQDCTMLV
W
819







Ns3
1605
1613
DQMWKCLIRL
W
982







Ns4b
1897
1655
VCAAILRRHV
W
1895







Ns3
1189
1197
VAKAVDFIPV
W
1893







Ns3
1541
1549
AYLNTPGLPV
W
903







Ns3
1489
1497
GRTGRGRRGI
W
1184







Ns3
1175
1184
HAVGIFRAAV
W
1215







Ns4b
1939
1655
DAAARVTQIL
W
952







Ns5b
2604
1655
QAVMGSSYGF
W
1599







Ns5b
2615
1655
YSPGQRVEFL
W
2068







Ns5b
2695
1655
GYRRCRASGV
W
1212







Ns5b
2606
1655
VMGSSYGFQY
W
1939







Ns3
1602
1610
PSWDQMWKCL
W
1585







Ns3
1644
1652
YIMACMSADL
W
2037







Core
 142
 151
APLGGAARAL
W
836







Ns5b
2580
1655
IVFPDLGVRV
W
1312







Ns5b
2635
1655
MGFSYDTRCF
W
1494







Core
 37
 46
LPRRGPRLGV
W
450







Ns5b
2793
1655
AHDASGKRVY
W
810







Ns5b
2586
1655
GVRVCEKMAL
W
1203







Ns3
1265
1273
GAYMSKAHGV
W
1110







Ns3
1619
1627
HGPTPLLYRL
W
1219







Ns3
1200
1208
SMETTMRSPV
W
1750







Ns3
1609
1617
KCLIRLKPTL
W
1319







Ns4b
1873
1655
MPSTEDLVNL
W
1505







Core
 114
 123
RRSRNLGKVI
W
1699







Ns5b
2570
1655
EKGGRKPARL
W
1015







Ns3
1337
1345
ETAGARLVVL
W
1032







Ns3
1161
1170
LKGSSGGPLL
W
1388







Ns3
1584
1592
PYLVAYQATV
W
1594







Ns3
1534
1542
ETSVRLRAYL
W
1033







Ns3
1412
1420
LNAVAYYRGL
W
1416







Ns3
1637
1645
LTHPITKYIM
W
1469







Ns3
1186
1194
TRGVAKAVDF
W
1866







Ns5b
2589
1655
VCEKMALYDV
W
1897







Ns3
1578
1586
QAGDNFPYLV
W
1596







Ns3
1646
1654
MACMSADLEV
W
1490







Core
 89
 98
EGMGWAGWLL
W
1012







Ns5b
2602
1655
LPQAVMGSSY
W
1437







Ns3
1219
1227
VPQTFQVAHL
W
1954







Ns4b
1859
1655
VAGALVAFKV
W
1891







Ns3
1245
1253
AAQGYKVLVL
W
777







Ns3
1622
1630
TPLLYRLGAV
W
1851







Ns4b
1920
1655
IAFASRGNHV
W
1255







Ns5b
2616
1655
SPGQRVEFLV
W
1765







Ns4b
1864
1655
VAFKVMSGEM
W
1888







Ns3
1521
1529
YDAGCAWYEL
W
2030







Ns3
1240
1248
VPAAYAAQGY
W
1943







Ns5b
2672
1655
AIRSLTERLY
W
817







Ns4b
1840
1655
GSIGLGKVLV
W
1187







Ns3
1617
1625
TLHGPTPLLY
W
1833







Ns3
1507
1515
RPSGMFDSSV
W
1687







Ns3
1235
1243
GKSTKVPAAY
W
1146







Ns3
1373
1381
IPFYGKAIPI
W
1284







Ns3
1408
1416
SALGLNAVAY
W
1717







Ns3
1414
1422
AVAYYRGLDV
W
880







Core
 46
 55
VRATRKTSER
W
1964


















TABLE 11










Predicted HLA-Cw0702 binding peptides





















SEQ ID



#
Protein
CS_fr
CS_to
pep_seq
Score
NO











Algonomics



9-mer














 1
Ns3
1292
1300
TYSTYGKFL
S
716






 2
Ns3
1243
1251
AYAAQGYKV
S
717





 3
Ns3
1417
1425
YYRGLDVSV
M
718





 4
Ns5b
2517
2585
ARLIVFPDL
M
719





 5
Core
173
181
SFSIFLLAL
M
720





 6
Ns5b
2673
2681
IRSLTERLY
M
721





 7
Core
85
93
LYGNEGLGW
M
722





 8
Core
129
137
GFADLMGYI
M
723





 9
Core
73
81
GRTWAQPGY
M
724





10
Ns5b
2636
2644
GFSYDTRCF
M
725





11
Ns5b
2827
2835
SWLGNIIMY
M
726





12
Ns3
1643
1651
KYIMACMSA
M
727





13
Ns5b
2841
2849
ARMILMTHF
M
728





14
Ns5b
2587
2595
VRVCEKMAL
M
729





15
Ns5b
2835
2843
YAPTLWARM
M
730





16
Core
75
83
TWAQPGYPW
M
731





17
Ns5b
2802
2810
YYLTRDPTT
W
732





18
Ns5b
2834
2842
MYAPTLWAR
W
733





19
Ns5b
2821
2829
RHTPVNSWL
W
734





20
Ns3
1244
1252
YAAQGYKVL
W
735





21
Core
83
91
WPLYGNEGL
W
736





22
Ns3
1571
1579
HFLSQTKQA
W
737





23
Ns3
1266
1274
AYMSKAHGV
W
738





24
Ns3
1557
1565
FWESVFTGL
W
739





25
Ns5b
2574
2582
RKPARLIVF
W
740





26
Ns5b
2697
2705
RRCRASGVL
W
741





27
Ns5b
2842
2850
RMILMTHFF
W
742





28
Ns5b
2610
2618
SYGFQYSPG
W
743





29
Ns3
1618
1626
LHGPTPLLY
W
744





30
Ns5b
2678
2686
ERLYIGGPL
W
745





31
Ns3
1603
1611
SWDQMWKCL
W
746





32
Ns3
1583
1591
FPYLVAYQA
W
747





33
Core
16
24
NRRPQDVKF
W
748





34
Ns5b
2581
2589
VFPDLGVRV
W
749





35
Core
17
25
RRPQDVKFP
W
750





36
Core
136
144
YIPLVGAPL
W
751





37
Ns3
1248
1256
GYKVLVLNP
W
752





38
Ns3
1638
1646
THPITKYIM
W
753





39
Ns5b
2765
2773
RYSAPPGDP
W
754





40
Ns3
1494
1502
GRRGIYRFV
W
755





41
Ns3
1520
1528
CYDAGCAWY
W
756





42
Ns3
1492
1500
GRGRRGIYR
W
757





43
Ns3
1499
1507
YRFVTPGER
W
758





44
Ns5b
2695
2703
GYRRCRASG
W
759





45
Core
68
76
ARRPEGRTW
W
760





46
Ns5b
2631
2639
KKCPMGFSY
W
761





47
Core
69
77
RRPEGRTWA
W
762





48
Core
34
42
VYLLPRRGP
W
763





49
Ns5b
2833
2841
IMYAPTLWA
W
764





50
Core
114
122
RRSRNLGKV
W
765





51
Ns3
1418
1426
YRGLDVSVI
W
766





52
Ns3
1341
1349
ARLVVLATA
W
767





53
Ns5b
2796
2804
ASGKRVYYL
W
768











Algonomics



10-mer















Ns3
1243
1251
AYAAQGYKVL
S
900








Core
135
144
GYIPLVGAPL
S
1211







Ns5b
2834
1655
MYAPTLWARM
S
1511







Ns5b
2587
1655
VRVCEKMALY
M
1967







Ns5b
2696
1655
YRRCRASGVL
M
2066







Core
173
182
SESIELLALL
M
1730







Ns3
1398
1406
KKCDELAAKL
M
1327







Ns3
1417
1425
YYRGLDVSVI
M
2083







Core
85
94
LYGNEGMGWA
M
1488







Ns5b
2841
1655
ARMILMTHFF
M
864







Ns3
1416
1424
AYYRGLDVSV
M
907







Ns3
1375
1383
FYGKAIPIEV
M
1100







Ns3
1539
1547
LRAYLNTPGL
M
1454







Ns5b
2820
1655
ARHTPVNSWL
M
863







Ns4b
1933
1655
HYVPESDAAA
M
1254







Ns3
1582
1590
NEPYLVAYQA
M
1522







Ns3
1541
1549
AYLNTPGLPV
W
903







Ns5b
2573
1655
GRKPARLIVF
W
1182







Core
114
123
RRSRNLGKVI
W
1699







Ns5b
2673
1655
IRSLTERLYI
W
1301







Core
176
185
IFLLALLSCL
W
1266







Ns3
1292
1300
TYSTYGKFLA
W
1886







Core
129
138
GFADLMGYIP
W
1132







Core
155
164
VRVLEDGVNY
W
1968







Ns5b
2827
1655
SWLGNIIMYA
W
1806







Core
73
82
GRAWAQPGYP
W
1180







Ns4b
1854
1655
GYGAGVAGAL
W
1210







Core
76
85
WAQPGYPWPL
W
1996







Ns3
1492
1500
GRGRRGIYRF
W
1181







Ns4b
1942
1655
ARVTQILSSL
W
868







Ns5b
2628
1655
WKSKKCPMGF
W
2013







Core
74
83
RAWAQPGYPW
W
1634







Ns5b
2593
1655
MALYDVVSTL
W
1492







Ns3
1584
1592
PYLVAYQATV
W
1594







Ns5b
2802
1655
YYLTRDPTTP
W
2081







Ns3
1235
1243
GKSTKVPAAY
W
1146







Ns5b
2801
1655
VYYLTRDPTI
W
1991







Core
34
43
VYLLPRRGPR
W
1990







Ns3
1358
1366
PHPNIEEVAL
W
1555







Core
149
158
RALAHGVRVL
W
1629







Ns4b
1873
1655
MPSTEDLVNL
W
1505







Ns3
1498
1506
IYRFVTPGER
W
1314







Ns5b
2840
1655
WARMILMTHF
W
1997







Ns3
1443
1451
GYTGDFDSVI
W
1213







Ns5b
2614
1655
QYSPGQRVEF
W
1626







Ns5b
2695
1655
GYRRCRASGV
W
1212







Ns5b
2757
1655
RVFTEAMTRY
W
1712







Ns3
1626
1634
YRLGAVQNEV
W
2065







Core
23
32
KFPGGGQIVG
W
1321







Core
17
26
RRPQDVKFPG
W
1696







Ns5b
2835
1655
YAPTLWARMI
W
2028







Ns3
1644
1652
YIMACMSADL
W
2037







Ns4b
1914
1655
QWMNRLIAFA
W
1624







Core
68
77
ARRPEGRAWA
W
866


















TABLE 12










Predicted HLA-DRB1*0101/0401/0701 and



-DRB1*0301 binding peptides










Protein
Full Sequence
Score (PIC)
SEQ ID NO














NS4B
AAQLAPPSAASAFVG
0.074
2102






NS5B
ACKLTPPHSAKSKFG
1.07
2103





NS5A
ADLIEANLLWRQEMG
5.63
2104





C
ADLMGYIPLVGAPLG
0.043
2105





NS5B
APTLWARMILMTHFF
6.67
2106





NS3
AQGYKVLVLNPSVAA
0.5
2107





NS5B
ARAAWETARHTPVNS

2108





NS3
ARLVVLATATPPGSV
0.12
2109





NS5B
ASCLRKLGVPPLRVW
0.47
2110





NS5A
ASQLSAPSLKATCTT
0.41
2111





NS3
AVGIFRAAVCTRGVA
5.96
2112





NS4B
AVQWMNRLIAFASRG
9.61
2113





E1
AWDMMMNWSPTTALV
2.56
2114





NS4A
AYCLTTGSVVIVGRI
0.74
2115





NS5B
CQIYGACYSIEPLDL
2.04
2116





NS5A
DADLIEANLLWRQEM
7.67
2117





NS3
DAHFLSQTKQAGDNF

2118





NS3
DIIICDECHSTDSTT

2119





NS2
DLAVAVEPVVFSDME
2.42
2120





NS2
DLAVAVEPVVFSDME

2120





NS4B
DLVNLLPAILSPGA
0.17
2121





NS3
DPTFTIETTTVPQDA

2122





NS3
DSSVLCECYDAGCAW

2123






DVVVVATDALMTGFT
3.12
2124





NS3
DVVVVATDALMTGYI
3.12
2125





NS4B
EDLVNLLPAILSPG
0.72
2126





NS5A
EPDVAVLTSMLTDPS
0.027
2127





NS4B
FNILGGWVAAQLAPP
0.16
2128





NS3
FPYLVAYQATVCARA
4.76
2129





C
FSIFLLALLSCLTIP
5.47
2130






FSIFLLALLSCLTVP
5.47
2131





E2
FTTLPALSTGLIHLH
7.05
2132





NS5B
GACYSIEPLDLPQII

2133






GAGVAGALVAFKIMS
0.29
2134





NS4B
GAGVAGALVAFKVMS
0.29
2135





NS4B
GALVVGVVCAAILRR
3.59
2136





NS3
GARLVVLATATPPGS
0.11
2137






GCGWAGWLLSPRGSR
6.86
2138





C
GCSFSIFLLALLSCL
4.62
2139





NS3
GDNFPYLVAYQATVC
0.05
2140





NS4A
GGVLAALAAYCLTTG
0.44
2141





E1
GHRMAWDMMMNWSPT
6.3
2142





E1
GHRMAWDMMMNWSPT

2142





NS4B
GIQYLAGLSTLPGNP
0.1
2143





NS5B
GKYLFNWAVRTKLKL
9.61
2144






GLGWAGWLLSPRGSR
6.86
2145





NS3
GLPVCQDHLEFWESV

2146





C
GMGWAGWLLSPRGSR
6.86
2147





NS4B
GMQLAEQFKQKALGL

2148





C
GPRLGVRAIRKTSER
2.87
2149






GQGWRLLAPITAYSQ
1.34
2150





C
GQIVGGVYLLPRRGP
1.3
2151





NS5A
GSQLPCEPEPDVAVL

2152





NS5B
GSSYGFQYSPGQRVE
0.52
2153





NS3
GTVLDQAETAGARLV
0.32
2154





C
GVNYATGNLPGCSFS
4.02
2155





C
GVRVLEDGVNYATGN

2156





NS3
GYKVLVLNPSVAATL
6.3
2157





NS3
HLIFCHSKKKCDELA

2158






HQWINEDCSTPCSGS

2159





NS5B
IERLHGLSAFSLHSY
2.56
2160






IQRLHGLSAFSLHSY
2.56
2161





NS4B
IQYLAGLSTLPGNPA
0.66
2162





NS5A
ITRVESENKVVILDS

2163





NS3
KPTLHGPTPLLYRLG
0.56
2164





NS3
KVLVLNPSVAATLGF
0.52
2165





NS4B
LAGYGAGVAGALVAF
1.63
2166





E2
LFLLLADARVCACLW

2167





NS4B
LFNILGGWVAAQLAP
3.69
2168





NS4B
LGKVLVDILAGYGAG

2169





NS5B
LHSYSPGEINRVASC
2.87
2170





NS3
LIRLKPTLHGPTPLL

2171





NS4B
LPAILSPGALVVGVV
0.11
2172





E2
LPALSTGLIHLHQNI
0.68
2173





NS4B
LSTLPGNPAIASLMA
0.24
2174





NS3
LTHIDAHFLSQTKQA
3.03
2175






LTHIDAHFLSQTKQS
3.03
2176





NS5A
LTSMLTDPSHITAET
2.29
2177





NS5A
LTSMLTDPSHITAET

2177





NS3
LVAYQATVCARAQAP
4.76
2178





NS4B
LVNLLPAILSPGALV
5.63
2179





NS3
LVVLATATPPGSVIV
0.24
2180






MACMSADLEVVTSTW

2181





NS4B
MNRLIAFASRGNHVS
2.79
2182





NS5A
MPPLEGEPGDPDL

2183





C
MSTNPKPQRKTK

2184






MTGFTGDFDSVIDCN

2185





NS4B
NPAIASLMAFTASIT
0.29
2186





NS5B
NSWLGNIIMYAPTLW
1.2
2187





NS5B
NVSVAHDASGKRVYY

2188





E2
PCSFTILPALSTGLI
0.04
2189





NS4B
PGALVVGVVCAAILR
0.55
2190





NS5B
PMGFSYDTRCFDSTV

2191





NS3
PQTFQVAHLHAPTGS
0.28
2192





NS4B
PTHYVPESDAAARVT

2193





NS5B
PTLWARMILMTHFFS
0.85
2194





NS3
PYLVAYQATVCARAQ
0.072
2195





NS3
QDAVSRSQRRGRTGR

2196





NS5B
QKKVTFDRLQVLDDH

2197





NS5B
QPEYDLELITSCSSN

2198





NS3
RAAVCTRGVAKAVDF
3.8
2199





NS3
RGLLGCIITSLTGRD
8.59
2200





C
RLGVRATRKTSERSQ

2201





NS5B
RLIVFPDLGVRVCEK

2202





NS3
RLVVLATATPPGSVT
9.34
2203






RPEYDLELITSCSSN

2204





NS5A
RQEMGGNITRVESEN
5.03
2205





E2
RSELSPLLLSTTEWQ
0.72
2206





NS3
RSPVFTDNSSPPAVP

2207





E1
SAMYVGDLCGSVFLV

2208





NS3
SDLYLVTRHADVIPV

2209





C
SFSIFLLALLSCLTI
4.02
2210






SFSIFLLALLSCLTV
4.02
2211





C
SIFLLALLSCLTIPA
0.23
2212






SKGWRLLAPITAYAQ
1.34
2213





NS5B
SLRVFTEAMTRYSAP
2.49
2214





NS5B
SLRVFTEAMTRYSAP

2214





E1
SRCWVALTPTLAARN
0.047
2215





NS3
STKVPAAYAAQGYKV
0.15
2216





NS3
STIILGIGTVLDQAE
0.37
2217





NS4A
STWVLVGGVLAALAA
0.28
2218





NS5B
SYTWTGALITPCAAE
5.63
2219





NS3
TFQVAHLHAPTGSGK
8.35
2220






TMLVCGDDLVVICES

2221





NS5B
TPCAAEESKLPINAL

2222






TPCAAEESKLPINPL

2223





NS3
TPLLYRLGAVQNEVT
0.32
2224





NS3
TRGLLGCIITSLTGR
7.05
2225





NS5B
TTIMAKNEVFCVQPE
0.55
2226





NS3
TTTVPQDAVSRSQRR

2227





NS3
TVDFSLDPTFTIETT

2228





NS4A
TWVLVGGVLAALAAY
0.15
2229





NS4B
VDILAGYGAGVAGAL
3.69
2230





NS3
VESMETTMRSPVFTD

2231





NS5B
VFCVQPEKGGRKPAR

2232





NS4A
VGGVLAALAAYCLTT
1.2
2233





NS3
VGIFRAAVCTRGVAK
3.8
2234





NS3
VLVLNPSVAATLGFG
9.61
2235





NS4B
VNLLPAILSPGALVV
0.4
2236





NS5B
VNSWLGNIIMYAPTL
1.42
2237





NS4B
VQWMNRLIAFASRGN
1.59
2238





NS4B
VVGVVCAAILRRHVG
5.03
2239






VVVVATDALMTGFTG
4.37
2240






VVVVATDALMTGFTG

2240





NS3
VVVVATDALMTGYTG
4.37
2241





NS3
VVVVATDALMTGYTG

2241





P7
VWPLLLLLLALPPRA
0.29
2242





NS5B
VYYLTRDPTTPLARA

2243





NS3
WDQMWKCLIRLKPTL
3.69
2244





NS3
WESVFTGLTHIDAHF
1.73
2245





NS3
WKCLIRLKPTLHGPT
2.95
2246





NS4A
WVLVGGVLAALAAYC
0.021
2247





NS3
YDIIICDECHSTDST

2248





NS3
YGKFLADGGCSGGAY

2249





P7
YGVWPLLLLLLALPP
1.2
2250





C
YIPLVGAPLGGAARA
0.072
2251





NS3
YKVLVLNPSVAATLG
0.18
2252





E1
YYSMVGNWAKVLIVM
2.56
2253

















TABLE 13










Selection of predicted CTL epitopes



Immun mice = immunogenicity in transgenic or


surrogate mice


Immun recall = immunoreactivity in human recall


assay


High = Ki > 20.000 nM


Tg = transgenic mice
















Immun
Immun
SEQ ID




Genotype
Ki (nM)
mice
recall
NO

















HLA-A0101











AATLGFGAY
1b/1a
 694
+

557





AGDNFPYLV
1b
high


24





ALGLNAVAYY
1b
14286


822





ATDALMTGY
1b
  4

+
1





ATDALMTGYT
1b
 227

+
877





AVMGSSYGF
1b/1a
16100


16





CTCGSSDLY
1b/1a
  14


940





CYDAGGAWY
1b/1a
 3072


13





DASGKRVYY
1b
 5625


10





DNFPYLVAY
1b
 1111


8





DSSVLCECY
1b/1a
 454

+
17





ECYDAGCAWY
1b/1a
20000


1002





EPEPDVAVL
1b/1a
high


1024





EVDGVRLHRY

 167


1037





FADLMGYIP
1b/1a/3a
high


4





FTDNSSPPA
1b/1a
  10

+
7





FTDNSSPPAV
1b/1a
  45

+
1086





FTEAMTRYS
1b/1a/3a
 1803


9





FTEAMTRYSA
1b/1a/3a
 1857

+
1087





GAPITYSTY
1b
high


11





GLDVSVIPT
1b/1a/3a
high


29





GLSAFSLHSY

  61


1154





HIDAHFLSQ
1b/1a/3a
high


1221





HSAKSKFGY
1b/1a
 615
+

1241





ITTGAPITY
1b
 403


6





ITYSTYGKF
1b/1a
high


26





IVDVQYLYG
1b/1a/3a
 6146


1311





KCDELAAKL
1b/1a
20000


1318





KSTKVPAAY
1b/1a/3a
 858


25





LADGGCSGGAY

  60


1359





LCECYDAGC
1b/1a/3a
high


1366





LDPTFTIET
1b/1a
high


30





LGLNAVAYY
1b
high


18





LHGPTPLLY
1b/1a/3a
20000


219





LSAFSLHSY
1b/1a
  28
+

1456





LTCGFADLM
1b/1a/3a
 759


2





LTCGFADLMGY
1b/1a/3a
  11


1465





LTDPSHITA
1b/1a
  15


1467





LTDPSHITAE
1b/1a
 237

+
1468





LTHIDAHFL
1b/1a/3a
high


5





LTHPITKYI
1b
high


23





LTHPITKYIM
1b
20000


1469





LVDILAGYGA
1b/1a
 258.5
+
+
1478





MGSSYGFQY
1b/1a
 917


22





NSWLGNIIMY
1b/3a
 1857


1534





PAAYAAQGY
1b/1a
 1457


12





PAETSVRLR
1b
high


27





PGDPPQPEY
1b/1a
14188


19





PTDPRRRSR
1b/1a
high


55





PTDPRRRSRN
1b/1a
17816


1586





PTLHGPTPLLY

 452


1587





PVESMETTM
1b
high


15





QAETAGARL
1b/1a
high


60





RSELSPLLL
1b/1a
 106

+
1700





RSELSPLLLS
1b/1a
 1853


1701





RVCEKMALY
1b/1a
 2384


3





RVFTEAMTRY
1b
 3490


1712





SLDPTFTIET
1b/1a
high


1741





STEDLVNLL
1b/1a
 8223


1787





STEDLVNLLP
1b/1a
high


1788





TLHGPTPLLY
1b/1a/3a
 343
+

1833





TRDPTTPLAR
1b/1a
high


1865





TSCGNTLTCY
1b/1a
 246


1867





VAATLGFGAY
1b/1a
 122
+

1887





VATDALMTGY
1b
 452

+
1894





VIDTLTCGF
1b/1a/3a
 1017


28





VIDTLTCGFA
1b/1a/3a
 110.5


1914





VPAAYAAQGY
1b/1a
20000


1943





VTLTHPITK
1b
high


21





VTLTHPITKY
1b
 183


1976





YAPTLWARM
1b
high


14





HLA-A0201


ALAHGVRVL
1b/1a
 627


72





ALSTGLIHL
1b/1a/3a
 329


825





ALYDVVSTL
1b
  19
+

67





AQPGYPWPL
1b/1a/3a
 382


65





CLVDYPYRL
1b/1a
 437
+

922





DLCGSVFLV
1b/1a
 789


963





DLMGYIPLV
1b/1a/3a
  36
+

66





FIPVESMET

 934


1059





FLLALLSCL
1b/1a
 136
+

361





FLLALLSCLT
1b/1a
 132

+
1070





FLLLADARV
1b/1a/3a
  20
+

1072





GLGWAGWLL

  27


1150





GLLGCIITSL
1b/1a
  26
+
+
1151





GMFDSSVLC
1b/1a
  71
+

71





GTQEDAASL
1b
 1295


88





HLHQNIVDV
1b/1a/3a
 500


1227





HMWNFISGI
1b/1a
  12
+

1233





ILAGYGAGV
1b/1a/3a
  88
+

1269





ILSPGALVV
1b/1a/3a
 238


1275





IMACMSADL
1b
  66


90





IMAKNEVFCV
1b/1a/3a
 199


1278





IMYAPTLWA
1b
  46


84





KLQDCTMLV
1b
  4.6
+

75





KVLVLNPSV
1b/1a
  50
+

73





LLFLLLADA
1b/1a
  16


1395





LLFNILGGWV
1b/1a
  4.1
+

1396





LLGCIITSL
1b/1a
  56


1397





LLSCLTIPA
1b
  12


70





LTHIDAHFL
1b/1a/3a
 181

+
5





LVLNPSVAA
1b/1a/3a
 1679


82





MALYDVVST
1b
 1142


85





NIIMYAPTL
1b
  70
+
+
87





NLPGCSFSI
1b/1a/3a
  70


93





PLLLLLLAL
1b/1a
 6554


1557





QIVGGVYLL
1b/1a
 219
+

91





QMWKCLIRL
1b/1a
 153
+

238





RLGAVQNEV
1b/1a
 221
+
+
265





RLHGLSAFSL
1b/1a
 179


1659





RLIVFPDLGV
1b/1a
  89

+
1661





RLVVLATAT
1b/1a
16737


86





RLYIGGPLT
1b
 536


79





SMVGNWAKV
1b/1a
 158
+

1753





SVFTGLTHI
1b/3a
  84
+

76





TILGIGTVL
1b
 207


89





TLHGPTPLL
1b/1a/3a
  68
+

81





TLWARMILM
1b/1a
  8
+
+
92





VLVGGVLAA
1b/1a
 219

+
1933





VLVGGVLAAL
1b/1a
  26
+
+
1934





VVATDALMT
1b/1a
high


44





VVSTLPQAV
1b
 884


68





WLGNIIMYA
1b/3a
  14.5


62





WMNRLIAFA
1b/1a/3a
 122


2015





YIPLVGAPL
1b/1a
  77
+

69





YLFNWAVRT
1b/1a/3a
  29
+

2043





YLLPRRGPRL
1b/1a
 140
+
+
2047





YLNTPGLPV
1b
  6.2
+

74





YLVAYQATV
1b/1a
  19.5
+

63





YLVTRHADV
1b/1a
 292
+

2053





YQATVCARA
1b/1a/3a
  20
+

83





HLA-A1101


AAYAAQGYK
1b/1a
  13*
+

56





ALGLNAVAY
1b



51





ALYDVVSTL
1b
16468


67





ASAACRAAK
1b
  15*
+

155





AVCTRGVAK
1b/1a/3a
  48*
+

156





DLGVRVCEK
1b/1a/3a



154





FLVNAWKSK
1b
 1778


150





GIFRAAVCTR
1b/1a/3a
 129


1141





GLNAVAYYR
1b/3a
  44*


145





GMFDSSVLC
1b/1a



71





GNTLTCYLK
1b
 160


40





GVAGALVAFK




1193





GVLAALAAY
1b/1a/3a
 545


1196





GVVCAAILR
1b/1a
  38
+

1205





GVVCAAILRR
1b/1a
 215
+

1206





HLHAPTGSGK
1b/1a
 501*


1226





HLIFCHSKK
1b/1a/3a
 1531*


148





HLIFCHSKKK
1b/1a/3a
 423


1228





HMWNFISGI
1b/1a
 7293


1233





IVFPDLGVR
1b/1a
 770


168





KTKRNTNRR
1b/1a
 646*


164





KTSERSQPR
1b/1a/3a
 147*
+

167





KVLVDILAGY
1b/1a
 163*
+

1350





LFNWAVRTK
1b/1a/3a
 7567


1380





LGFGAYMSK
1b/1a
  22*


50





LIFCHSKKK
1b/1a/3a
 104*
+

47





LLYRLGAVQ
1b/1a



200





LVNAWKSKK
1b
  50*
+

146





QLFTFSPRR
1b/1a
 197*
+

1609





RLGVRATRK
1b/1a/3a
 221*
+

144





RLLAPITAY
1b/1a/3a
 222*


1662





RMYVGGVEHR
1b/1a
  15


1672





RQPIPKARR
1b/1a/3a
*


159





RVCEKMALY
1b/1a
 160*
+

3





RVFTEAMTR
1b
  21*
+

39





RVLEDGVNY
1b/1a
 893


45





SQLSAPSLK
1b/1a/3a
  14*


1781





STNPKPQRK
1b/1a
  14*
+

158





TLGFGAYMSK
1b/1a
  44*


1831





VAGALVAFK
1b/1a
  46


1890





VQPEKGGRK
1b/1a
 1460


157





VTLTHPITK
1b
  7.7*


21





WLLSPRGSR
1b/1a/3a



163





WMNSTGFTK
1b/1a/3a
 138*


2016





YLFNWAVRTK
1b/1a/3a
 164*


2044





YLKASAACR
1b



161





YLLPRRGPR
1b/1a
*


149








* = binds A0301 with Ki < 1000 nM






HLA-A2402













AIKGGRHLI

 336


813






ALYDVVSTL
1b
 340


67





AQGYKVLVL
1b/1a
 2164


130





AVMGSSYGF
1b/1a
  8
+

16





AWKSKKCPM

 6675


898





AYAAQGYKV
1b/1a
  30


277





AYAAQGYKVL
1b/1a
 2102


900





AYMSKAHGV
1b
  30


244





CLIRLKPTL
1b/1a
 113
+

122





CYSIEPLDL
1b/1a
 786


951





ELAAKLSAL

 932


1016





EPEPDVAVL
1b/1a
high


1024





ETTMRSPVF

 219
+

1034





FSLDPTFTI
1b/1a
  74


106





FWAKHMWNF
1b/1a
  2
+

1095





FWAKHMWNFI
1b/1a
  69.5
+

1096





FWESVFTGL
1b/3a
  15


234





GFADLMGYI
1b/1a/3a
  75


236





GFSYDTRCF
1b/1a/3a
  40


281





GLGWAGWLL

  46
+

1150





GLTHIDAHF
1b/1a/3a
  3


258





GQIVGGVYL
1b/1a
17682


127





GYGAGVAGAL
1b/1a
high


1210





GYIPLVGAPL
1b/1a
high


1211





IFLLALLSCL
1b/1a
high


1266





IIMYAPTLW
1b
  0.8
+

246





KAHGVDPNI
1b
17123


242





KCDELAAKL
1b/1a
high


1318





KFPGGGQIV
1b/1a/3a
 164


284





KGSSGGPLL

 625


1325





KLQDCTMLV

 2776


1333





KYIMACMSA
1b
 6475


239





LFNWAVRTKL
1b/1a
 1699


1381





LLPRRGPRL

 226
+

1406





LTHPITKYI
1b
 403
+

23





LWARMILMTHF

 177
+

1483





LYGNEGLGW

  3.45


1487





MGSSYGFQY

 9808


1496





MYTNVDQDL
1b/1a/3a
  31
+

1512





MYVGGVEHRL
1b/1a
 291


1513





NFISGIQYL
1b/1a
 293


1521





NIIMYAPTL
1b
 249
+

87





NLGKVIDTL
1b/1a/3a
  93


283





NLPGCSFSI
1b/1a/3a
  8
+

93





PAVPQIFQV
1b
 991


282





PFYGKAIPI

  2


1553





PLLYRLGAV

high


1558





PVNSWLGNI
1b/1a/3a
 319


256





QFKQKALGL
1b/1a
high


1602





QFKQKALGLL
1b/1a
 4208


1603





QMWKCLIRL
1b/1a
 439


238





QWMNRLIAF
1b/1a/3a
 177


1623





QYLAGLSTL
1b/1a/3a
  35
+

1625





QYSPGQRVEF
1b/1a
 298
+

1626





RALAHGVRV

high


1628





RLGAVQNEV

 3062


1656





RMILMTHFF
1b/1a
  6
+

59





RPDYNPPLL
1b/1a/3a
high


1677





RSELSPLLL
1b/1a
high


1700





RVEFLVNAW

 261
+

1710





SFSIFLLAL
1b/1a/3a
  70
+

250





SFSIFLLALL
1b/1a
 9635


1730





SWDQMWKCL
1b/1a
 550


279





TAGARLVVL
1b/1a
 3194


249





TILGIGTVL

 2070


1826





TLHGPTPLL
1b/1a/3a
 217
+

81





TLWARMILM
1b/1a
 2101


92





IWAQPGYPW

  8


1883





TYSTYGKF

 147.5
+

1885





TYSTYGKFL
1b/1a/3a
 540


241





VIKGGRHLI

  53
+

1916





VILDSFDPL
1b/1a
high


1918





VMGSSYGF

  23
+

1938





WLGNIIMYA
1b/3a
15318


62





YAAQGYKVL
1b/1a
 1636


95





YGKAIPIEV

high


2034





YIPLVGAPL

 512


2038





YLNTPGLPV

 372
+

2048





YLVAYQATV

 1844


2052





YYRGLDVSV
1b/1a/3a
  31
+

271





YYRGLDVSVI
1b/1a/3a
  2
+

2083





HLA-B0702


AAKLSALGL
1b
 277
+

402





AAQGYKVLVL
1b/1a
 5524


777





AARALAHGV
1b/1a
 209


403





ALAHGVRVL
1b/1a
 7950


72





APLGGAARA
1b/1a
 115


384





APLGGAARAL
1b/1a
  1
+

836





APPPSWDQM
1b/1a
 281
+

381





APTGSGKST
1b/1a/3a
 370


397





APTLWARM
1b/1a
  13


852





APTLWARMI
1b/1a
  11
+

371





APTLWARMIL
1b/1a
  1
+

853





APTLWARMILM
1b/1a
 423


854





ATLGFGAYM
1b/1a
12973


32





AVMGSSYGF
1b/1a
 4400


16





DPPQPEYDL
1b/1a
HIGH


543





DPRRRSRNL
1b/1a/3a
  18
+

370





DPTTPLARA
1b/1a
13058


980





EARQAIRSL
1b
 291


388





EPDVAVLTSM
1b/1a
 454*


1023





EPEPDVAVL
1b/1a
HIGH*


1024





EVIKGGRHL
1b/1a
HIGH


376





GPGEGAVQWM
1b/1a/3a
 4747


1163





GPRLGVRAT
1b/1a/3a
 128
+

387





GPTPLLYRL
1b/1a/3a
 209
+

307





HPITKYIMA
1b
 1106*


396





HPNIEEVAL
1b/1a
 230*
+

1237





IPFYGKAI

 458


1283





IPLVGAPL

  25*
+

1289





IPTSGDVVV
1b/1a
 3152*


415





KPARLIVF

 367


1336





KPTLHGPTPL
1b/1a/3a
  6
+

1343





LPAILSPGAL
1b/1a/3a
 255*
+

1418





LPALSTGLI
1b/1a
 233
+

1419





LPCEPEPDV
1b/1a/3a
HIGH


1421





LPCSFTTLPA
1b/1a
 423


1424





LPGCSFSI

 500


1425





LPGCSFSIF
1b/1a/3a
  29*
+

375





LPGCSFSIFL
1b/1a/3a
 558


1426





LPGNPAIASL
1b/1a
 266


1428





LPINALSNSL
1b/1a
  12*
+

1430





LPRRGPRL

  1


1442





LPRRGPRLG
1b/1a/3a
 124
+

380





LPRRGPRLGV
1b/1a/3a
  3
+

450





LPVCQDHLEF
1b/1a
 1564*


1444





LPYIEQGM

 423


1445





NAVAYYRGL
1b/1a/3a
HIGH


400





NPAIASLMA
1b/1a
 676


1527





NPAIASLMAF
1b/1a
 121*


1528





NPSVAATLGF
1b/1a/3a
 1197


1532





PPHSAKSKF
1b/1a
HIGH


1568





PPQPEYDLEL
1b/1a
HIGH


1575





PPVVHGCPL
1b/1a
 433
+

1582





QPRGRRQPI
1b/1a/3a
  1
+

390





RPDYNPPLL
1b/1a/3a
 143
+

1677





RPSGMFDSSV
1b/1a
  14
+

1687





SAACRAAKL
1b
 106
+

121





SPGALVVGV
1b/1a/3a
 627


1759





SPGQRVEFL
1b/1a
  38


373





SPRGSRPSW
1b/1a/3a
  11
+

386





SVFTGLTHI
1b/3a
HIGH


76





TPAETSVRL
1b
 375


383





TPCTCGSSDL
1b/1a
 168


1843





TPGERPSGM
1b
 199
+

372





TPLLYRLGA
1b/1a
  74


389





TPLLYRLGAV
1b/1a
 458


1851





VAYYRGLDV
1b/1a/3a
 1417


394





WPLLLLLLAL
1b/1a
 1474


2018





YAAQGYKVL
1b/1a
 313
+

95








* = binds B3501 with Ki < 1000 nM
















HLA-B0801







AIRSLTERL
1b
 3621


473





AQGYKVLVL
1b/1a
 1920


130





ARRGREILL
1b/1a
 3039


865





CLRKLGVPPL
1b/1a
 549


921





DLCGSVFL
1b/1a
11347


962





DLMGYIPLV
1b/1a/3a
 1966


66





DPRRRSRN
1b/1a/3a
12066


974





DPRRRSRNL
1b/1a/3a
 111


370





DPRRRSRNLG
1b/1a/3a



975





DQMWKCLIRL
1b/1a



982





DTRCFDSTV
1b/1a/3a
13145


466





DVKFPGGGQI
1b/1a/3a
14129


990





EARQAIRSL
1b
  9


388





ESENKVVIL
1b/1a
HIGH


1030





FPYLVAYQA
1b/1a
  12

+
443





GCSFSIFL
1b/1a/3a
 6708


1111





GKRVYYLTR
1b/1a
HIGH


172





GRRGIYRFV
1b
 4984


464





HPITKYIMA
1b
  59

+
396





HSKKKCDEL
1b/1a
  76

+
455





HSKKKCDELA
1b/1a



1243





IPKARRPE
1b/1a
 1214


1286





IPKARRPEG
1b/1a
 874


409





IPKARRPEGR
1b/1a



1287





IPLVGAPL
1b/1a
  20


1288





ITKYIMACM
1b
 2610


305





ITYSTYGKFL
1b/1a



1310





LIRLKPTLH
1b/1a
  62


205





LLPRRGPRL
1b/1a
 183


132





LPRRGPRL
1b/1a/3a
  6

+
1441





LPRRGPRLGV
1b/1a/3a



450





LTHPITKYI
1b
HIGH


23





LTRDPTTPL
1b/1a
 4322


1475





NAVAYYRGL
1b/1a/3a
11365


400





NAWKSKKCPM
1b



1514





NIRTGVRTI
1b/1a
 619

+
436





NPKPQRKTK
1b/1a



404





NPKPQRKTKR
1b/1a



1531





PARLIVFPDL
1b/1a
 5747


1545





QFKQKALGL
1b/1a
  65


1602





QMWKCLIRL
1b/1a
 8712


238





QPRGRRQP
1b/1a/3a
HIGH


1615





QPRGRRQPI
1b/1a/3a
  3


390





QPRGRRQPIP
1b/1a/3a



1616





QRKTKRNTNR
1b/1a



1618





QRRGRTGRG
1b/1a/3a
 314


456





QTRGLLGCI
1b/1a
HIGH


1621





QTRGLLGCII
1b/1a
17793


1622





RSRNLGKVI
1b/1a/3a
17415


318





RTKLKLTPI
1b/1a
  2


1705





SARRGREIL
1b/1a
 6454


1718





SARRGREILL
1b/1a
 133

+
1719





SGKRVYYLTR
1b



1733





SGKSTKVPAA
1b/1a/3a



1734





SPGQRVEFL
1b/1a
 120


373





SVRLRAYLN
1b
 3314


459





TAGARLVVL
1b/1a
  16


249





TGRGRRGIYR
1b



1825





TIMAKNEVF
1b/1a/3a
  6


1827





TLWARMILM
1b/1a
  59

+
92





VAYYRGLDV
1b/1a/3a
 278

+
394





VSARRGREI
1b/1a
 192

+
1969





VTFDRLQVL
1b/1a/3a
 4358


1975





WAKHMWNFI
1b/1a
 104


1993





WARMILMTH
1b/1a
 166

+
287





WARPDYNPPL
1b/1a/3a
 1030


1998





YGKAIPIEVI
1b



2035





YLKGSSGGPL
1b/1a
  10


2046





YLLPRRGPRL
1b/1a
 142


2047





YRRCRASGV
1b/1a/3a
  11


475





YRRCRASGVL
1b/1a/3a



2066





HLA-B3501


APPPSWDQM
1b/1a
17771*


381





APTLWARMI
1b/1a
HIGH*


371





AVMGSSYGF
1b/1a
HIGH


16





DPPQPEYDL
1b/1a
HIGH


543





EPEPDVAVL
1b/1a
HIGH


1024





FPGGGQIVG
1b/1a/3a
 2596


407





FPGGGQIVGG
1b/1a/3a



1077





FPYLVAYQA
1b/1a
  18


443





FSLDPTFTI
1b/1a



106





GPGEGAVQW
1b/1a/3a
HIGH


1162





GPTPLLYRL
1b/1a/3a
17916*


307





HPNIEEVAL
1b/1a
  7*
+

1237





IPFYGKAIPI
1b/3a



1284





IPLVGAPL

 295*
+

1289





IPVESMETTM




1296





LPALSTGLI
1b/1a
HIGH*


1419





LPCEPEPDV
1b/1a/3a
HIGH


1421





LPGCSFSIF
1b/1a/3a
  90*
+

375





LPGCSFSIFL
1b/1a/3a
 1494*


1426





LPINALSNSL
1b/1a
 137*
+

1430





LPVCQDHLEF
1b/1a
 104
+

1444





MGSSYGFQY
1b/1a
 2607


22





MPSTEDLVNL
1b



1505





NPSVAATLGF
1b/1a/3a
 1401


1532





QAVMGSSYGF
1b



1599





QPRGRRQPI
1b/1a/3a
HIGH*


390





RPDYNPPLL
1b/1a/3a
HIGH*


1677





RVLEDGVNY
1b/1a
HIGH


45





SALGLNAVAY
1b



1717





SPGQRVEFL
1b/1a
HIGH*


373





TPAETSVRL
1b
 1643*


383





YDAGCAWYEL
1b/1a



2030








* = binds B0702 with Ki < 1000 nM

















HLA-B4403








AATLGFGAY
1b/1a
11055


557





ADLEVVTST
1b/1a
HIGH


786





AEAALENLV
1b/1a/3a
 126


790





AEQFKQKAL
1b/1a
  67


794





AEQFKQKALG
1b/1a
 3058


795





AETAGARLV
1b/1a
 122
+

582





AETAGARLVV
1b/1a
 2704


796





AETSVRLRAY
1b



799





AGYSGGDIY
1b/1a
HIGH


809





AQPGYPWPL
1b/1a/3a
HIGH


65





CECYDAGGA
1b/1a
13219


589





CECYDAGCAW
1b/1a
 1056


910





CEKMALYDV
1b/1a
 7759


581





CEPEPDVAV
1b/1a
high


912





CEPEPDVAVL
1b/1a
HIGH


913





DELAAKLSA
1b
12653


569





DGGCSGGAY
1b/1a/3a
HIGH


959





DQRPYCWHY
1b/1a
HIGH


984





DSSVLCECY
1b/1a
HIGH


17





FDITKLLLA
1b/1a
HIGH


1053





GEIPFYGKA
1b/1a/3a
HIGH


1116





GEIPFYGKAI
1b/1a/3a
 354
+

1117





GEPGDPDLS
1b/1a/3a
HIGH


1128





GGQIVGGVY
1b/1a/3a
HIGH


1137





GQIVGGVYL
1b/1a
HIGH


127





HSAKSKFGY
1b/1a
HIGH


1241





IEVIKGGRHL
1b



1265





LEDGVNYAT
1b/1a
HIGH


31





LEDRDRSEL
1b/1a
high


1368





LEFWESVFT
1b



129





LEFWESVFTG
1b



1371





LELITSCSS
1b/1a/3a
HIGH


1372





LEVVTSTWV
1b/1a
HIGH


1377





LEVVTSTWVL
1b/1a
 5346


1378





LSAFSLHSY
1b/1a
 3145


1456





METTMRSPVF
1b



1493





NEGMGWAGWL
1b



1517





PEKGGRKPA
1b/1a
high


1550





PESDAAARVT
1b/1a/3a
high


1551





PEYDLELIT
1b/1a
high


587





RGVAKAVDF
1b/1a
HIGH


317





RMILMTHFF
1b/1a
 389
+

59





SCGNTLTCY
1b/1a
11574


1722





SELSPLLLS
1b/1a
10368


1725





SELSPLLLST
1b/1a
 2177


1726





TEAMTRYSA
1b/1a/3a
 4934


586





TEDLVNLLPA
1b/1a
high


1818





TERLYIGGPL
1b



1820





TLWARMILM
1b/1a
10410


92





VDFSLDPTF
1b/1a/3a
 1462


350





VEFLVNAWKS
1b



1900





VESENKVVI
1b/1a
 1702


1901





VESENKVVIL
1b/1a
10100


1902





VMGSSYGFQY
1b/1a



1939





WESVFTGLTH
1b/3a



2002





WETARHTPV
1b/1a/3a
HIGH


577





WLGNIIMYA
1b/3a
 1949


62





HLA-Cw0301


AALENLVVL
1b



776





ADLMGYIPL
1b/1a/3a



2085





AILGPLMVL
1b



816





AKVLIVMLL
1b



2097





ALYDVVSTL
1b
  54.38


67





ARLIVFPDL
1b/1a
18558


643





AVIPDREVL
1b



891





CLIRLKPTL
1b/1a
2108


122





CQVPAPEFF
1b



2094





CWVALTPTL
1b



950





ERLYIGGPL
1b
17523


428





ESYSSMPPL
1b/1a



2089





EVIKGGRHL
1b/1a
 8355


376





FLLALLSCL
1b/1a
 1229


361





FQVGLNQYL
1b



2100





FWESVFTGL
1b/3a
10265


234





GALVAFKVM
1b



2086





GAVFVGLAL
1b



1107





GAVQNEVTL
1b/1a



347





GAVQWMNRL
1b/1a/3a



1109





GEIPFYGKA
1b/1a/3a



1116





GEMPSTEDL
1b



2084





GQIVGGVYL
1b/1a
  70.23


127





GSIGLGKVL
1b



1186





GSVFLVSQL
1b



1189





HGILSFLVF
1b



2095





ILMTHFFSI
1b



1273





ITYSTYGKF
1b/1a
 4273


26





LSVEEACKL
1b



2092





NAVAYYRGL
1b/1a/3a
 1814


400





NFISGIQYL
1b/1a
 1070


1521





NIIMYAPTL
1b
  32.21


87





NQYLVGSQL
1b



2099





QAGDNFPYL
1b



551





QIIERLHGL
1b



2091





QIVGGVYLL
1b/1a
 124


91





QNIVDVQYL
1b/1a/3a



2098





QYLAGLSTL
1b/1a/3a



1625





RAYLNTPGL
1b
 512.8


434





SDVESYSSM
1b



2088





SGMFDSSVL
1b/1a



135





SPLTTQHTL
1b



1767





SSLTITQLL
1b



1785





STLPGNPAI
1b/1a



2096





TALNCNDSL
1b



1812





TALVVSQLL
1b



1813





TILGIGTVL
1b
  57.24


89





TMLVNGDDL
1b



2101





TPIPAASQL
1b



1848





TRVPYFVRA
1b



2087





TTIRRHVDL
1b



1874





VILDSFDPL
1b/1a
  49.21


1918





VLYREFDEM
1b/1a



2090





VRVCEKMAL
1b/1a
high


632





WAVRIKLKL
1b/1a



1999





WHYPCTVNF
1b/3a



2093





YAAQGYKVL
1b/1a
 2155


95





YALYGVWPL
1b



2025





YVLLLFLLL
1b



2073





HLA-Cw0401


AWETARHTPV
1b/1a/3a
 2297


897





AYAAQGYKV
1b/1a
high


277





AYAAQGYKVL
1b/1a
high


900





CYSIEPLDL
1b/1a
 702


951





DFSLDPTFTI
1b/1a
high


958





DPPQPEYDL
1b/1a
high


543





EFWESVFTGL
1b
  46.5


1010





EPEPDVAVL
1b/1a
high


1024





EYDLELITS
1b/1a
high


597





FADLMGYIPL
1b/1a/3a
 613

+
1048





FWAKHMWNF
1b/1a
 124

+
1095





FWESVFTGL
1b/3a
  2


234





GFADLMGYI
1b/1a/3a
 569


236





GPTPLLYRL
1b/1a/3a
high


307





HPNIEEVAL
1b/1a
high


1237





MYAPTLWARM
1b
high


1511





NFISGIQYL
1b/1a
  37.5


1521





PWPLYGNEGM
1b
 1083


1590





QFKQKALGL
1b/1a
high


1602





QYLAGLSTL
1b/1a/3a
 8058


1625





QYSPGQRVEF
1b/1a
high


1626





RPDYNPPLL
1b/1a/3a
 356


1677





SFSIFLLAL
1b/la/3a
 396


250





SFSIFLLALL
1b/1a
10188

+
1730





SPGQRVEFL
1b/1a
high


373





SWDQMWKCL
1b/1a
  66


279





SWDQMWKCLI
1b/1a
 989


1804





TYSTYGKFL
1b/1a/3a
18449


241





VFPDLGVRV
1b/1a
 787

+
349





HLA-Cw0602


AAQGYKVLV
1b/1a
 6319


115





AEQFKQKAL
1b/1a
high


794





ALAHGVRVL
1b/1a
 3308


72





AQGYKVLVL
1b/1a
high


130





ARALAHGVRV
1b/1a
 9879


862





ARHTPVNSWL
1b/1a/3a
high


863





ARLIVFPDL
1b/1a
high


643





ARMILMTHF
1b/1a
high


641





ARMILMTHFF
1b/1a
high


864





ARVTQILSSL
1b
high


868





AYAAQGYKV
1b/1a
high


277





AYAAQGYKVL
1b/1a
high


900





AYMSKAHGV
1b
high


244





AYYRGLDVSV
1b/1a/3a
 1074

+
907





CLIRLKPTL
1b/1a
high


122





DLVNLLPAI
1b/1a
high


968





DRSELSPLL
1b/1a
high


986





DVAVLTSML
1b/1a
high


989





EARQAIRSL
1b
high


388





EPEPDVAVL
1b/1a
high


1024





ERLYIGGPL
1b
high


428





ESENKVVIL
1b/1a
high


1030





ETSVRLRAY
1b
high


46





EVIKGGRHL
1b/1a
12838


376





FADLMGYIPL
1b/1a/3a
high


1048





FKQKALGLL
1b/1a
high


1062





FLLALLSCL
1b/1a
high


361





FQYSPGQRV
1b/1a
 387

+
111





FRAAVCTRGV
1b/1a/3a
 486


1081





FSIFLLALL
1b/1a
high


362





FYGKAIPIEV
1b
 5690


1100





GGGQIVGGV
1b/1a/3a
high


1136





GPTPLLYRL
1b/1a/3a
high


307





GQIVGGVYLL
1b/1a
high


1178





GRGRRGIYRF
1b
high


1181





GRKPARLIV
1b/1a/3a
 2037


507





GRKPARLIVF
1b/1a
 8955


1182





GRRGIYRFV
1b
 575.5


464





HMWNFISGI
1b/1a
high


1233





IFLLALLSCL
1b/1a
high


1266





IKGGRHLIF
1b/1a
high


311





IMACMSADL
1b
high


90





IRSLTERLY
1b
 318


624





IRSLTERLYI
1b
 6225


1301





KCDELAAKL
1b/1a
high


1318





LGKVLVDIL
1b/1a
high


1382





LLGCIITSL
1b/1a
high


1397





LRAYLNTPGL
1b
high


1454





LVNLLPAIL
1b/1a
high


1481





MALYDVVSTL
1b
high


1492





MYAPTLWARM
1b
high


1511





NAVAYYRGL
1b/1a/3a
10829


400





NFISGIQYL
1b/1a
 6642


1521





QMWKCLIRL
1b/1a
high


238





QTRGLLGCI
1b/1a
high


1621





QYSPGQRVEF
1b/1a
high


1626





RALAHGVRVL
1b/1a
 7337


1629





RKPARLIVF
1b/1a
 8281


646





RMILMTHFF
1b/1a
high


59





SFSIFLLAL
1b/1a/3a
high


250





SKKCPMGFSY
1b
high


1739





SPGALVVGV
1b/1a/3a
high


1759





STEDLVNLL
1b/1a
high


1787





STWVLVGGV
1b/1a
high


1793





SWDQMWKCL
1b/1a
high


279





TLPALSTGL
1b/1a
high


1835





TYSTYGKFL
1b/1a/3a
 4859


241





VAYYRGLDV
1b/1a/3a
 231


394





VIKGGRHLIF
1b/1a
17503


1917





VKFPGGGQIV
1b/1a/3a
 417.5


1920





VLVDILAGY
1b/1a
high


1931





VRVCEKMAL
1b/1a
high


632





VRVCEKMALY
1b/1a
high


1967





VTFDRLQVL
1b/1a/3a
 1131.5


1975





WAQPGYPWPL
1b/1a/3a
high


1996





WARMILMTHF
1b/1a
high


1997





WKSKKCPMGF
1b
high


2013





YAAQGYKVL
1b/1a
 1784


95





YAAQGYKVLV
1b/1a
 9209


2024





YLLPRRGPRL
1b/1a
high


2047





YRLGAVQNEV
1b/1a
 216.5


2065





YRRCRASGV
1b/1a/3a
 634

+
475





YRRCRASGVL
1b/1a/3a



2066





YYRGLDVSV
1b/1a/3a



271





YYRGLDVSVI
1b/1a/3a



2083





HLA-Cw0702


AATLGFGAY
1b/1a
high


557





ARHTPVNSWL
1b/1a/3a
 122


863





ARLIVFPDL
1b/1a
 298


643





ARMILMTHF
1b/1a
 155


641





ARMILMTHFF
1b/1a
 272


864





ARVTQILSSL
1b
 488


868





AYAAQGYKV
1b/1a
12544


277





AYAAQGYKVL
1b/1a
 4955


900





AYYRGLDVSV
1b/1a/3a
  23

+
907





CYDAGCAWY
1b/1a
 1091.3


13





DGGCSGGAY
1b/1a/3a
high


959





DPPQPEYDL
1b/1a
high


543





DQRPYCWHY
1b/1a
 709.5


984





DREVLYREF
1b/1a
high


985





DSSVLCECY
1b/1a
high


17





DYPYRLWHY
1b/1a/3a
  0.2


997





FRKHPEATY
1b/1a/3a
  0.2


1082





FYGKAIPIEV
1b
  31

+
1100





GFADLMGYI
1b/1a/3a
high


236





GFSYDTRCF
1b/1a/3a
high


281





GGQIVGGVY
1b/1a/3a
high


1137





GPTPLLYRL
1b/1a/3a
11601


307





GRKPARLIVF
1b/1a
 753


1182





GVAGALVAF
1b/1a
 6162


1191





GVLAALAAY
1b/1a/3a
high


1196





GYIPLVGAPL
1b/1a
 2403


1211





HQNIVDVQY
1b/1a/3a
14194


1239





HSAKSKFGY
1b/1a
high


1241





HYVPESDAAA
1b/1a/3a
high


1254





IRSLTERLY
1b
  25


624





KKCDELAAKL
1b/1a
high


1327





KSTKVPAAY
1b/1a/3a
high


25





KYIMACMSA
1b
 7210


239





LHGPTPLLY
1b/1a/3a
  31


219





LLGCIITSL
1b/1a
 9762


1397





LPGCSFSIF
1b/1a/3a
10440


375





LRAYLNTPGL
1b
 236

+
1454





LSAFSLHSY
1b/1a
high


1456





LVGGVLAAL
1b/1a
high


1479





LYGNEGMGWA
1b
 5108


1488





MYAPTLWARM
1b
 548

+
1511





MYTNVDQDL
1b/1a/3a
  81


1512





NEPYLVAYQA
1b/1a
 5300


1522





NIVDVQYLY
1b/1a/3a
  56


1523





NLGKVIDTL
1b/1a/3a
high


283





QPGYPWPLY
1b/1a/3a
high


216





RLLAPITAY
1b/1a/3a
 4821


1662





SCGNTLTCY
1b/1a
high


1722





SFSIFLLAL
1b/1a/3a
 312


250





SFSIFLLALL
1b/1a
high


1730





SKKCPMGFSY
1b
 901


1739





SPGALVVGV
1b/1a/3a
high


1759





SWLGNIIMY
1b/3a
high


665





TYSTYGKFL
1b/1a/3a
 239


241





VLVDILAGY
1b/1a
high


1931





VRVCEKMAL
1b/1a
 279


632





VRVCEKMALY
1b/1a
 2586


1967





WARMILMTHF
1b/1a
 855


1997





YAPTLWARM
1b
high


14





YRRCRASGVL
1b/1a/3a
  83

+
2066





YYRGLDVSV
1b/1a/3a
  12


271





YYRGLDVSVI
1b/1a/3a
  87


2083

















TABLE 14










Selection of HLA-DRB1*0101 and -DRB1*0301 predicted peptides



Immun = Immunogenicity


Cons. = presence of the “core” in the indicated consensus sequence




















0101
0301
0401

SEQ





Cons
Cons
IC50
IC50
IC50

ID


Sequence
Cons 3a
1b/1a
1b/1a/3a
nM
nM
nM
Immun
NO



















ADLMGYIPLVGAPLG

X
X
8333



2105






GHRMAWDMMMNWSPT

X
X
183



2142





SKGWRLLAPITAYAQ

X
X
0.40



2213





RAAVCTRGVAKAVDF

X
X
619



2199





GYKVLVLNPSVAATL

X
X
8.4



2157





VLVLNPSVAATLGFG

X
X
3.0
1431
6.5
+
2235





WESVFTGLTHIDAHF

X
X
122



2245





KPTLHGPTPLLYRLG

X
X
156
1510
4861
+
2164





IQYLAGLSTLPGNPA

X
X
3.4

2.6
+
2162





AVQWMNRLIAFASRG

X
X
2
17313
1009
+
2113





MNRLIAFASRGNHVS

X
X
57
9529
813
+
2182





ASQLSAPSLKATCTT

X
X
329



2111





TTIMAKNEVFCVQPE

X
X
3727



2226





GIQYLAGLSTLPGNP

X
X




2143





LPAILSPGALVVGVV

X
X




2172





DLVNLLPAILSPGA

X
X




2121





YKVLVLNPSVAATLG

X
X




2252





LVVLATATPPGSVTV

X
X
73
4230
4
+
2180





STTILGIGTVLDQAE

X
X




2217





VNLLPAILSPGALVV

X
X
2.3
12603
1558
+
2236





GGVLAALAAYCLTTG

X
X




2141





KVLVLNPSVAATLGF

X
X




2165





LPALSTGLIHLHQNI

X
X




2173





VGGVLAALAAYCLTT

X
X




2233





GQGWRLLAPITAYSQ

X
X




2150





VQWMNRLIAFASRGN

X
X




2238





GPRLGVRATRKTSER

X
X

18887

+
2149





LTHIDAHFLSQTKQA

X
X




2175





LTHIDAHFLSQTKQS

X
X




2176





VGIFRAAVCTRGVAK

X
X




2234





LVAYQATVCARAQAP

X
X




2178





LVNLLPAILSPGALV

X
X




2179





AVGIFRAAVCTRGVA

X
X
29
10143
31
+
2112





GLGWAGWLLSPRGSR

X
X




2145





GCGWAGWLLSPRGSR

X
X




2138





GMGWAGWLLSPRGSR

X
X




2147





RLVVLATATPPGSVT

X
X




2203





GKYLFNWAVRTKLKL

X
X




2144





GHRMAWDMMMNWSPT

X
X

919


2142





DSSVLCECYDAGCAW

X
X




2123





PTHYVPESDAAARVT

X
X

4954


2193





GSQLPCEPEPDVAVL

X
X




2152





QPEYDLELITSCSSN

X
X




2198





RLGVRATRKTSERSQ

X
X

16443
5868
+
2201





YGKFLADGGCSGGAY

X
X
5082
2565
21
+
2249





HLIFCHSKKKCDELA

X
X



+
2158





LIRLKPTLHGPTPLL

X
X




2171





MPPLEGEPGDPDL

X
X




2183





QKKVTFDRLQVLDDH

X
X




2197





PMGFSYDTRCFDSTV

X
X




2191





RPEYDLELITSCSSN

X
X




2204





ARAAWETARHTPVNS

X
X
1402

14756
+
2108





GVNYATGNLPGCSFS

X

4564



2155





GCSFSIFLLALLSCL

X

1634



2139





FTTLPALSTGLIHLH

X

1.3

2080

2132





PQTFQVAHLHAPTGS

X

22



2192





AQGYKVLVLNPSVAA

X

4.6
5169
1.6
+
2107





GTVLDQAETAGARLV

X





2154





GARLVVLATATPPGS

X

173



2137





DVVVVATDALMTGYT

X

456



2125





VVVVATDALMTGYTG

X

1082



2241





TWVLVGGVLAALAAY

X

6.9

369
+
2229





LAGYGAGVAGALVAF

X

137



2166





GALVVGVVCAAILRR

X

314



2136





LTSMLTDPSHITAET

X

12.50



2177





DADLIEANLLWRQEM

X

574



2117





RQEMGGNITRVESEN

X





2205





GSSYGFQYSPGQRVE

X

11



2153





PTLWARMILMTHFFS

X

788
3424
178
+
2194





ASCLRKLGVPPLRVW

X

4.9



2110





WVLVGGVLAALAAYC

X





2247





EPDVAVLTSMLTDPS

X





2127





PCSFTTLPALSTGLI

X





2189





GDNFPYLVAYQATVC

X





2140





YIPLVGAPLGGAARA

X





2251





PYLVAYQATVCARAQ

X





2195





ARLVVLATATPPGSV

X





2109





STKVPAAYAAQGYKV

X





2216





FNILGGWVAAQLAPP

X





2128





SIFLLALLSCLTIPA

X





2212





LSTLPGNPAIASLMA

X





2174





STWVLVGGVLAALAA

X





2218





NPAIASLMAFTASIT

X





2186





VWPLLLLLLALPPRA

X





2242





GAGVAGALVAFKVMS

X





2135





GAGVAGALVAFKIMS

X





2134





TPLLYRLGAVQNEVT

X





2224





PGALVVGVVCAAILR

X





2190





RSELSPLLLSTTEWQ

X





2206





EDLVNLLPAILSPG

X





2126





ACKLTPPHSAKSKFG

X





2103





YGVWPLLLLLLALPP

X





2250





GQIVGGVYLLPRRGP

X





2151





CQIYGACYSIEPLDL

X





2116





DLAVAVEPVVFSDME

X





2120





YYSMVGNWAKVLIVM

X





2253





IQRLHGLSAFSLHSY

X





2161





IERLHGLSAFSLHSY

X





2160





LHSYSPGEINRVASC

X





2170





WKCLIRLKPTLHGPT

X





2246





DVVVVATDALMTGFT

X





2124





WDQMWKCLIRLKPTL

X





2244





LFNILGGWVAAQLAP

X





2168





VDILAGYGAGVAGAL

X





2230





SFSIFLLALLSCLTI

X





2210





SFSIFLLALLSCLTV

X





2211





VVVVATDALMTGFTG

X





2240





FPYLVAYQATVCARA

X





2129





VVGVVCAAILRRHVG

X





2239





FSIFLLALLSCLTIP

X





2130





FSIFLLALLSCLTVP

X





2131





ADLIEANLLWRQEMG

X





2104





APTLWARMILMTHFF

X





2106





TRGLLGCIITSLTGR

X





2225





TFQVAHLHAPTGSGK

X





2220





RGLLGCIITSLTGRD

X





2200





GVRVLEDGVNYATGN

X

8713
266
132
+
2156





SAMYVGDLCGSVFLV

X





2208





SDLYLVTRHADVIPV

X





2209





VVVVATDALMTGYTG

X


93


2241





TVDFSLDPTFTIETT

X

10395
46
59
+
2228





GLPVCQDHLEFWESV

X


14286


2146





GMQLAEQFKQKALGL

X


4992


2148





LTSMLTDPSHITAET

X


567


2177





MSTNPKPQRKTK

X





2184





DLAVAVEPVVFSDME

X





2120





RSPVFTDNSSPPAVP

X

1676
1711
10
+
2207





YDIIICDECHSTDST

X





2248





DIIICDECHSTDSTT

X





2119





VVVVATDALMTGFTG

X





2240





MACMSADLEVVTSTW

X





2181





LGKVLVDILAGYGAG

X





2169





ITRVESENKVVILDS

X





2163





VFCVQPEKGGRKPAR

X




+
2232





RLIVFPDLGVRVCEK

X





2202





VYYLTRDPTTPLARA

X





2243





GACYSIEPLDLPQII

X





2133





SYTWTGALITPCAAE
X


5.63



2219





NSWLGNIIMYAPTLW
X


1.2



2187





VNSWLGNIIMYAPTL
X


1.42



2237





QDAVSRSQRRGRTGR
X






2196





MTGFTGDFDSVIDCN
X






2185









EXAMPLES
Example 1
Identification of CTL Specific HCV Peptides peptides Using the Algonomics Algorithm

HLA Class I protein subclasses that should be targeted are defined: HLA-A01, 02, 03 and 24; HLA-B07, 08, 35 and 44; HLA-Cw04, -Cw06 and Cw07.


These HLA-Class I subclasses are modeled based on known homologue structures.


Based on X-ray data, an in depth analysis is performed of the main chain conformational changes in a given HLA-class I subclass for different peptides bound to said HLA-class I. This analysis results in rules that will be applied when generating backbone variability. On the average 8 to 10 different HLA-class I peptide complexes for each of the HLA-class I subclasses are built based on a series of epitopes and using Algonomics flexible peptide docking tools (wherein the peptide main and side chains are considered flexible, as well as the side chains of the HLA molecules). This yields in total 88 to 110 different three-dimensional models.


By using the above rules for main chain flexibility and/or by using molecular dynamics techniques or main chain perturbation/relaxation approaches, about five different versions differing in main chain conformation in the neighborhood of the bound peptide of the above models are derived. Hence, about 500 different three-dimensional models of HLA-class I peptide complexes are generated.


For each of the HLA-class I peptide models a prediction of the sequence variability of the peptide moieties in the context with surrounding HLA molecules is made: thread through the peptide backbones all HCV protein sequences of interest for all known HCV genotypes and asses for each “threaded” peptide the likelihood that it can form a stable complex with the underlying HLA-class I.


This is done using Algonomics' advanced inverse folding tools which have been developed within the Extended Dead-End Elimination framework. The end-point of this analysis is a list of binding peptides for each of the 11 HLA-Class I subclasses.


Example 2
Identification of CTL Specific B07-Restricted Peptides Using 4 Different Algorithms

For the HLA B07, a selection of the best scoring peptides is retrieved from the 3 on-line prediction servers (BIMAS, Syfpeithi and nHLAPred) using HCV consensus sequence 1b, and from the PIC-algorithm described by Epimmune using 57 HCV sequences. These peptides can either be 8-mers, 9-mers, 10-mers and in some cases 11-mers. Four hundred peptides were retrieved from BIMAS, 250 peptide from Syfpeithi, 100 from nHLAPred and 58 from the PIC algorithm from Epimmune. Said peptides are given in Table 15.

TABLE 15Predicted CTL specific B07-restricted peptidesProt: proteinGT = genotypeSEQPeptideIDProtsequenceScoreGTrankNOBIMASNS5BRPRWFMLCL8001b11684CDPRRRSRNL8001b/1a/3a2370NS5BRPRWFMLCLL8001b11685NS5BAPTLWARMIL3601b/1a2853CAPLGGAARAL2401b/1a3836NS5BGVRVCEKMAL2001b/1a41203NS5BRARSVRAKL1801b31632NS2SARRGREIL1801b/1a41718CQPRGRRQPI1201b/1a/3a5390NS5BRARPRWFML1201b61631NS5BDPPQPEYDL1201b/1a7543NS5ALARGSPPSL1201b81363NS5BAIRSLTERL1201b9473NS5BEARQAIRSL1201b10388NS2SARRGREILL1201b/1a51719NS5AWARPDYNPPL1201b/1a/3a61998NS5BRARSVRAKLL1201b71633NS4AAVIPDREVL901b11891CLPRRGPRLGV901b/1a/3a8450NS3HPNIEEVAL801b/1a121237NS3TPAETSVRL801b13383NS5BSPGQRVEFL801b/1a14373NS4BSPLTTQHTL801b151767NS3GPTPLLYRL801b/1a/3a16307E2GPWLTPRCL801b171173NS5BTPIPAASQL801b181848NS5BIPAASQLDL801b191280NS4BMPSTEDLVNL801b91505NS2VPYFVRAQGL801b101960E2SPGPSQKIQL801b111764NS5ASPAPNYSRAL801b121756P7WPLLLLLLAL801b/1a132018NS3KPTLHGPTPL801b/1a/3a141343NS4BLPAILSPGAL801b/1a/3a151418NS4BLPGNPAIASL801b/1a161428CLPGCSFSIFL801b/1a/3a171426NS4BSPLTTQHTLL801b181768NS5BTPCAAEESKL801b191840NS3TPCTCGSSDL801b/1a201843NS5APPRRKRTVVL801b211579NS3VPQTFQVAHL801b221954NS4BLPYIEQGMQL801b231447NS5BLPINALSNSL801b/1a241430NS5AVPPVVHGCPL801b251953E2WTRGERCDL601b/1a202022NS2AVFVGLALL601b21886NS3APPPSWDQM601b/1a22381NS5BLTRDPTTPL601b/1a231475E2APRPCGIVPA601b26847E1TIRRHVDLL401b241828NS5BHIRSVWKDL401b251223NS5AKSRKFPPAL401b261348NS2GGRDAIILL401b271138NS5BHIRSVWKDLL401b271224NS5BCLRKLGVPPL401b/1a28921P7AAWYIKGRL361b28782E2/P7AALENLVVL361b29776NS4BAAARVTQIL361b30773NS3AAKLSALGL361b31402NS2AACGDIILGL361b29774NS3AAQGYKVLVL361b/1a30777NS5BAAKLQDCTML361b31775NS4AVVIVGRIIL301b321982NS2NVRGGRDAI301b331538NS3GPKGPITQM301b341165E2DARVCACLWM301b32954NS4ASVVIVGRIIL301b331803NS5AEPEPDVAVL241b/1a351024NS5ARPDYNPPLL241b/1a/3a361677NS5BAPTLWARMI241b/1a37371NS5BLSRARPRWFM22.51b341462P7LVPGAAYAL201b381482NS3VVVVATDAL201b/1a391988E2YVLLLFLLL201b402073NS3/NS4AEVVISTWVL201b/1a411042NS4ALVGGVLAAL201b/1a421479P7GVWPLLLLL201b431207CGVNYATGNL201b/1a44339NS4BRVTQILSSL201b451714E2YVGGVEHRL201b/1a462072NS3EVIKGGRHL201b/1a47376NS5ATVSSALAEL201b481881NS5BSVGVGIYLL201b491799NS5AEVSVAAEIL201b501040NS2YVYDHLTPL201b512077NS5ADVAVLTSML201b/1a52989P7SVAGAHGIL201b531796NS2FVGLALLTL201b541090CGPRLGVRAT201b/1a/3a55387E1MVGNWAKVL201b/1a561510NS4BLVNLLPAIL201b/1a571481NS2YVQMAFMKL201b582074NS3TPGERPSGM201b59372CWPLYGNEGM201b602019NS5BRVASCLRKL201b611707E2RVCACLWMML201b351709NS4BGPGEGAVQWM201b/1a/3a361163NS5BKVTFDRLQVL201b/1a/3a371352NS5ADVWDWICTVL201b38995NS3DVVVVATDAL201b/1a39994NS5AVVILDSFDPL201b/1a401981E1YPGHVSGHRM201b412063E1MVAGAHWGVL201b421509P7GVWPLLLLLL201b431208NS4BVVGVVCAAIL201b/1a441980NS3VPVESMETIM201b451958NS5ATVLTDFKTWL201b461880NS2NVRGGRDAII201b471539NS3CVTQTVDFSL201b/1a48949NS3VVSTATQSFL201b491985NS2AILGPLMVL181b62816CAARALAHGV181b/1a63403NS2LAILGPLMVL181b501361NS5BAVRTKLKLT151b/1a64895NS2ARRGREILL121b/1a65865NS3NAVAYYRGL121b/1a/3a66400NS4BGAVQWMNRL121b/1a/3a671109NS3QAGDNFPYL121b68551NS5BATTSRSASL121b69879NS5BALYDVVSIL121b7067NS5BWAVRTKLKL121b/1a711999NS2TAACGDIIL121b721811NS4ALAALAAYCL121b/1a/3a731357E2ALSTGLIHL121b/1a/3a74825NS3DAGCAWYEL121b/1a75528E2CACLWMMLL121b76909NS5ALASSSASQL121b771365NS2GAVFVGLAL121b781107NS3SGMFDSSVL121b/1a79135NS5BASGKRVYYL121b80334NS3YAAQGYKVL121b/1a8195NS5BGACYSIEPL121b/1a821103NS2ACGDIILGL121b83784E2FAIKWEYVL121b841049NS3QAPPGARSL121b851598CAQPGYPWPL121b/1a/3a8665NS3AQGYKVLVL121b/1a87130NS3RAYLNTPGL121b88434NS2WAHAGLRDL121b891992NS4BGAAVGSIGL121b901102NS5AASQLSAPSL121b/1a/3a91872P7GAHGILSFL121b921104NS5BSAACRAAKL121b93121NS3GAVQNEVIL121b/1a94347E2AIKWEYVLL121b95814NS3TAGARLVVL121b/1a96249E1WAKVLIVML121b971994NS5BASTVKAKLL121b98875NS5AYAPACKPLL121b992027NS5BRAATCGKYL121b1001627NS2MAFMKLAAL121b1011491CALAHGVRVL121b/1a10272P7ALYGVWPLL121b103830E1TALVVSQLL121b1041813CEGMGWAGWL121b1051011E2TALNCNDSL121b1061812NS5BKASTVKAKL121b1071316E1VAGAHWGVL121b1081889P7YALYGVWPL121b1092025NS5BPARLIVFPDL121b/1a511545P7YALYGVWPLL121b522026NS5BILMTHFFSIL121b531274NS5BLAQEQLEKAL121b541362NS5BACYSIEPLDL121b/1a55785NS2GAVFVGLALL121b561108E2AIKWEYVLLL121b57815NS5BYATTSRSASL121b582029NS3YIMACMSADL121b592037NS5BQAIRSLTERL121b601597P7CAAWYIKGRL121b61908E2/P7AQAEAALENL121b62858E1WAKVLIVMLL121b631995NS3LAAKLSALGL121b641356P7ALYGVWPLLL121b65831NS5ASASQLSAPSL121b/1a/3a661720NS3TAYSQQIRGL121b671814E2/P7EAALENLWL121b68998NS5BMALYDVVSTL121b691492NS5BCTMLVNGDDL121b70942CRALAHGVRVL121b/1a711629E2FAIKVVEYVLL121b721050NS5BDASGKRVYYL121b73955E1GAHWGVLAGL121b741105NS5BKASTVKAKLL121b751317CEGMGWAGWLL121b761012NS2AQGLIRACML121b77860P7AGAHGILSFL121b78805NS4BAGAAVGSIGL121b79804P7ASVAGAHGIL121b80876NS5BASAACRAAKL121b81869NS3DQMWKCLIRL121b/1a82982NS4BAPPSAASAFV121b83845NS4BDAAARVTQIL121b84952NS5BAGTQEDAASL121b85807CWAQPGYPWPL121b/1a/3a861996NS5BSLRVFTEAM101b110495CGVRVLEDGV101b/1a111447E2KVRMYVGGV101b/1a1121351NS5BDVRNLSSKAV101b87993E1AARNSSVPT91b113778NS5BAAKLQDCTM91b114440E2AARTTSGFT91b115780NS3APPGARSLT91b116839NS3AATLGFGAYM91b/1a88781E1AARNSSVPTT91b89779E2GPWLTPRCLV91b901174NS5APPVVHGCPL81b/1a1171582E2YPCTVNFTI81b1182059NS3CPSGHAVGI81b119931NS5BEPLDLPQII81b1201027E2LPALSTGLI81b/1a1211419E2GPSQKIQLI81b1221171NS5ALPPTKAPPI81b1231435NS2GPLMVLQAGI81b911168NS3IPFYGKAIPI81b921284NS5BTPVNSWLGNI81b/1a/3a931862NS5BPPQPEYDLEL81b/1a941575NS5BVVSTLPQAVM7.51b951986NS3AVDFVPVESM6.751b96883NS3TLHGPTPLL61b/1a/3a12481CAPLGGAARA61b/1a125384NS5BESKLPINAL61b1261031CSPRGSRPSW61b/1a/3a127386NS3YSQQTRGLL61b1282069NS3LSPRPVSYL61b1291460NS5BCPMGFSYDT61b130421NS5ALPCEPEPDV61b/1a/3a1311421NS2ILLGPADSL61b1321271NS5AAPSLKATCT61b/1a133848NS5BFNWAVRTKL61b/1a1341076NS3TSVRLRAYL61b1351870NS3APTGSGKST61b/1a/3a136397NS5ALPRLPGVPF61b1371439NS4BVVESKWRAL61b1381979E2APRPCGIVP61b139846P7YGVWPLLLL61b1402036NS5BGGRKPARLI61b/1a/3a141435NS4BAVQWMNRLI61b/1a/3a142893E1MNWSPTTAL61b1431503NS5APPRRKRTVV61b1441578NS4BAPVVESKWRA61b97856NS3APITAYSQQT61b98835NS2VSARRGREIL61b/1a991970NS5BYLTRDPTTPL61b/1a1002051NS2EILLGPADSL61b1011013NS2AVHPELIFDI61b102890E1MMNWSPTTAL61b1031502NS3LLSPRPVSYL61b1041409E1VPTTTIRRHV61b1051956NS5AEPDVAVLTSM61b/1a1061023NS3RRRGDSRGSL61b/1a1071697E2GSWHINRTAL61b1081190NS5AAPSLKATCTT61b109849NS3ETSVRLRAYL61b1101033NS4ARPAVIPDREV61b1111674NS3VVVATDALM51b/1a145343NS5BGVRVCEKMA51b/1a146498NS3GVRTITTGA51b1471202NS5BDVRNLSSKA51b148992NS5AGVWRGDGIM51b/1a1491209E2RVCACLWMM51b1501708NS4AEVLYREFDEM51b/1a1121039NS3VVVVATDALM51b/1a1131989NS2KVAGGHYVQM51b1141349NS3SVRLRAYLNT51b1151802NS2FVRAQGLIRA51b1161092E1CVRENNSSRC51b117948E1IVYEAADMIM51b1181313NS5AGVRLHRYAPA51b1191201NS5AANLLWRQEM4.51b/1a/3a151832CKARRPEGRA4.51b1521315NS3AVGIFRAAV4.51b/1a153887NS2AQGLIRACM4.51b154859NS5ALARGSPPSLA4.51b1201364NS5BEARQAIRSLT4.51b1211001NS5AEANLLWRQEM4.51b/1a1221000NS2RAQGLIRACM4.51b1231630NS3AGPKGPITQM4.51b124806NS2AVEPVVFSDM4.51b125885NS5ALQSKLLPRL41b1551449E1NSSRCWVAL41b1561533NS3NIRTGVRTI41b/1a157436NS5BSGGDIYHSL41b1581731E1TTIRRHVDL41b1591874NS4BSSLTITQLL41b1601785NS5AVILDSFDPL41b/1a1611918NS2LTCAVHPEL41b1621464NS5BDLPQIIERL41b163967E2CSFTTLPAL41b/1a164936NS5BEINRVASCL41b1651014E1GSVFLVSQL41b1661189CTLTCGFADL41b/1a/3a167363NS5BLTTSCGNTL41b/1a168304NS4BFTASITSPL41b1691085NS2CGGAVFVGL41b170915E2TLPALSTGL41b/1a1711835NS5BLSVGVGIYL41b1721463NS3VTQTVDFSL41b/1a173712CFSIFLLALL41b/1a174362CRSRNLGKVI41b/1a/3a175318CGQIVGGVYL41b/1a176127NS2HLQVWVPPL41b1771232NS3TCGSSDLYL41b/1a1781816CGCSFSIFLL41b/1a/3a179294NS3HSKKKCDEL41b/1a180455NS5BNIIMYAPTL41b18187NS2ITKLLLAIL41b1821308E2RTTSGFTSL41b1831706NS3QMWKCLIRL41b/1a184238NS5BGIQEDAASL41b18588NS3HSTDSTTIL41b1861244NS2LSPYYKVFL41b1871461NS3QTRGLLGCI41b/1a1881621CNLGKVIDTL41b/1a/3a189283NS3VSTATQSFL41b1901973NS3KGSSGGPLL41b/1a191260NS3LLGCIITSL41b/1a1921397CYIPLVGAPL41b/1a19369NS3IPTSGDVVV41b/1a194415E2LQTGFLAAL41b1951450NS4BVGVVCAAIL41b/1a1961912NS2LIFDITKLL41b1971386NS2FITRAEAHL41b1981061NS4BSGIQYLAGL41b/1a/3a1991732NS4BGSIGLGKVL41b2001186P7RLVPGAAYAL41b1261666E2VCACLWMMLL41b1271896NS5AWLQSKLLPRL41b1282014NS5BLLSVEEACKL41b1291410CRNLGKVIDTL41b/1a/3a1301673E1TTALVVSQLL41b1311871NS4AVLAALAAYCL41b/1a/3a1321921NS3YLKGSSGGPL41b/1a1332046NS4BDLVNLLPAIL41b/1a134969NS3CTCGSSDLYL41b/1a135941E1TTIRRHVDLL41b1361875NS5BLMTHFFSILL41b1371415NS5BYSGGDIYHSL41b1382067NS3GLLGCIITSL41b/1a1391151NS5BRQKKVTFDRL41b/1a/3a1401695NS3IPTSGDVVVV41b/1a1411295E2VPASQVCGPV41b1421946CGQIVGGVYLL41b/1a1431178NS2ELIFDITKLL41b1441018NS5ASLASSSASQL41b1451740NS2TLSPYYKVFL41b1461836E2QILPCSFTTL41b1471606NS4BGLGKVLVDIL41b/1a1481149NS5BYGACYSIEPL41b/1a1492033NS4BEQFKQKALGL41b/1a1501029E1CGSVFLVSQL41b151916NS3WQAPPGARSL41b1522021E2RCLVDYPYRL41b/1a1531635NS2KLLLAILGPL41b1541331NS5BLTPIPAASQL41b1551472CYLLPRRGPRL41b/1a1562047NS5AIPPPRRKRTV41b1571292NS5BGNIIMYAPTL41b1581160NS2DITKLLLAIL41b159961NS2PLRDWAHAGL41b1601559NS2LLTCAVHPEL41b1611413NS5AITAETAKRRL41b1621306E2SGPWLTPRCL41b1631735NS3QMYTNVDQDL41b/1a/3a1641611NS5BESILLAQEQL41b1651083E2RDRSELSPLL41b/1a1661637E2TTLPALSTGL41b/1a1671876NS3GPITQMYTNV41b1681164NS2GGAVFVGLAL41b1691135NS3QTRGLLGCII41b/1a1701622NS5ASTVSSALAEL41b1711792E2RTALNCNDSL41b1721703NS3LNAVAYYRGL41b1731416NS5BVLTTSCGNTL41b/1a1741930E2HQNIVDVQYL41b/1a/3a1751240NS4BLTITQLLKRL41b1761470NS4BILSSLTITQL41b1771276NS5BSPGQRVEFLV41b/1a1781765NS2SCGGAVFVGL41b1791721NS3LTPAETSVRL41b1801471NS5BYSPGQRVEFL41b/1a1812068NS3RPSGMFDSSV41b/1a1821687NS4ASTWVLVGGVL41b/1a1831794NS2RGGRDAIILL41b1841649NS3HGPTPLLYRL41b/1a/3a1851219NS5BLLSVGVGIYL41b1861412CCSFSIFLLAL41b/1a/3a187935CDTLTCGFADL41b/1a/3a188988NS5BYRRCRASGVL41b/1a/3a1892066NS4BISGIQYLAGL41b/1a1901303NS5BTERLYIGGPL41b1911820NS4B/NS5ACSTPCSGSWL41b192937E2YTKCGSGPWL41b1932071E2TPRCLVDYPY41b/1a1941857NS4BSPGALVVGVV41b/1a1951760E1SMVGNWAKVL41b/1a1961754NS5ALPRLPGVPFF41b1971440E1FCSAMYVGDL41b1981052E1NNSSRCWVAL41b1991526NS4BTSPLTTQHTL41b2001869SyfpeithiNS5APPRRKRTVVL261b11579CAPLGGAARAL251b/1a2836NS5ALPRLPGVPF251b31439NS5AEPEPDVAVL251b/1a41024NS5BIPAASQLDL251b51280NS5BRPRWFMLCL251b61684E2APRPCGIVPA241b7847NS4BMPSTEDLVNL241b81505P7WPLLLLLLAL231b/1a92018NS3KPTLHGPTPL231b/1a/3a101343NS5ASPAPNYSRAL231b111756NS5BPPQPEYDLEL231b/1a121575NS5BAPTLWARMIL231b/1a13853NS5BRPRWFMLCLL231b141685NS3HPNIEEVAL231b/1a151237NS3TPAETSVRL231b16383NS5ARPDYNPPLL231b/1a/3a171677NS5BSPGQRVEFL231b/1a18313NS5BDPPQPEYDL231b/1a19543CLPGCSFSIFL221b/1a/3a201426E2SPGPSQKIQL221b211764NS3VPQTFQVAHL221b221954NS4BLPGNPAIASL221b/1a231428NS4BLPAILSPGAL221b/1a/3a241418CQPRGRRQPI221b/1a/3a25390CDPRRRSRNL221b/1a/3a26370E2TPSPVVVGT221b/1a/3a271860NS3GPKGPITQM221b281165NS3CPSGHAVGI221b29931NS5APPVVHGCPL221b/1a301582CLPRRGPRLGV211b/1a/3a31450NS3CPSGHAVGIF211b32932NS3NPSVAATLGF211b/1a/3a331532NS3IPTSGDVVVV211b/1a341295NS3RPSGMFDSSV211b/1a351687NS4BSPLTTQHTLL211b361768NS5ALPRLPGVPFF211b371440NS5AAPSLKATCTT211b38849NS5AVPPVVHGCPL211b391953NS5BTPCAAEESKL211b401840CAPLGGAARA211b/1a41384NS3APPGARSLT211b42839NS3APTGSGKST211b/1a/3a43397NS3GPTPLLYRL211b/1a/3a44307NS4BPPSAASAFV211b451580NS4BSPGALVVGV211b/1a/3a461759NS5AAPSLKATCT211b/1a47848NS5APPRRKRTVV211b481578NS5BTPIPAASQL211b491848E2TPSPVVVGTI201b/1a/3a501861E2LPCSFTTLPA201b/1a511424NS2VPYFVRAQGL201b521960NS3TPCTCGSSDL201b/1a531843NS4BLPYIEQGMQL201b541447NS4BAPPSAASAFV201b55845NS4BSPGALVVGVV201b/1a561760NS5AVPAPEFFIEV201b571944NS5AEPEPDVAVLT201b/1a581025NS5BLPINALSNSL201b/1a591430CGPRLGVRAT201b/1a/3a60387E2GPWLTPRCL201b611173NS3IPTSGDVVV201b/1a62415NS4BSPLTTQHTL201b631767NS5ALPCEPEPDV201b/1a/3a641421NS5ADPSHITAET201b65976NS5BDPTTPLARA201b/1a66980E1IPQAWDMVA191b671294E2PPQGNWFGCT191b681574NS5AKPLLREEVTF191b691339NS5AEPDVAVLTSM191b/1a701023NS5APPPRRKRTVV191b711573NS5BQPEKGGRKPA191b/1a721612E1IPQAVVDMV191b731293NS3APPPSWDQM191b/1a74381NS3TPLLYRLGA191b/1a75389NS4BNPAIASLMA191b/1a761527NS4BAPPSAASAF191b77844NS5ADPDYVPPVV191b78971NS5AIPPPRRKRT191b791291NS5BCPMGFSYDT191b80421E2VPASQVCGPV181b811946E2YPCTVNFTIF181b822060NS3APITAYSQQT181b83835NS3PPAVPQTFQV181b841564NS3AAQGYKVLVL181b/1a85777NS3DPNIRTGVRT181b/1a86973NS3VPHPNIEEVA181b/1a871951NS3IPFYGKAIPI181b881284NS3LPVCQDHLEF181b/1a891444NS4ARPAVIPDREV181b901674NS4BAPVVESKWRA181b91856NS4BNPAIASLMAF181b/1a921528NS4BGPGEGAVQWM181b/1a/3a931163NS5ADPSHITAETA181b94977NS5AIPPPRRKRTV181b951292NS5BQPEYDLELIT181b/1a961614CLPGCSFSIF181b/1a/3a97375E2GPSQKIQLI181b981171E2LPALSTGLI181b/1a991419P7WPLLLLLLA181b/1a1002017NS2AILGPLMVL181b101816NS4BLPAILSPGA181b/1a/3a1021417NS5ASPAPNYSRA181b1031755NS5AKPLLREEVT181b1041338NS5APPSLASSSA181b1051581NS5ASPDADLIEA181b1061758NS5ALPPTKAPPI181b1071435NS5BLTRDPTIPL181b/1a1081475NS5BAPTLWARMI181b/1a109371NS5BSPGEINRVA181b/1a1101761CKPQRKTKRNT171b/1a/3a1111341E1VPTTTIRRHV171b1121956E1YPGHVSGHRM171b1132063E2GPWLTPRCLV171b1141174NS2GPLMVLQAGI171b1151168NS2EPVVFSDMET171b1161028NS3GPITQMYTNV171b1171164NS3VPVESMETTM171b1181958NS3ETAGARLVVL171b/1a1191032NS3DPTFTIETTT171b/1a120979NS3TPGERPSGMF171b1211845NS3EPYLVAYQAT171b/1a1221079NS3TPLLYRLGAV171b/1a1231851NS4BVPESDAAARV171b/1a/3a1241948NS5ACPCQVPAPEF171b125927NS5ALPCEPEPDVA171b/1a1261422NS5BSPGQRVEFLV171b/1a1271765NS5BDPTTPLARAA171b/1a128981NS5BTPLARAAWET171b/1a/3a1291850NS5BPPLRVWRHRA171b1301571E2APRPCGIVP171b131846NS2SPYYKVFLA171b1321780NS2HPELIFDIT171b1331235NS2TPLRDWAHA171b1341852NS3SPPAVPQTF171b1351770NS3AQGYKVLVL171b/1a136130NS3VPHPNIEEV171b/1a1371950NS3TPGERPSGM171b138372NS3TLHGPTPLL171b/1a/3a13981NS5AEPPALPIWA171b1401078NS5APRRKRTVVL171b1411583NS5AEPGDPDLSD171b/1a1421026NS5BTPIDTTIMA171b/1a1431847NS5BEPLDLPQII171b1441027P7ALYGVWPLLL161b145831NS2SCGGAVFVGL161b1461721NS2TLSPYYKVFL161b1471836NS2AACGDIILGL161b148774NS3APPGARSLTP161b149840NS3RRRGDSRGSL161b/1a1501697NS3GPLLCPSGHA161b1511167NS3IPPGSVTVPH161b/1a1521854NS3KQAGDNFPYL161b1531346NS5ASPPSLASSSA161b1541771NS5BTPPHSAKSKF161b/1a1551856NS5BTPVNSWLGNI161b/1a/3a1561862NS5BCLRKLGVPPL161b/1a157921CPRRGPRLGV161b/1a/3a158449CWPLYGNEGM161b1592019CSPRGSRPSW161b/1a/3a160386E1MNWSPTTAL161b1611503E2RPCGIVPAS161b1621676E2GPPCNIGGV161b1631169E2YPCTVNFTI161b1642059NS2ARRGREILL161b/1a165865NS2ILLGPADSL161b1661271NS3VPVESMETT161b1671957NS3PPAVPQTFQ161b1681563NS3DPTFTIETT161b/1a169978NS3RPSGMFDSS161b/1a1701686NS3FPYLVAYQA161b/1a171443NS3HPITKYIMA161b172396NS5AKSRKFPPAL161b1731348NS5ACPLPPTKAP161b174928NS5AAPPIPPPRR161b175843NS5APPPRRKRTV161b1761572NS5BPPHSAKSKF161b/1a1771568NS5BQPEYDLELI161b/1a1781613CFPGGGQIVGG151b/1a/3a1791077CQPRGRRQPIP151b/1a/3a1801616CRPSWGPTDPR151b/1a1811690E1NNSSRCWVAL151b1821526E1SPRRHETVQD151b1831778E2AIKWEYVLLL151b184815E21P7EAALENLVVL151b185998P7AYALYGVWPL151b186901NS2AHLQVWVPPL151b187811NS3AYSQQTRGLL151b188906NS3SPRPVSYLKG151b1891776NS3AYAAQGYKVL151b/1a190900NS3ETSVRLRAYL151b1911033NS4BAFTASITSPL151b192802NS4BILGGWVAAQL151b/1a1931270NS5AAPACKPLLRE151b194834NS5AVESENKVVIL151b/1a1951902NS5ARKSRKFPPAL151b1961655NS5AWARPDYNPPL151b/1a/3a1971998NS5BEESKLPINAL151b1981009NS5BEKGGRKPARL151b/1a1991015NS5BASAACRAAKL151b200869NS5BAPPGDPPQPE151b/1a201842NS5BDASGKRVYYL151b202955NS5BSPGEINRVAS151b2031762CAQPGYPWPL151b/1a/3a20465CQPGYPWPLY151b/1a/3a205216CALAHGVRVL151b/1a20672CSFSIFLLAL151b/1a/3a207250E1NSSRCWVAL151b2081533E1AHWGVLAGL151b209812E2WTRGERCDL151b/1a2102022E2/P7AALENLVVL151b211776P7ALYGVWPLL151b212830P7YGVWPLLLL151b2132036NS2CGGAVFVGL151b214915NS2ACGDIILGL151b215784NS3AYSQQTRGL151b216905NS3KGSSGGPLL151b/1a217260NS3TILGIGTVL151b21889NS3TAGARLVVL151b/1a219249NS3TPPGSVTVP151b/1a2201853NS3PPGSVTVPH151b/1a2211567NS3TPGLPVCQD151b/1a/3a2221846NS4ALVGGVLAAL151b/1a2231479NS4AAVIPDREVL151b224891NS4AIPDREVLYR151b/1a2251282NS4BLPGNPAIAS151b/1a2261427NS4BMPSTEDLVN151b2271504NS5ALPGVPFFSC151b2281429NS5AGPCTPSPAP151b2291161NS5AAPACKPLLR151b230833NS5AEPDVAVLTS151b/1a2311022NS5ALARGSPPSL151b2321363NS5AHHDSPDADL151b2331220NS5APPALPIWAR151b2341562NS5BESKLPINAL151b2351031NS5BKPARLIVFP151b/1a2361337NS5BAIRSLTERL151b237473NS5BAPPGDPPQP151b/1a238841NS5BPPGDPPQPE151b/1a2391565NS5BASGKRVYYL151b240334NS5BRARSVRAKL151b2411632CGPRLGVRATR141b/1a/3a2421170CRPEGRAWAQP141b2431678CEGMGWAGWLL141b2441012CSPRGSRPSWG141b/1a/3a2451773CRALAHGVRVL141b/1a2461629C/E1IPASAYEVRN141b2471281E1FCSAMYVGDL141b2481052E1VGDLCGSVFL141b/1a2491910E1MVAGAHWGVL141b2501509nHLAPredNS4BLPAILSPGA1.0001b/1a/3a11417NS4BPPSAASAFV1.0001b21580NS5BDPTTPLARA1.0001b/1a3980NS3PPGSVTVPH1.0001b/1a41567NS5BDPPQPEYDL1.0001b/1a5543NS5BSPGQRVEFL1.0001b/1a6373CSPRGSRPSW1.0001b/1a/3a7386NS3IPTSGDVVV1.0001b/1a8415NS5ARPDYNPPLL1.0001b/1a/3a91677NS5BMTHFFSILL1.0001b101508NS2FLARLIWWL1.0001b111063NS5BTPPHSAKSK1.0001b/1a121855E1VPTTTIRRH1.0001b131955NS5AAPACKPLLR1.0001b14833NS3SPPAVPQTF1.0001b151770CDPRRRSRNL1.0001b/1a/3a16370NS3VPQTFQVAH1.0001b17410E2SPGPSQKIQ1.0001b181763CRPQDVKFPG1.0001b/1a/3a19552NS5BRHTPVNSWL1.0001b/1a/3a20298NS5BLMTHFFSIL1.0001b211414NS5ASPAPNYSRA1.0001b221755CLPGCSFSIF1.0001b/1a/3a23375NS3TPAETSVRL1.0001b24383CFPGGGQIVG1.0001b/1a/3a25407NS3IMACMSADL1.0001b2690NS4BSPLTTQHTL1.0001b271767NS5APPVVHGCPL1.0001b/1a281582NS5AFPPALPIWA1.0001b291078NS5BIPAASQLDL1.0001b301280NS3HPNIEEVAL1.0001b/1a311237NS5BTPIPAASQL1.0001b321848NS5BRPRWFMLCL1.0001b331684NS3VPHPNIEEV1.0001b/1a341950NS5ALPPTKAPPI1.0001b351435NS5APPPRRKRTV1.0001b361572NS5APPRRKRTVV1.0001b371578E2YPCTVNFTI1.0001b382059E2GPWLTPRCL1.0001b391173NS3GPTPLLYRL1.0001b/1a/3a40307NS5ALPRLPGVPF1.0001b411439CQPIPKARRP0.9901b/1a42479NS5APPALPIWAR0.9901b431562E2RPIDKFAQG0.9901b441679CLPRRGPRLG0.9901b/1a/3a45380NS5APPIPPPRRK0.9901b461570NS5BLPQIIERLH0.9901b471438E1SPRRHETVQ0.9901b481777NS5AAPPIPPPRR0.9901b49843NS3PPAVPQTFQ0.9901b501563P7/NS2PPRAYAMDR0.9901b511576E2CPTDCFRKH0.9901b/1a/3a52934E2GPPCNIGGV0.9901b531169NS4BNPAIASLMA0.9901b/1a541527NS3HPITKYIMA0.9901b55396NS2SPYYKVFLA0.9901b561780NS5BKPARLIVFP0.9901b/1a571337NS5ALPCEPEPDV0.9901b/1a/3a581421NS3IPVRRRGDS0.9901b/1a591297NS4B/NS5ATPCSGSWLR0.9901b/1a601841CGPTDPRRRS0.9901b/1a611172E2LPALSTGLI0.9901b/1a621419NS4BLPYIEQGMQ0.9901b631446E1TPGCVPCVR0.9801b/1a641844E1IPQAVVDMV0.9801b651293CIPLVGAPLG0.9801b/1a66442NS5ACPCGAQITG0.9801b67926E2RPYCWHYAP0.9801b681691NS5AIPPPRRKRT0.9801b691291CQPRGRRQPI0.9801b/1a/3a70390NS4BLPGNPAIAS0.9801b/1a711427NS5BTPIDTTIMA0.9801b/1a721847E2RPPQGNWFG0.9801b731680P7/NS2LPPRAYAMD0.9801b741434NS5ADPDYVPPVV0.9701b75971NS3IPIEVIKGG0.9701b76561CKPQRKTKRN0.9701b/1a/3a771340NS5AVPPVVHGCP0.9701b781952NS5AAPNYSRALW0.9701b79838NS5BTPLARAAWE0.9701b/1a/3a801849NS3SPRPVSYLK0.9701b811775NS3TPLLYRLGA0.9701b/1a82389E2GPSQKIQLI0.9701b831171E1YPGHVSGHR0.9701b842062NS4BSPTHYVPES0.9601b/1a/3a851779NS5BLPQAVMGSS0.9601b861436NS5ALPGVPFFSC0.9601b871429CIPKARRPEG0.9601b/1a88409NS4BSPGALVVGV0.9601b/1a/3a891759NS3KPTLHGPTP0.9601b/1a/3a901342NS5AEPGDPDLSD0.9601b/1a911026NS5ALPIWARPDY0.9601b921431NS5BPPHSAKSKF0.9601b/1a931568NS3TPCTCGSSD0.9601b/1a941842NS4AIPDREVLYR0.9601b/1a951282NS5BTPCAAEESK0.9601b961839NS3CPSGHAVGI0.9501b97931NS3DPNIRTGVR0.9501b/1a98972NS5BCPMGFSYDT0.9501b99421NS5ATPSPAPNYS0.9501b1001859EpimmuneNS5BAPTLWARMIL1.241b/1a1853CSPRGSRPSW1.641b/1a/3a2386E2RPCGIVPAL1.8931675CQPRGRRQPI2.951b/1a/3a4390CAPLGGAARAL3.461b/1a5836NS4BLPAILSPGAL4.391b/1a/3a61418CLPRRGPRLGV4.881b/1a/3a7450CAPLGGVARAL5.538837NS4BNPAIASLMAF7.21b/1a91528P7WPLLLLLLAL7.451b/1a102018NS5BSPAQRVEFL7.57111757NS3KPTLHGPTPL7.911b/1a/3a121343NS3IPFYGKAIPL7.941a131285CSPRGSRPNW10.81141772CDPRRRSRNL12.091b/1a/3a15370NS5BAPTLWARMI13.881b/1a16371E2YPCTVNFTL16.543a172061NS5BSPGQRVEFL21.271b/1a18373NS5AVPPVVHGCPL26.041b191953NS3IPFYGKAIPI29.351b/3a201284PPRKKRTVV30.591a211577CLPGCSFSIFL31.721b/1a/3a221426NS3RPSGMFDSSV37.431b/1a231687E2APRPCGIVPA38.121b24847NS3HPITKYIMA38.641b25396E2YPCTVNFSI41.7262058NS4BLPYIEQGMQL43.261b271447NS5BLPINALSNSL45.731b/1a281430NS3KPTLQGPTPL47.48291344NS3HPVTKYIMA47.89301238CPAGHAVGIF56.361a31925CPSGHVVGI61.6832933E2GPWLTPRCL64.481b331173E2YPCTVNFTI70.751b342059NS5ARPDYNPPLL72.651b/1a/3a351677NS4BAPPSAASAFV75.671b36845GPKGPVTQM86.45371166CLPGCSFSIF101.31b/1a/3a38375E2GPWLTPRCM104.593a391175E2TPRCLVDYPY237.551b/1a401857E1YPGHVSGHRM264.061b412063E2YPCTVNFTIF307.311b422060E2TPRCMVDYPY445.133a431858NS5AEPDVAVLTSM597.051b/1a441023NS5BIPPHSAKSKF699.161b/1a451856NS3TPGERPSGMF699.461b461845NS3IPGERPSGM833.631b47372NS3APPPSWDQM933.011b/1a48381NS4BGPGEGAVQWM976.391b/1a/3a491163NS3NPSVAATLGF1610.361b/1a/3a501532NS3VPAAYAAQGY2733.821b/1a511943NS5BPPHSARSKF4228.633a521569NS5ALPIWARPDY4289.51b/3a531431NS3LPVCQDHLEF5715.311b/1a541444NS5BPPHSAKSKF9169.561b/1a551568P7VPGAAYALY27777.11b561949CQPGYPWPLY39918.41b/1a/3a57216NS5BPPGDPPQPEY633519.21b/1a581566


Those peptides that are present in at least the consensus sequence of genotype 1a and 1b, are selected. Table 15 contains all these peptides, with their score, and designated ranknumber, of each of the prediction servers in separate columns, and their occurrence in the different genotypes.


A selection according to genotype and ranknumber results in 232 different peptide sequences, i.e. 150+113+45+28=336. The table 16 contains the selection of peptides for which min. 2 out of 4 prediction servers give a rank =<100. This renders 40 different sequences. Said peptides are finally incorporated in Table 13.


The selection of potential HLA B07 peptide binders is summarized as follows: BIMAS (B7):

output200 9-mersprediction200 10-mersserver:BIMASpaste 9-mers + 10-mers, sort on BIMAS scoreresults:→ 400 peptides, ranknumber for 9- and 10-mersseparately (2× 1-200)→ BIMAS ranking for peptides with same score unknownBIMASselection on genotype (at least in 1b + 1a consensus):selection:→ 150 peptides


Syfpeithi (B0702):

output3002 9-mersprediction3001 10-mersserver:Syfpeithipaste 9-mers + 10-mers, sort on Syfpeithi scoreresults:→ select 250 peptides, 1 ranking 1-250(126 9-mers + 124 10-mers)→ Syfpeithi ranking for peptides with same score unknownSyfpeithiselection on genotype (at least in 1b + 1a consensus):selection:→ 113 peptides


nHLAPred (B0702):

output200 9-merspredictionno 10-mersserver:nHLAPred→ select 100 peptides, ranking 1-100results:→ nHLAPred ranking for peptides with same score unknownnHLAPredselection on genotype (at least in 1b + 1a consensus):selection:→ 45 peptides


EPMN (B07):

EPMN85 peptides (38 9-mers + 47 10-mers) with motif OKresults:PIC between 0.17 and 633519; 64 with PIC =< 100EPMN→ selection on genotype: select 58 peptides, thatselection:are present in at least 1/321b sequences EPMN used for predictionsEPMN 2ndselection on genotype (at least in 1b + 1a consensus):selection:→ 28 peptides (16 with PIC =< 100)










TABLE 16










Selected B07 predicted peptides















Peptide
Number


SEQ ID



Protein
sequence
of pred.
Ki
Genotype
NO
















C
DPRRRSRNL
4
18
1b/1a/3a
370






C
QPRGRRQPI
4
1
1b/1a/3a
390





NS5A
RPDYNPPLL
4
143
1b/1a/3a
1677





NS5B
SPGQRVEFL
4
38
1b/1a
373





C
LPRRGPRLGV
3
3
1b/1a/3a
450





NS3
GPTPLLYRL
3
209
1b/1a/3a
307





NS3
KPTLHGPTPL
3
6
1b/1a/3a
1343





NS4B
LPAILSPGAL
3
255
1b/1a/3a
1418





C
LPGCSFSIFL
3
558
1b/1a/3a
1426





NS4B
GPGEGAVQWM
3
4747
1b/1a/3a
1163





NS5B
APTLWARMIL
3
1
1b/1a
853





C
APLGGAARAL
3
1
1b/1a
836





NS5B
DPPQPEYDL
3
high
1b/1a
543





NS3
HPNIEEVAL
3
230
1b/1a
1237





P7
WPLLLLLLAL
3
1474
1b/1a
2018





NS5B
LPINALSNSL
3
12
1b/1a
1430





NS3
APPPSWDQM
3
281
1b/1a
381





C
LPGCSFSIF
3
high
1b/1a/3a
375





C
GPRLGVRAT
2
128
1b/1a/3a
387





C
SPRGSRPSW
2
11
1b/1a/3a
386





NS5A
LPCEPEPDV
2
high
1b/1a/3a
1421





NS4B
LPGNPAIASL
2
266
1b/1a
1428





NS3
TPCTCGSSDL
2
168
1b/1a
1843





NS3
AAQGYKVLVL
2
5524
1b/1a
777





NS5A
EPEPDVAVL
2
high
1b/1a
1024





NS5B
APTLWARMI
2
11
1b/1a
371





NS5A
PPVVHGCPL
2
433
1b/1a
1582





E2
LPALSTGLI
2
233
1b/1a
1419





NS5B
PPQPEYDLEL
2
high
1b/1a
1575





NS5A
EPDVAVLTSM
2
454
1b/1a
1023





NS3
IPTSGDVVV
2
3152
1b/1a
415





NS3
RPSGMFDSSV
2
14
1b/1a
1687





NS4B
SPGALVVGV
2
627
1b/1a/3a
1759





NS5B
DPTTPLARA
2
13058
1b/1a
980





NS4B
NPAIASLMA
2
676
1b/1a
1527





NS3
TPLLYRLGA
2
74
1b/1a
389





NS5B
PPHSAKSKF
2
high
1b/1a
1568





NS3
NPSVAATLGF
2
1197
1b/1a/3a
1532





NS4B
NPAIASLMAF
2
121
1b/1a
1528





NS3
LPVCQDHLEF
2
1564
1b/1a
1444









Example 3
HLA Class I Competition Cell-Based Binding Assays

The interaction of the peptides with the binding groove of the HLA molecules is studied using competition-based cellular peptide binding assays as described by Kessler et al. (2003). Briefly, Epstein-Barr virus (EBV)-transformed B cell lines (B-LCLs) expressing the class I allele of interest are used. EBV transformation is done according to standard procedures (Current Protocols in Immunology, 1991, Wiley Interscience). Naturally bound class I peptide are eluted from the B-LCLs by acid-treatment to obtain free class I molecules. Subsequently, B-LCLs are incubated with a mixture of fluorescein (F1)-labelled reference peptide, and titrating amounts of the competing test peptide. The reference peptide should have a known, high affinity for the HLA-molecule. Cell-bound fluorescence is determined by flow cytometry. The inhibition of binding of the F1-labelled reference peptide is determined and IC50-values are calculated (IC50=concentration of competing peptide that is able to occupy 50% of the HLA molecules). The affinity (Kd) of the reference peptide is determined in a separate experiment in which the direct binding of different concentrations of reference peptide is monitored and data are analysed using a model for one-site binding interactions. The inhibition constant (Ki) of the competing peptides (reflecting their affinity) is calculated as:
Ki=IC501+[F1-pep]/Kd


[F1-pep]: concentration of the F1-labeled peptide used in the competition experiment.


The predicted peptides were synthesized using standard technology and tested for binding to B-LCLs with the corresponding HLA-allele. F1-labelled reference peptides are synthesized as Cys-derivatives and labelling is performed with 5-(iodoacetamido) fluorescein at pH 8,3 (50 mM Bicarbonate/1 mM EDTA buffer). The labelled peptides were desalted and purified by C18 RP-HPLC. Labelled peptides were analysed by mass spectrometry.


As an example, the interaction of a predicted strong binding peptide with HLA-A02 is shown. An HLA-A02 positive B-LCL (J Y, Kessler et al., 2003) is used for analysing the competition of the F1-labelled reference peptide FLPSDC(F1)FPSV and the predicted peptides (SEQ ID NO 62 to SEQ ID NO 93). The binding of the reference peptide to HLA A02 is shown in FIG. 3. Analysing the data according to a one-site binding model reveals an affinity of the reference peptide of about 10 nM. A typical competition experiment is shown in FIG. 4. This particular set up was used for all class C binding peptides as well as part of the HLA A24 binding peptides. Table 13 contains the calculated inhibition constants (Ki).


Example 4
HLA Class I and II Competition Binding Assays Using Soluble HLA

The following example of peptide binding to soluble HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides.


Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts or transfectants were used as sources of HLA class I molecules. Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney et al., 1998; Sidney et al., 1995; Sette, et al., 1994).


HLA molecules were purified from lysates by affinity chromatography. The lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody. The antibodies used for the extraction of HLA from cell lysates are W6/32 (for HLA-A, -B and -C), B123.2 (for HLA-B and -C) and LB3.1 (for HLA-DR).


The anti-HLA column was then washed with 10 mM Tris-HCL, pH8, in 1% NP-40, PBS, and PBS containing 0,4% n-octylglucoside and HLA molecules were eluted with 50 mM diethylamine in 0,15M NaCl containing 0,4% n-octylglucoside, pH 11,5. A 1/25 volume of 2M Tris, pH6,8, was added to the eluate to reduce the pH to +/−pH8. Eluates were then concentrated by centrifugation in Centriprep 30 concentrators (Amicon, Beverly, Mass.). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, Ill.) and confirmed by SDS-PAGE.


A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MHC has been published (Sette et al., 1994; Sidney et al., 1998). Briefly, purified MHC molecules (5 to 500 nM) were incubated with various unlabeled peptide inhibitors and 1-10 nM 125I-radiolabeled probe peptides for 48 h in PBS containing 0,05% Nonidet P-40 (NP40) in the presence of a protease inhibitor cocktail. All assays were at pH7 with the exception of DRB1*0301, which was performed at pH 4,5, and DRB1*1601 (DR2w21 1) and DRB4*0101 (DRw53), which were performed at pH5.


Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7,8 mm×15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, Pa.). The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined. Alternatively, MHC-peptide complexes were separated from free peptide by capturing onto ELISA plates coated with anti-HLA antibodies. After free peptide has been washed away, remaining reactivities were measured using the same method as above.


Radiolabeled peptides were iodinated using the chloramine-T method.


Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.


Since under these conditions [label]<[HLA] and IC50≧[HLA], the measured IC50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1,2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.


This particular set up was used for all class A and B binding peptides (except for some HLA A24 binding peptides, where the cell-based binding assay was used). Table 13 contains the IC 50 values.


Because the antibody used for HLA-DR purification (LB3.1) is alpha-chain specific, beta-1 molecules are not separated from beta-3 (and/or beta-4 and beta-5) molecules. The beta-1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no beta-3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB*1L101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of beta chain specificity for DRB1*1501 (DR2w2beta-1), DRB5*0101 (DR2w2beta-2), DRB1*1601 (DR2w21beta-1), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRbeta molecule specificity have been described previously (see, e.g., Southwood et al., 1998). Table 14 contains the IC50 values.


Example 5
Use of Peptides to Evaluate Human Recall Responses for CD8 Epitopes

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection, who are chronically infected with HCV, or who have been vaccinated with an HCV vaccine.


For example, PBMC are collected from patients recovered from infection and HLA typed. Appropriate peptide epitopes of the invention that are preferably binding with strong or intermediate affinity (more preferably below the threshold affinity) are then used for analysis of samples derived from patients who bear that HLA type. PBMC from these patients are separated on density gradients and plated. PBMC are stimulated with peptide on different time points. Subsequently, the cultures are tested for cytotoxic activity.


Cytotoxicity assays are performed in the following manner. Target cells (either autologous or allogeneic EBV-transformed B-LCL that are established from human volunteers or patients; Current Protocols in Immunology, 1991) are incubated overnight with the synthetic peptide epitope, and labelled with 51Cr (Amersham Corp., Arlington Heights, Ill.) after which they are washed and radioactivity is counted. Percent cytotoxicity is determined from the formula: 100×[(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets.


The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to HCV or an HCV vaccine.


Alternatively, human in vitro CTL recall responses in chronic and resolved HCV patients towards HLA-restricted HCV-specific CTL-epitopes may be evaluated in the human IFNγ ELISPOT assay. As an example, in vitro recall responses of cells from HLA-A02 donors (homozygous or heterozygous) to a selected set of HLA-A02 restricted peptides are described. Basically, in vitro CTL recall responses are visualized in the IFN-gamma ELISPOT assay after overnight incubation of human PBMC with HLA-restricted peptides. The same has been done for HLA-A*01, HLA-B*08 and HLA-Cw04, Cw06 and Cw07.


Materials and Methods


Human PBMC


PBMC from healthy donors that are used to determine the cut off value for each individual peptide, are isolated according to the standard procedures.


PBMC from chronically infected HCV patients and (therapy) resolved HCV patients are used to determine the HCV-specific responses. All donors are HLA-A02 positive.


For use in the IFNγ ELISPOT assay, PBMC are thawed following standard procedures, washed twice with RPMI medium supplemented with 10% inactivate Fetal Calf Serum (iFCS) and counted with Trypan Blue in a Bürker Counting Chambre. Cells are resuspended in complete RPMI medium (=RPMI medium+NEAA+NaPy+Gentamycin+beta-MeOH) supplemented with 10% iFCS to the appropriate cell density.


HLA-A02 Restricted CTL Peptides


A selection of HLA-A02-restricted HCV peptides was made based on their affinity (IC50). The tested peptides are indicated in Table B. GILGFVFTL is a HLA-A02-restricted immunodominant Influenza-specific epitope that is used as a control peptide. All peptides are dissolved in 100% DMSO at 5 or 10 mg/ml and stored in aliquots at −20° C.


Shortly before use, peptides are further diluted in complete RPMI medium supplemented with 10% iFCS and used in the IFNγ ELISPOT assay at a final concentration of 10 μg/ml.


Cytokines


Lyophilized human IL-7 (R&D 207-IL) and human IL-15 (R&D 215-IL) is reconstituted in RPMI medium supplemented with 10% iFCS at 5 μg/ml and stored in aliquots at −70° C. Both cytokines are used in the IFNγ ELISPOT assay at final concentrations of 0.5 ng/ml per cytokine.


Human IFNγ ELISPOT


To pre-wet the membrane of the ELISPOT plates, 50 μl ethanol 99% p.a. is added to each well. After 10 minutes at room temperature, the ethanol is removed by washing all wells twice with purified water and once with PBS.


Pre-wetted 96-well ELISPOT plates are coated overnight with an anti-human IFNγ antibody (Mabtech Mab-1-D1K) and blocked for 2 hours with RPMI medium supplemented with 10% iFCS.


PBMC are resuspended in complete RPMI medium supplemented with 10% iFCS and seeded in triplicate in the coated ELISPOT plates at the required cell density between 3×105 cells/well and 4×105 cells/well. Cells are incubated with HLA-A02-restricted (CTL) peptides at 10 μg peptide/ml or with a polyclonal stimulus phytohemagglutinin (PHA) at 2 μg/ml as positive control, with and without cytokines.


After 23 hours incubation, all cells are lysed, washed away and the plates are further developed with biotinylated anti-human IFNγ antibody (Mabtech Mab 7-B6-1-bio) and streptavidin-HRP (BD 557630). Spots are visualized using AEC (BD 551951) as substrate. Rinsing the plates with tap water stops the color reaction. After drying the plates, the number of spots/well is determined using an A.EL.VIS ELISPOT reader. Every spot represents one IFNγ-producing CD8+ cell.


Method for Data-Analysis


A peptide is considered positive in human recall if at least one patient shows an active response (=response above cut-off level P80) to that peptide and whereby this active response is seen both with and without the addition of the cytokine coctail (IL-7+IL-15).


Cut-off values are determined by measuring the immune response in healthy individuals (n=20) and are based on statistical p80 and p90 values (=80%, resp. 90% of the back-ground immune responses are below this cut-off value after ranking the back-ground immune response for each individual peptide). Overall, higher cut-offs are measured after addition of cytokines.


Results


Table B contains the results for a set of HLA-A02 binding peptides. The result “+” is also indicated in Table 13.

TABLE B# Subj# Subj# Subj# Subj>P80 −>P80 +>P90 −>P90 +#ImmuneSequenceCytCytCytCytMatchrecallSMVGNWAKV11100YLLPRRGPRL48454+DLMGYIPLV60200QIVGGVYLL00000YIPLVGAPL10100NLPGCSFSI30300FLLALLSCL40100LLSCLTIPA42220WLGNIIMYA21110YLVAYQATV10000LTHIDAHFL31201+ALYDVVSTL00010GMFDSSVLC20200KVLVLNPSV11000YLNTPGLPV02020KLQDCTMLV02010SVFTGLTHI20100TLHGPTPLL00000YQATVCARA11000IMYAPTLWA01010NIIMYAPTL14131+IMACMSADL05000TLWARMILM21211+QMWKCLIRL00000RLGAVQNEV33131+LLGCIITSL00000HMWNFISGI45013+CLVDYPYRL21110VLVGGVLAA37323+YLFNWAVRT03000GLLGCIITSL32302+VLVGGVLAAL27252+IMAKNEVFCV12010RLIVFPDLGV25132+LLFLLLADA22120FLLALLSCLT55431+


The class II restricted HTL responses may also be analyzed in a comparable way.


Example 6
Activity of CTL Epitopes in Transgenic (Tg) or Surrogate Mice

This example illustrates the induction of CTLs in transgenic mice by use of one ore more HCV CTL eitopes. The epitope composition can comprise any combination of CTL epitopes as described in the current invention, and more specific as given in Table 13. Similarly, a surrogate mouse can be used when no transgenic animals are available. Surrogate mice are non-transgenic animals that express MHC molecules resembling specific human HLA molecules and as such are useful for the evaluation of human CTL and/or HTL epitopes. Examples of surrogate mice are: CB6F1 for HLA-A24, CBA for HLA-B44, PLJ for HLA-A01 and Balb/c for HLA-DR.


HLA-B07 and B35 Epitopes


For this specific example, the experiment is performed to evaluate the immunogenicity of the peptides with Ki <1000 nM disclosed in Table 13, section B07 and B35.


The HLA-B7 restricted CTL response induced by peptides which bind to B7 or B35 emulsified in IFA in HLA-B7 Tg mice (F1, crossed with Balb/c) is evaluated. As a comparison, a group of naïve mice were included. The magnitude of CTL responses to the HLA-B7 and -B35 restricted epitopes in immunized HLA-B7/Kb transgenic mice are compared to the response in naïve animals.


Experimental Set-Up


HLA-B7/Kb transgenic mice (BALB/c×HLA-B7/Kb.C57BL/6 F1 mice; H2bxd), both male and female, were utilized. Mice were used between 8 and 14 weeks of age. Each group consisted of 3 mice and the naïve group consisted of 4 mice. Each set up was repeated in two independent experiments.


The immunization and testing scheme is shown in Table 17. In general, HLA-B7/Kb mice were immunized with a pool of B7-restricted CTL peptides emulsified in Incomplete Freund's Adjuvant (IFA). Nine peptide pools, each consisting of 4 to 6 CTL peptides, of similar binding affinity at a dose of 25 μg/peptide and 120 μg of the HTL epitope, HBV Core 128 (TPPAYRPPNAPIL) (known HTL epitope in these animals), were tested. Each experiment tested three of the pools, and each pool was tested in two independent experiments. Naïve animals (non-immunized HLA-B7/Kb transgenic mice) were included in each experiment as a control group. The mice were immunized with 100 μl of the emulsion sub-cutaneously at the base of the tail. Eleven to 14 days after immunization, the mice were euthanized, and the spleens were removed.

TABLE 17Immunization and testing schedule for peptideimmunogenicity experiments using experiment 6 as an example.In vivo11-14 daysGroupWeek −2Week −1In vitro1Peptide PoolELISPOT2Peptide PoolAssay3Peptide Pool4Näive


Spleens were disrupted with a 15-ml tissue grinder and the resulting single cell suspension was treated with DNAse solution (10 μl/spleen of 30 mg/ml DNAse in PBS), washed in RPMI-1640 with 2% FCS, and counted. Splenocytes were then incubated at 4° C. for 15-20 minutes in 300 μl MACS buffer (PBS with 0.5% BSA and 2 mM EDTA) with 35 μl of MACS CD8a(Ly-2) Microbeads/108 cells according to the manufacturer's specifications. The cells were then applied to a MACS column (Milltenyi) and washed four times. The cells were removed from the column in culture medium consisting of RPMI 1640 medium with HEPES (Gibco Life Technologies) supplemented with 10% FBS, 4 mM L-glutamine, 50 μM 2-ME, 0,5 mM sodium pyruvate, 100 μg/ml streptomycin and 100 U/ml penicillin. (RPMI-10), washed, and counted again.


The responses to CTL epitopes were evaluated using an IFN-γ ELISPOT assay. Briefly, IP membrane-based 96-well plates (Millipore, Bedford Mass.) were coated overnight at 4° C. with α-mouse IFN-γ monoclonal antibody (Mabtech MabAN18) at a concentration of 10 μg/ml in PBS. After washing 3 times with PBS, RPMI-10 was added to each well, and the plates were incubated at 37° C. for 1 hour to block the plates. The purified CD8+ cells were applied to the blocked membrane plates at a cell concentration of 4×105 cells/well.


The peptides were dissolved in RPMI-10 (final peptide concentration 10 μg/ml), and mixed with target cells (105 HLA-B7/Kb transfected Jurkat cells/well). Controls of media only and Con A (10 μg/ml) were also utilized. The target cell/peptide mixture was layered over the effector cells in the membrane plates, which were incubated for 20 hours at 37° C. with 5% CO2.


Media and cells were then washed off the ELISPOT plates with PBS+0,05% Tween-20, and the plates were incubated with α-mouse biotinylated α-IFN-γ antibody (Mabtech MabR4-6A2-Biotin) at a final concentration of 1 μg/ml for 4 hours at 37° C. After washing, the plates were incubated with Avidin-Peroxidase Complex (Vectastain), prepared according to the manufacturer's instructions, and incubated at room temperature for 1 hour. Finally, the plates were developed with AEC (1 tablet 3-Amino-9-ethylcarbazole dissolved in 2,5 ml dimethylformamid, and adjusted to 50 ml with acetate buffer; 25 μl of 30% H2O2 was added to the AEC solution), washed, and dried. Spots were counted using AID plate reader.


Data-Analysis


Each peptide was tested for recognition in both the immunized group and the naïve group. Data was collected in triplicate for each experimental condition.


The raw data for the media control were averaged for each group (both naïve and immunized). Net spots were calculated by subtracting the average media control for each group from the raw data points within the group. The average and standard error were then calculated for each peptide, and the average and standard error were normalized to 106 cells (by multiplying by a factor of 2,5). Finally, a type 1, one-tailed T test was performed to compare the data from immunized groups to that from naïve controls. Data was considered to be significantly different from the naïve controls if p≦0,1. The data are reported as the number of peptide-specific IFNγ producing cells/106 CD8+ cells.


Data from two replicate experiments are compared. Peptides with discordant data (i.e. positive in one experiment and negative in the other) are repeated in a third experiment. The data from two or more experiments may be averaged as described above.


Peptide Immunogenicity Results for B7 and B35-Restricted Peptides.


The data are shown in Tables 18 (B7) and 19 (B35), and represent responses in 2-4 independent experiments. Twenty-six peptides showed a positive response when compared with the response in naïve mice (p≦0,1).


Ten of the peptides that were tested bound both B7 and B35 (6 peptides) or B35 only (4 peptides). Of the 6 peptides that bound both B7 and B35, four were immunogenic in the HLA-B7/Kb transgenic mice (Table 2). The 4 peptides that bound B35 only were all negative in the B7 transgenic mice.

TABLE 18Immunogenicity data for HCV-derived peptides binding toHLA-B7.The peptides are sorted by peptide position, and the data arereported in IFN-γ SFC/106 CD8+ splenocytes. Responses that aresignificant (p ≦ 0.1) are bolded. These are indicated in Table13 as “+”.ImmunizedNaïvenM IC50SFC/StSFC/St# ofSequenceB*0702B*3501106±Error106±ErrorTtestExp.LPRRGPRLG124138.1±25.18.1±5.90.004LPRRGPRLGV2.6499.2±28.511.3±1.60.002GPRLGVRAT128161.3±71.98.8±7.50.032QPRGRRQPI1.296.7±20.32.1±1.20.002SPRGSRPSW11266.3±9.52.9±1.30.002DPRRRSRNL1816.5±8.13.5±7.90.104IPLVGAPL25295206.7±39.12.1±2.60.002APLGGAARA11510.4±4.52.9±2.80.112APLGGAARAL0.801048116.3±26.44.2±2.80.002LPGCSFSIF299015.4±5.02.1±0.80.022LPALSTGLI23382.9±21.33.3±3.50.002TPCTCGSSDL16879767.5±7.47.9±5.40.464APTGSGKST3704.6±2.69.2±6.00.202YAAQGYKVL313583668.3±29.11.3±5.70.034HPNIEEVAL2307.417.5±5.23.3±4.20.012AAKLSALGL27715.0±4.00.4±3.10.002TPGERPSGM19945.0±22.07.5±5.70.064RPSGMFDSSV14104.2±27.71.7±7.50.004TPAETSVRL375164310.8±6.77.5±4.40.172APPPSWDQM28117.771489.6±15.84.6±3.30.002KPTLHGPTPL5.814.102291.3±67.47.1±3.40.002GPTPLLYRL20917.91659.6±6.37.1±5.90.002TPLLYRLGA741.5±6.96.9±7.80.194LPGNPAIASL266353917.1±4.49.2±6.10.222NPAIASLMAF1213125.4±1.74.6±3.00.342LPAILSPGAL25555014.6±3.93.3±4.10.042EPDVAVLTSM4541508.8±3.66.3±5.70.322RPDYNPPLL143163.3±47.26.7±7.30.012PPVVHGCPL43330.8±9.67.9±5.90.072LPINALSNSL12137223.8±50.31.7±1.80.002SPGQRVEFL3812.7±8.311.5±6.80.434SAACRAAKL106286.3±32.48.8±4.40.002APTLWARMI11302.1±48.825.0±5.40.004APTLWARMIL1.2859.2±25.55.0±3.80.002










TABLE 19










Immunogenicity data for HCV-derived peptides binding to



HLA-B35.


The peptides are sorted by peptide position, and the data


are reported in IFN-γ SFC/106 CD8+ splenocytes. Responses


that are significant (p ≦ 0.1) are bolded. These are in-


dicated in Table 13 as “+”.











Immunized
Naïve



















nM IC50
SFC/

St
SFC/

St

# of


















Sequence
B*0702
B*3501
106
±
Error
106
±
Error
Ttest
Exp





















IPLVGAPL
25
295

206.7


±


39.1

2.1
±
2.6
0.00
2






LPGCSFSIF
29
90

15.4


±


5.0

2.1
±
0.8
0.02
2





HPNIEEVAL
230
7.4

17.5


±


5.2

3.3
±
4.2
0.01
2





IPTSGDVVV
3152
380
7.5

±

3.8
14.2
±
3.6
0.18
2





LPVCQDHLEF
1564
104

13.3


±


5.2

2.5
±
3.1
0.08
2





FPYLVAYQA
1336
18
−0.8
±
4.9
4.6
±
3.9
0.20
2





NPAIASLMAF
121
312
5.4
±
1.7
4.6
±
3.0
0.34
2





EPEPDVAVL

194
8.3
±
4.9
8.8
±
6.3
0.47
2





EPDVAVLTSM
454
150
8.8
±
3.6
6.3
±
5.7
0.32
2





LPINALSNSL
12
137

223.8


±

50.3
1.7
±
1.8
0.00
2










HLA-A01, A02, A03/A11, A24 and B44 Epitopes


Comparable experiments in the respective Tg or surrogate animals were performed for all the peptides with Ki <1000 nM disclosed in Table 13. The results are indicated in Tables 20-25.

TABLE 20Immunogenicity data for HCV-derived peptides binding toHLA-A01 in surrogate mice (PLJ)Immu-nizedNaïveIC50 nMSFC/StSFC/St# ofSequenceA*0101106±Error106±ErrorTtestExp.VIDTLTCGFA38−5.0±10.08.8±10.30.062RSELSPLLL106−5.0±8.2−3.8±9.50.412CTCGSSDLY144.2±7.1−7.9±1.50.072FTDNSSPPA10−4.2±9.90.8±4.40.262FTDNSSPPAV455.8±12.9−12.1±2.20.102VAATLGFGAY48477.9±30.24.2±6.80.002AATLGFGAY694725.8±105.817.1±6.70.002ITIGAPITY91013.3±9.47.9±8.00.242VATDALMTGY45213.3±18.0−3.3±8.70.172ATDALMTGY4.00.4±8.6−6.3±7.20.162ATDALMTGYT227−20.8±11.79.6±8.60.002DSSVLCECY71917.5±14.710.0±3.60.272TLHGPTPLLY343260.0±33.722.5±10.60.002LVDILAGYGA9881.3±31.120.8±6.50.032LTDPSHITA15−8.3±6.3−2.5±7.70.262LTDPSHITAE2377.5±5.712.9±8.50.262HSAKSKFGY61537.1±6.04.2±6.40.002TSCGNTLTCY246−3.8±6.9−7.5±7.90.272FTEAMTRYSA46415.4±14.45.4±3.80.282LSAFSLHSY28387.9±15.9−1.7±7.00.002










TABLE 21










Immunogenicity data for HCV-derived peptides binding to



HLA-A02 in HLA-A02 Tg mice











Immunized
Naïve

















nM IC50
SFC/

St
SFC/

St

# of

















Sequence
A*0201
106
±
Error
106
±
Error
Ttest
Exp.




















QIVGGVYLL
228

3.8


±


1.4


0.0

±
0.4
0.01
2






YLLPRRGPRL
140

73.8


±


27.6

0.4
±
0.5

0.02

2





DLMGYIPLV
83
3.8
±
1.8
0.8
±
0.6
0.07
2





YIPLVGAPL
337

19.2


±


6.7

3.9
±
3.4

0.01

3





NLPGCSFSI
83
0.8
±
1.7
0.0
±
0.6
0.30
2





FLLALLSCLT
132
−0.8
±
0.0
0.0
±
0.9
0.19
2





FLLALLSCL
136

270.3


±


72.9

−3.1
±
1.8

0.00

3





LLSCLTIPA
12
−4.2
±
4.4
−1.4
±
2.6
0.10
3





SMVGNWAKV
158

30.0


±


2.4

2.1
±
1.1

0.00

2





CLVDYPYRL
437

271.4


±


87.5

−0.6
±
2.2

0.01

3





ALSTGLIHL
329
1.3
±
0.8
0.8
±
0.6
0.35
2





LLFLLLADA
16
3.3
±
5.9
−0.6
±
2.4
0.18
3





FLLLADARV
20

25.8


±


7.1

0.0
±
0.4

0.01

2





GLLGCIITSL
26

241.4


±


66.5

−2.2
±
2.2

0.00

3





LLGCIITSL
56
−3.3
±
2.4
2.2
±
3.3
0.05
3





YLVTRHADV
292

34.2


±


2.7

0.8
±
0.6

0.00

2





KVLVLNPSV
50

10.4


±


5.6

−2.1
±
3.1

0.04

2





GMFDSSVLC
114

211.9


±


95.1

−2.8
±
1.3

0.03

3





YLNTPGLPV
6.2

419.4


±


102.3

0.8
±
3.0

0.00

3





SVFTGLIHI
101

674.2


±


161.2

−4.2
±
3.7

0.00

2





LTHIDAHFL
1937
−3.3
±
2.9
0.3
±
2.3
0.00
3





YLVAYQATV
29

22.5


±


5.8

0.8
±
0.9

0.01

2





YQATVCARA
20

187.1


±


68.8

−8.8
±
1.4

0.02

2





QMWKCLIRL
153

418.1


±


107.4

−1.1
±
2.4

0.00

3





TLHGPTPLL
68

99.4


±


32.9

−0.3
±
2.8

0.01

3





RLGAVQNEV
221

96.9


±


34.8

0.6
±
3.5

0.01

3





IMACMSADL
66
38.1
±
22.3
0.8
±
3.4
0.07
3





VLVGGVLAA
219
7.9
±
3.3
1.3
±
2.0
0.10
2





VLVGGVLAAL
26

243.9


±


65.3

1.9
±
3.4

0.00

3





HMWNFISGI
12

374.2


±


91.6

−1.1
±
3.2

0.00

3





LLFNILGGWV
4.1

17.9


±


3.7

0.4
±
0.5

0.00

2





ILAGYGAGV
88

5.4



1.5

0.0
±
0.4

0.01

2





IMAKNEVFCV
199
3.6
±
4.0
−0.6
±
1.9
0.17
3





RLIVFPDLGV
89
−1.9
±
5.2
3.6
±
3.5
0.02
3





ALYDVVSTL
19

88.6


±


25.7

−1.4
±
2.4

0.00

3





KLQDCTMLV
4.6

218.1


±


53.4

−1.9
±
2.5

0.00

3





NIIMYAPTL
70

335.8


±


152.5

−0.8
±
3.3

0.03

3





IMYAPTLWA
46
−0.8
±
2.6
0.8
±
3.2
0.24
3





TLWARMILM
11

180.0


±


51.3

0.0
±
0.4

0.01

2





YLFNWAVRT
29

196.1


±


54.9

−1.4
±
2.3

0.00

3

















TABLE 22










Immunogenicity data for HCV-derived peptides binding to



HLA-A03 and/or A11 in HLA-A11 Tg mice











Immunized
Naïve


















nM IC50

SFC/

St
SFC/

St

# of


















Sequence
A0301
A1101
106
±
Error
106
±
Error
Ttest
Exp.





















STNPKPQRK
7.2
14

428.8


±


76.0

4.2
±
6.3

0.00

2






KTKRNTNRR
283
646
6.7
±
3.9
5.4
±
4.6
0.43
2





RLGVRATRK
12
221
5.0
±
8.2
2.1
±
3.3
0.40
2





KTSERSQPR
41
147

1041.7

±
170.9
6.7
±
6.1

0.00

2





QLFTFSPRR
15
197

17.1


±


6.3

3.3
±
6.7

0.03

2





WMNSTGFTK
277
138
1.3
±
2.47
0.4
±
3.5
0.41
2





RLLAPITAY
4.6
222
4.2
±
3.5
0.0
±
3.0
0.23
2





GIFRAAVCTR
3382
129
0.0
±
2.45
1.3
±
3.6
0.32
2





AVCTRGVAK
136
48

437.9

±

93.67

1.7
±
4.8

0.00

2





HLHAPTGSGK
5.3
501
7.5
±
4.9
5.0
±
3.9
0.39
2





AAYAAQGYK
13
13

301.3


±


36.7

−0.4
±
2.7

0.00

2





TLGFGAYMSK
134
44
10.8
±
3.95
7.5
±
4.5
0.15
2





LGFGAYMSK
113
22
0.8
±
5.1
−0.4
±
4.2
0.41
2





HLIFCHSKK
30
1531
−5.8
±
6.6
−1.3
±
4.4
0.33
2





LIFCHSKKK
27
104

120.8

±

41.70

7.5
±
3.1

0.02

2





GLNAVAYYR
9.2
44
7.5
±
2.27
7.5
±
6.0
0.50
2





KVLVDILAGY
72
163

6.3


±


4.1

−3.8
±
3.7

0.02

2





GVVCAAILR
5875
38

162.9


±


26.7

−2.5
±
3.0

0.00

2





GVVCAAILRR
1066
215

598.8

±

43.0

2.1
±
6.0

0.00

2





SQLSAPSLK
81
14
4.2
±
5.2
0.0
±
4.2
0.16
2





RVCEKMALY
53
160

131.7

±
32.8
3.3
±
5.0

0.01

2





LVNAWKSKK
68
50

23.8

±

5.90

2.5
±
4.3

0.04

2





GNTLTCYLK
16.809
160
5.4
±
4.6
5.0
±
5.3
0.48
2





ASAACRAAK
51
15

223.8


±


17.8

10.4
±
8.2

0.00

2





RVFTEAMTR
45
21

173.3


±


12.6

4.2
±
3.9

0.00

2





YLFNWAVRTK
65
164
0.4
±
6.2
−0.4
±
3.9
0.45
2

















TABLE 23










Immunogenicity data for HCV-derived peptides binding to



HLA-B44 in surrogate mice (CBA)











Immunized
Naïve

















nM IC50
SFC/

St
SFC/

St

# of

















Sequence
B*4402
106
±
Error
106
±
Error
Ttest
Exp.




















AEAALENLV
126
−5.4
±
6.2
−3.75
±
4.1
0.39
2






AETAGARLV
176

1295.4


±


114.1

−6.3
±
7.2

0.00

2





AETAGARLV
68

697.5


±


36.8

27.5
±
14.2

0.00

2





GEIPFYGKAI
354

799.6


±


116.4

15.4
±
8.0

0.00

2





AEQFKQKAL
67
7.9
±
6.7
13.8
±
5.5
0.29
2





AEQFKQKAL
201
10.0
±
8.3
35.0
±
16.8
0.06
2





TEAMTRYSA
2302
12.9
±
20.8
10.8
±
6.5
0.46
2





RMILMTHFF
389

11.3


±


5.0

−17.9
±
3.8

0.00

2

















TABLE 24










Immunogenicity data for HCV-derived peptides



binding to HLA-A24 in surrogate mice (Balb/c)












Sequence
SFC/106
±
SE

















LLPRRGPRL

64.2


±


12.5









YIPLVGAPL

64.6


±


10.7








SFSIFLLAL

185


±


69.3








PFYGKAIPI

168.8


±


60.1








VIKGGRHLI

191.3


±


73.5








YYRGLDVSVI

41.7


±


10.2








FSLDPTFTI

134.2


±


19.2








YLNTPGLPV

544.2


±


48.3








CLIRLKPTL

60


±


28.2








FWAKHMWNF

45.4


±


6.1








FWAKHMWNFI

293.3


±


48.8








QYLAGLSTL

865.4


±


183.5








GFSYDTRCF

56.3


±


22.4








RMILMTHFF

128.3


±


24.8












HLA-A24 Epitopes


In this experiment, a slightly different approach is used for the evaluation of the immunogenicity of the HLA-A24 binding epitopes in that the analysis of the peptide responses is performed in individual mice. ELISPOT results are reported as number of peptide-specific IFN-gamma producing cells per million (CD8 selected) spleen cells per mouse and the average delta values of triplicates (by subtracting the negative control conditions without stimulus) of the responses in the reacting animals are calculated. A peptide is considered to be immunogenic in the mouse model if at least one animal shows a significant positive response to that peptide.

TABLE 25Immunogenicity data for HCV-derived peptidesbinding to HLA-A24 in HLA A24 Tg miceELISPOTaverage pos.resultImmunSequence# subjects# pos(SFC/106)miceMYTNVDQDL55659+SFSIFLLAL44150+LLPRRGPRL5563+RMILMTHFF54169+CLIRLKPTL52121+FWAKHMWNF52244+TLHGPTPLL5473+RVEFLVNAW5470+QYLAGLSTL51243+LWARMILMTHF5368+VIKGGRHLI41276+AVMGSSYGF51240+IIMYAPTLW5348+GLGWAGWLL2447+YLNTPGLPV5240+ETTMRSPVF5236+NIIMYAPTL5235+TYSTYGKF5153+FWAKHMWNFI5149+NLPGCSFSI5142+VMGSSYGF5136+QYSPGQRVEF5133+LTHPITKYI5131+YYRGLDVSVI50neg0GLTHIDAHF50neg0FWESVFTGL50neg0AYMSKAHGV50neg0YYRGLDVSV50neg0GFSYDTRCF50neg0AYAAQGYKV50neg0NLGKVIDTL50neg0KFPGGGQIV50neg0QWMNRLIAF50neg0MYVGGVEHRL50neg0NFISGIQYL50neg0AIKGGRHLI50neg0ALYDWSTL50neg0QMWKCLIRL50neg0FSLDPTFTI40neg0GFADLMGYI40neg0


Example 7
Activity of HTL Epitopes in Transgenic (Tg) and Surrogate Mice

The experiments to test the immunogenicity of HLA-DR peptides differs slightly from example 6 in that complete Freund's is used as the adjuvant. Peptides are tested in either DRB1*0401-Tg mice or surrogate mice such as Balb/c and CBA. In this particular example, HLA-restricted peptide responses are analyzed in pooled samples.


The data for the DR4 transgenic mice are shown in table 26 and represent responses in 2 independent experiments. Seventeen of the peptides gave positive responses (defined as >10 SFC/106 CD4+ cells and p≦0.05) in these mice.


The data for the H2bxd background (Balb/c) are shown in table 27 and represent responses in 2 independent experiments. Seven of the peptides give positive responses (defined as >10 SFC/106 CD4+ cells and p≦0.05) in these mice.


The data for the CBA mice (H2k) are shown in table 28 and represent responses in 2 independent experiments. Twelve of the peptides give positive responses (defined as >10 SFC/106 CD4+ cells and p≦0.05) in these mice.

TABLE 26Immunogenicity in DR4 Tg miceImmunizedNaïveDRB1SFC/StSFC/StSequence*0401106±Error106±ErrorTtestGPRLGVRATRKTSER2.1±3.03.3±2.40.38RLGVRATRKTSERSQ586815.0±4.90.0±1.20.02GVRVLEDGVNYATGN132147.1±61.92.5±1.30.03FTTLPALSTGLIHLH2080142.9±43.34.6±2.40.01AVGIFRAAVCTRGVA31631.3±132.10.0±0.50.00RSPVFTDNSSPPAVP10423.3±93.00.4±1.00.00AQGYKVLVLNPSVAA1.669.2±15.9−0.4±1.00.00VLVLNPSVAATLGFG6.567.5±11.92.5±3.60.00YGKFLADGGCSGGAY21989.6±19.51.7±1.20.00LVVLAIATPPGSVTV4.0111.7±42.32.5±1.10.03HLIFCHSKKKCDELA22.1±8.52.9±1.50.04TVDFSLDPTFTIETT59130.0±36.95.8±2.40.01KPTLHGPTPLLYRLG486123.3±8.01.3±1.10.01TWVLVGGVLAALAAY369623.3±98.9−0.8±0.50.00IQYLAGLSTLPGNPA2.61435.8±111.52.9±3.10.00VNLLPAILSPGALVV1558613.3±59.4−0.8±1.60.00AVQWMNRLIAFASRG10091006.7±70.14.2±5.60.00MNRLIAFASRGNHVS8131.3±3.90.0±1.40.40VFCVQPEKGGRKPAR−0.4±1.72.1±1.10.09ARAAWETARHTPVNS14.7662.9±3.40.8±0.90.28PTLWARMILMTHFFS1781442.9±107.22.5±2.00.00










TABLE 27










immunogenicity in Balb/c (H2bxd)













Immunized
Naïve


















SFC/

St
SFC/

St
T



Sequence
106
±
Error
106
±
Error
test


















GPRLGVRATRKTSER
0.8
±
1.2
−0.8
±
0.0
0.12






RLGVRATRKTSERSQ
2.1
±
2.1
−0.4
±
0.4
0.10





GVRVLEDGVNYATGN
1.3
±
1.1
−0.8
±
0.4
0.02





FTTLPALSTGLIHLH
5.8
±
2.2
−0.4
±
0.5
0.02





AVGIFRAAVCIRGVA

1330.4


±


111.9

0.8
±
0.5

0.00






RSPVFTDNSSPPAVP
−5.0
±
0.6
0.4
±
0.4
0.00





AQGYKVLVLNPSVAA

68.8


±


17.5

−1.3
±
0.0

0.01






VLVLNPSVAATLGFG

238.8


±


84.6

0.8
±
0.8

0.02






YGKFLADGGCSGGAY
−1.7
±
3.5
1.7
±
0.8
0.15





LVVLATATPPGSVTV
−5.8
±
0.8
1.3
±
0.9
0.00





HLIFCHSKKKCDELA
5.8
±
3.8
0.4
±
0.4
0.11





TVDFSLDPTFTIETT
−0.4
±
0.5
−0.4
±
0.5
0.50





KPTLHGPTPLLYRLG

43.3


±


12.0

−0.8
±
0.4

0.01






TWVLVGGVLAALAAY

263.8


±


35.0

−0.8
±
0.4

0.00






IQYLAGLSTLPGNPA
0.0
±
0.5
0.0
±
0.5
0.50





VNLLPAILSPGALVV
6.7
±
2.4
−0.4
±
0.4
0.01





AVQWMNRLIAFASRG

286.3


±


69.0

−0.4
±
0.4

0.00






MNRLIAFASRGNHVS

95.0


±


31.9

0.4
±
0.6

0.02






VFCVQPEKGGRKPAR
9.6
±
6.8
1.3
±
0.9
0.11





ARAAWETARHTPVNS
3.3
±
2.4
0.4
±
0.4
0.15





PTLWARMILMTHFFS
2.5
±
1.5
0.8
±
1.1
0.12

















TABLE 28










immunogenicity in CBA (H2k) mice













Immunized
Naïve




















St


St





SFC/

Er-
SFC/

Er-


Sequence
106
±
ror
106
±
ror
Ttest


















GPRLGVRATRKTSER

175.4


±


27.9

−4.6
±
9.7

0.00







RLGVRATRKTSERSQ

189.6


±


57.2

3.3
±
12.8

0.02






GVRVLEDGVNYATGN
−67.92
±
63.7
−20.00
±
9.6
0.35





FTTLPALSTGLIHLH
−106.67
±
28.3
−24.58
±
4.9
0.03





AVGIFRAAVCTRGVA

148.3


±


76.3

17.1
±
17.5

0.06






RSPVFTDNSSPPAVP

90.8


±


35.9

−0.4
±
10.7

0.02






AQGYKVLVLNPSVAA
−90.83
±
46.9
−29.17
±
6.3
0.11





VLVLNPSVAATLGFG
−40.83
±
24.9
−28.33
±
2.5
0.40





YGKFLADGGCSGGAY

138.3


±


42.6

4.2
±
16.4

0.02






LVVLATATPPGSVTV
27.9
±
23.4
33.3
±
39.6
0.44





HLIFCHSKKKCDELA

167.1


±


37.9

−9.2
±
7.5

0.00






TVDFSLDPTFTIETT
−95.00
±
78.0
−7.50
±
25.7
0.32





KPTLHGPTPLLYRLG
−52.50
±
48.7
−24.58
±
8.6
0.48





TWVLVGGVLAALAAY

593.33


±


26.5

−32.08
±
5.0

0.00






IQYLAGLSTLPGNPA
−22.5
±
10.5
−0.4
±
5.0
0.06





VNLLPAILSPGALVV
10.0
±
37.6
33.3
±
45.3
0.36





AVQWMNRLIAFASRG

450.0


±


94.2

12.5
±
17.6

0.00






MNRLIAFASRGNHVS

255.0


±


27.9

25.0
±
26.5

0.00






VFCVQPEKGGRKPAR

247.5


±


59.4

−7.1
±
11.4

0.00






ARAAWETARHTPVNS

93.3


±


30.8

−8.3
±
5.3

0.01






PTLWARMILMTHFFS

114.6


±


43.6

−11.3
±
4.1

0.01










As shown in FIG. 7, a close relationship between binding and immunogenicity is detected. It can be concluded that all the peptides with binding affinity of less than 500 nM are immunogenic. Hence, the threshold affinity for DRB1 is 500 nM.


Example 8
Immunogenicity of CTL Epitopes Embedded in a Nested Epitope

This example illustrates the induction of CTL responses to a selection of epitopes embedded in a nested epitope, when injected into susceptible mice. Similar experiments can be performed to illustrate the induction of HTL responses to epitopes embedded in a nested epitope.


For this example, the A24 specific T cell responses in HLA A24 Tg mice injected with nested epitopes containing A24 restricted epitopes is measured. The magnitude of the CTL response to the individual HLA-A24 restricted epitopes is determined and compared with the response measured towards these epitopes in cells from mice immunized with a buffer/adjuvant (CFA) control. All HLA-A24 epitopes binding with an affinity (Ki) of less than 500 nM were tested.


The immunogenicity of epitopes embedded in these nested epitopes and restricted to other HLA-class I types can be evaluated in a comparable way in susceptible mice.


In Vivo Experimental Set-Up


Two groups of 5 mice (age 8 to 10 weeks, randomized females and males) are included of which animals from each group receive either a single injection with a nested epitope emulsified in CFA or—as a negative control—the buffer without peptide and emulsified in CFA. All injections were performed subcutaneously at the base of the tail. In this particular experiment, the nested epitope FWAKHMWNFISGIQYLAGLSTLPGNPA (SEQ ID NO 2278) was evaluated (table 29).

TABLE 29nested epitope evaluated in A24 Tg miceDose/MiceSequenceadjuvantgroupHLAFWAKHMWNFISGIQYLAGLSTLPGNPA50 μg/CFA05A24 Tg040/3HLAPBS−/CFA05A24 Tg040/5


In Vitro Experimental Set-Up


Spleen cells from all individual animals are isolated 11 to 14 days after injection. A direct ex vivo IFN-γ ELISPOT assay is used as a surrogate CTL readout. To this, CD8 spleen cells from each individual mouse are purified by positive magnetic bead selection on (part of) the spleen cells.

    • For the group 05 040/3, the response in the purified CD8 spleen cells (2.105 cells/well) from each individual mouse is evaluated by presenting the HLA-A24-specific peptides (10 μg/ml) on antigen presenting cells expressing the HLA-A24/Kb molecule (104 cells/well) and on gamma-irradiated syngeneic spleen cells (2.105 cells/well). After loading, the excess of peptide is removed by washing.


For the group 05 040/5, the spleen cells from each mouse are pooled prior to CD8 purification. An IFN-γ ELISPOT using the same conditions as mentioned above is performed to determine the baseline response against all peptides tested.

TABLE 30overview read outHLA-A24 restricted CTLepitopes tested for immunegroupresponseSEQ ID NO05 040/3FWAKHMWNF1095FWAKHMWNFI1096NFISGIQYL1521QYLAGLSTL162505 040/5FWAKHMWNF1095FWAKHMWNIFI1096NFISGIQYL1521QYLAGLSTL1625


Methods for Data-Analysis


ELISPOT results are reported as number of peptide-specific IFN-γ producing cells per million (CD8/CD4 selected) spleen cells per mouse or pooled group. Based on the average/median delta values of triplicates (by subtracting the negative control conditions without stimulus), a descriptive comparison between different groups/experimental set-ups for each epitope tested is made.


In addition, non-specific background responses in control-immunized mice are used as an additional negative control to determine the immunogenicity of the individual epitopes.


Acceptation Criteria


For the in vivo part of the experiment, all mice are evaluated (general welfare document) and weighted at the beginning and end of the study.


The acceptance of the in vitro-generated experimental results are based on well-documented viability and positive response after polyclonal stimulation of the cells. Results are shown for the 4 tested HLA-A24 epitopes in the individual mice.

TABLE 31immunoreactivity of the embedded epitopes inthe 5 animals injected with the nested epitopeHLA-A24 restrictedCTL epitopesSub-Sub-Sub-Sub-Sub-tested for immunejectjectjectjectjectgroupresponse1234505 040/3FWAKHMWNF+++++++++++++FWAKHMWNH+++++++++++++NFISGIQYL++++QYLAGISTL++
+ 0-10 SFC/106 CD8 cells

++ 10-100 SFC/106 CD8 cells

+++ >100 SFC/106 CD8 cells


REFERENCES



  • Alexander, J. et al., J Immunol. 159:4753, 1997

  • Alexander J. et al., Hum Immunol 64(2): 211-223, 2003

  • Altman et al., Science 174:94-96, 1996

  • An, L. and Whitton, J. L., J. Virol. 71:2292, 1997

  • Arndt et al., Immuno.l Res., 16: 261-72, 1997

  • Barton, G. M. & Medzhitov, R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270, 81-92, 2002

  • Bertoni, R. et al., J. Clin. Invest. 100:503, 1997

  • Beaucage & Caruthers, Tetrahedron Letts. 22:1859-1862, 1981

  • Blum et al., Grit. Rev. Imnunol., 17: 411-17, 1997

  • Brooks et al., J Immunol, 161: 5252-5259, 1998

  • Brown. J. et al., (1993) Nature 364, 33-39

  • Busch et al., Int. Immunol. 2:443, 1990

  • Buus et al., Science 242: 1065, 1988

  • Byl, B. et al. OM197-MP-AC induces the maturation of human dendritic cells and promotes a primary T cell response. Int Immunopharmacol. 3, 417-425, 2003

  • Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994

  • Ceppellini et al., Nature 339:392, 1989

  • Cerundolo et al., J Immunol. 21:2069, 1991

  • Christnick et al., Nature 352:67, 1991

  • Collins et al., J. Immunol. 148:3336-3341, 1992

  • del Guercio et al., J Immunol. 154:685, 1995

  • Diepolder, H. M. et al., J. Virol. 71:6011, 1997

  • Donnelly J J, Ulmer J B, Shiver J W, Liu M A. DNA vaccines. Annu Rev Immunol. 1997;15:617-48.

  • Donnelly J J, Ulmer J B, Liu M A. DNA vaccines. Life Sci. 1997a;60(3):163-72.

  • Doolan, D. L. et al., Immunity 7:97, 1997

  • Falk, K. et al., (1991) Nature 351, 290-296)

  • Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413, 1987

  • Fries et al., Proc. Natl. Acad. Sci. (USA) 89:358, 1992

  • Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. M. Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385-1395, 1993

  • Gruters R A, van Baalen C A, Osterhaus A D. Vaccine. 2002 May 6;20(15):2011-5. The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes.

  • Hammer et al., J. Exp. Med. 180:2353, 1994

  • Hanke, R. et al., Vaccine 16:426, 1998

  • Henderson et al, Science 255: 1264, 1992

  • Hill et al., J. Immunol. 147:189, 1991

  • Hill et al., J. 1mmunol. 152, 2890, 1994

  • Hoffmann et al., Hepatology, 21(3):632-8, 1995

  • Hunt, et al., Science 225: 1261, 1992

  • Houssaint E, Saulquin X, Scotet E, Bonneville M Biomed Pharmacother. 2001 September; 55(7): 373-80. Immunodominant CD8 T cell response to Epstein—Barr virus.

  • Ishioka, et al., J. Immunol. (1999) 162(7):3915-3925

  • Jardetzky, et al., Nature 353: 326, 1991

  • Johnson, D. A. et al. Synthesis and biological evaluation of a new class of vaccine adjuvants: aminoalkyl glucosaminide 4-phosphates (AGPs). Bioorg. Med. Chem Lett 9, 2273-2278, 1999

  • Kessler et al. Human Immunol, 64: 245-255, 2003

  • Khilko et al., J. Biol. Chem. 268:15425, 1993

  • Kawashima, 1. et al., Human Immunol. 59:1, 1998

  • Knauf M J. et al, J Biol. Chem. Oct. 15;263(29):15064-70, 1988

  • Kriegler M. Gene transfer and expression: a laboratory manual. W.H. Freeman and Company, New York, 1991: 60-61 and 165-172.

  • Lamonaca et al., Hepatology, 30:1088-1098

  • Latron, F. et al., (1992) Science 257, 964-967

  • Lim, J. S. et al. (1996) Mol. Immunol. 33, 221-230

  • Lukacher A E, Braciale V L, Braciale T J. J Exp Med. 1984 Sep. 1;160(3):814-26. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific.

  • Ljunggren et al., Nature 346:476, 1990

  • Lauer, G. M. & Walker, B. D. Hepatitis C virus infection. N. Engl J. Med. 345, 41-52, 2001

  • Madden, D. R. et al., (1992) Cell 70, 1035-1048

  • Mannino & Gould-Fogerite, BioTechniques 6(7): 682, 1988

  • Marshall et al., J. Immunol. 152:4946, 1994

  • Matsumura, M. et al., (1992) Science 257, 927-934

  • Michelletti et al., Immunology, 96: 411-415, 1999

  • Murray N, McMichael A. Curr Opin Immunol. 1992 Aug.;4(4):401-7. Antigen presentation in virus infection.

  • Nabel et al., Proc. Natl. Acad. Sci. (USA) 89:5157, 1992

  • Niedermann et al., Immunity, 2: 289-99, 1995

  • Ogg et al., Science 279:2103-2106, 1998

  • Parker et al., J. Immunol. 149:1896, 1992

  • Pearson & Reanier, J. Chrom. 255:137-149, 1983

  • Perma et al., J. Exp. Med. 174:1565-1570, 1991

  • Persing, D. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32, 2002

  • Reay et al., EMBO J. 11:2829, 1992

  • Rehermann, B. et al., J. Exp. Med. 181:1047, 1995

  • Reddy et al., J. Immunol. 148:1585, 1992

  • Riedl, P., Buschle, M., Reimann, J. & Schirmbeck, R. Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur. J. Immunol. 32, 1709-1716, 2002

  • Rognan, D. et al., (1999) J. Med. Chem. 42, 30 4650-4658

  • Rosenberg et al (1997), Science 278:1447-1450

  • Rotzschke and Falk, Immunol. Today 12: 447, 1991

  • Saper, M. A. et al., (1991) J. Mol. Biol. 219, 277-312

  • Schaeffer et al. Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989

  • Schumacher et al., Cell 62:563, 1990

  • Sercarz, et al., Annu. Rev. Immunol 11: 729-766, 1993

  • Sette, et al, J Immunol 153:5586-5592, 1994

  • Sette, et al., Mol. Immunol. 31: 813 (1994).

  • Sette and Sidney (1990), Immunogenetics 50: 201-212

  • Sidney et al., Current Protocols in Immunology, Ed., John Wiley & Sons, NY, Section 18.3 (1998)

  • Sidney, et al., J. Immunol. 154: 247 (1995)

  • Shiffman, M. L. Improvement in liver histopathology associated with interferon therapy in patients with chronic hepatitis C. Viral Hepatitis Reviews 5, 27-43, 1999

  • Shimotohno, K. et al. Processing of the hepatitis C virus precursor protein. J. Hepatol. 22, 87-92, 1995

  • Southwood et al. J Immunology 160:3363-3373, 1998

  • Stemmer W P et al. Gene 164: 49-53, 1995

  • Stover et al., Nature 351:456-460, 1991

  • Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467, 1980

  • Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997

  • Tigges M A, Koelle D, Hartog K, Sekulovich R E, Corey L, Burke R L J. Virol. 1992 March;66(3):1622-34. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens.

  • Thomson, S. A. et al., J. Immunol. 157:822, 1996

  • Townsend et al., Cell 62:285, 1990

  • Tsai S L, Huang S N. J Gastroenterol Hepatol. 1997 Oct.;12(9-10):S227-35. T cell mechanisms in the immunopathogenesis of viral hepatitis B and C.

  • Tsai, V. et al., J. Immunol. 158:1796, 1997

  • Qi-Liang Cai et al. Vaccine 23: 267-277, 2004

  • van der Burg et al., J Immunol, 156: 3308-3314, 1996

  • Van Devanter et. al., Nucleic Acids Res. 12:6159-616S, 1984

  • Velders MP et al. J Immunol, 166(9): 5366-73, 2001

  • Yewdell et al., Aurz. Rev. Immunol., 17: 51-88, 1997

  • Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA. 7, 710-721, 2001

  • Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995

  • Wentworth, P. A. et al., J. Immunol. 26:97, 1996

  • Wentworth, P. A. et al., Int. Immunol. 8:651, 1996

  • Wertheimer A M et al., Hepatology, 37: 577-589

  • Whitton, J. L. et al., J Prol. 67:348, 1993

  • Xu, Z. et al. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20, 3840-3848, 2001


Claims
  • 1. An isolated polyepitopic peptide comprising at least two peptides derived from a HCV protein and capable of inducing a HLA class I and/or class II restricted T lymphocyte response, characterized in that at least one peptide is a HLA-C binding peptide.
  • 2. The polyepitopic peptide according to claim 1 further characterized in that said at least two peptides are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.
  • 3. The polyepitopic peptide according to claim 1, wherein the at least one HLA-C binding peptide is characterized in that it binds a HLA molecule, said molecule being selected from the HLA-C group HLA-Cw03, Cw04, Cw06 or Cw07.
  • 4. The polyepitopic peptide according claim 1, wherein the at least two peptides consist of an HLA-C binding peptide and a peptide selected from the group consisting of: a HLA-A binding peptide characterized in that it binds a HLA molecule, said molecule being selected from the HLA-A group HLA-A01, -A02, -A03, -A11 or -A24, a HLA-B binding peptide characterized in that it binds a HLA molecule, said molecule being selected from the HLA-B group HLA-B07, -B08, -B35, -B40 or -B44, a HLA-C binding peptide characterized in that it binds a HLA molecule, said molecule being selected from the HLA-C group HLA-Cw03, Cw04, Cw06 or Cw07, and a HLA-DRB1 binding peptide characterized in that it binds a HLA molecule, said molecule being selected from the HLA-DRB1 group HLA-DRB1*01, -DRB1*03 or -DRB1*04.
  • 5. The polyepitopic peptide according to claim 1, wherein the at least two peptides are selected from Tables 13 and/or 14.
  • 6. The polyepitopic peptide according to claim 1, wherein the at least one HLA-C binding peptide is selected from the group consisting of: SEQ ID NO 1048, 1095, 1730, 349, 475, 111, 2066, 1511, 1454, 1100 and 907.
  • 7. The polyepitopic peptide according to claim 6 further comprising a peptide selected from the group consisting of: SEQ ID NO 557, 1241, 1456, 1478, 1833, 1887, 67, 922, 66, 361, 1070, 1072, 1151, 71, 1233, 1269, 75, 73, 1396, 5, 87, 91, 238, 265, 1661, 1753, 76, 81, 92, 1933, 1934, 69, 2043, 2047, 74, 63, 2053, 83, 56, 155, 156, 1205, 1206, 167, 1350, 47, 146, 1609, 144, 3, 39, 158, 16, 122, 1034, 1095, 1096, 1150, 246, 1406, 23, 1483, 1512, 87, 93, 1625, 1626, 59, 1710, 250, 81, 1885, 1916, 1938, 2048, 271, 2083, 1, 877, 17, 7, 1086, 1087, 1468, 1700, 1894, 402, 836, 381, 371, 853, 370, 387, 307, 1237, 1289, 1343, 1418, 1419, 375, 1430, 380, 450, 1582, 390, 1677, 1687, 121, 386, 372, 95, 443, 396, 455, 1441, 436, 1719, 92, 394, 1969, 287, 1237, 1289, 375, 1430, 1444, 582, 1117 and 59.
  • 8. An isolated polyepitopic peptide comprising at least three peptides selected from the HLA-A binding peptides selected from the group consisting of: SEQ ID NO 557, 1241, 1456, 1478, 1833, 1887, 67, 922, 66, 361, 1070, 1072, 1151, 71, 1233, 1269, 75, 73, 1396, 5, 87, 91, 238, 265, 1661, 1753, 76, 81, 92, 1933, 1934, 69, 2043, 2047, 74, 63, 2053, 83, 56, 155, 156, 1205, 1206, 167, 1350, 47, 146, 1609, 144, 3, 39, 158, 16, 122, 1034, 1095, 1096, 1150, 246, 1406, 23, 1483, 1512, 87, 93, 1625, 1626, 59, 1710, 250, 81, 1885, 1916, 1938, 2048, 271, 2083, 1, 877, 17, 7, 1086, 1087, 1468, 1700 and 1894,
  • 9. An isolated polyepitopic peptide comprising at least three peptides selected from the HLA-B binding peptides selected from the group consisting of: SEQ ID NO 402, 836, 381, 371, 853, 370, 387, 307, 1237, 1289, 1343, 1418, 1419, 375, 1430, 380, 450, 1582, 390, 1677, 1687, 121, 386, 372, 95, 443, 396, 455, 1441, 436, 1719, 92, 394, 1969, 287, 1237, 1289, 375, 1430, 1444, 582, 1117 and 59, whereby said peptides are characterized in that they are capable of inducing a CTL response.
  • 10. An isolated polyepitopic peptide comprising at least three peptides selected from the HLA-C binding peptides selected from the group consisting of: SEQ ID NO 1048, 1095, 1730, 349, 475, 111, 2066, 1511, 1454, 1100 and 907, whereby said peptides are characterized in that they are capable of inducing a CTL response.
  • 11. An isolated polyepitopic peptide comprising at least three peptides selected from the HLA-DRB1 binding peptides selected from the group consisting of: SEQ ID NO 2142, 2213, 2157, 2245, 2162, 2164, 2235, 2113, 2182, 2111, 2180, 2236, 2112, 2132, 2192, 2107, 2137, 2125, 2229, 2166, 2136, 2177, 2153, 2110, 2156, 2241, 2228, 2219, 2187, 2249, 2194, 2207, 2237, 2149, 2201, 2158, 2108 and 2232, whereby said peptides are characterized in that they are capable of inducing a HTL response.
  • 12. The polyepitopic peptide according to claim 1 further comprising at least one HLA-DRB1 binding peptide selected from the group consisting of: SEQ ID NO 2142, 2213, 2157, 2245, 2162, 2164, 2235, 2113, 2182, 2111, 2180, 2236, 2112, 2132, 2192, 2107, 2137, 2125, 2229, 2166, 2136, 2177, 2153, 2110, 2156, 2241, 2228, 2219, 2187, 2249, 2194, 2207, 2237, 2149, 2201, 2158, 2108 and 2232.
  • 13. The polyepitopic peptide according to claim 8 further characterized in that said at least three peptides are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.
  • 14. The polyepitopic peptide according to claim 1 wherein at least one of said peptides is characterized in that it has cross-binding activity for HLA molecules derived from different HLA groups or loci.
  • 15. The polyepitopic peptide according to claim 8 wherein the HLA-A binding peptide is characterized in that it binds a HLA molecule, said molecule being selected from the HLA-A group HLA-A01, -A02, -A03, -A11 or -A24.
  • 16. The polyepitopic peptide according claim 9 wherein the HLA-B binding peptide is characterized in that it binds a HLA molecule, said molecule being selected from the HLA-B group HLA-B07, -B08, -B35, -B40 or -B44.
  • 17. The polyepitopic peptide according to claim 10 wherein the HLA-C binding peptide is characterized in that it binds a HLA molecule, said molecule being selected from the HLA-C group HLA-Cw03, Cw04, Cw06 or Cw07.
  • 18. The polyepitopic peptide according to claim 11 wherein the a HLA-DRB1 binding peptide characterized in that it binds a HLA molecule, said molecule being selected from the HLA-DRB1 group HLA-DRB1*01, -DRB1*03 or -DRB1*04.
  • 19. The polyepitopic peptide according to claim 1 wherein the at least two peptides are selected from different HLA-loci.
  • 20. An isolated peptide consisting of an amino acid sequence selected from the group consisting of: SEQ ID NO 557, 1241, 1456, 1478, 1833, 1887, 67, 922, 66, 361, 1070, 1072, 1151, 71, 1233, 1269, 75, 73, 1396, 5, 87, 91, 238, 265, 1661, 1753, 76, 81, 92, 1933, 1934, 69, 2043, 2047, 74, 63, 2053, 83, 56, 155, 156, 1205, 1206, 167, 1350, 47, 146, 1609, 144, 3, 39, 158, 16, 122, 1034, 1095, 1096, 1150, 246, 1406, 23, 1483, 1512, 87, 93, 1625, 1626, 59, 1710, 250, 81, 1885, 1916, 1938, 2048, 271, 2083, 1, 877, 17, 7, 1086, 1087, 1468, 1700, 1894, 402, 836, 381, 371, 853, 370, 387, 307, 1237, 1289, 1343, 1418, 1419, 375, 1430, 380, 450, 1582, 390, 1677, 1687, 121, 386, 372, 95, 443, 396, 455, 1441, 436, 1719, 92, 394, 1969, 287, 1237, 1289, 375, 1430, 1444, 582, 1117, 59, 1048, 1095, 1730, 349, 475, 111, 2066, 1511, 1454, 1100, 907, 2142, 2213, 2157, 2245, 2162, 2164, 2235, 2113, 2182, 2111, 2180, 2236, 2112, 2132, 2192, 2107, 2137, 2125, 2229, 2166, 2136, 2177, 2153, 2110, 2156, 2241, 2228, 2219, 2187, 2249, 2194, 2207, 2237, 2149, 2201, 2158, 2108 and 2232.
  • 21. The peptide according to claim 20 comprised in an immunogenic peptide of less than 50 amino acid residues.
  • 22. The peptide according to claim 20, wherein said peptide is capable of inducing a HLA class I and/or class II restricted T lymphocyte response.
  • 23. An isolated peptide consisting of an amino acid sequence which is at least 70% identical to the amino acid sequence of the peptide according to claim 20, said peptide being capable of inducing a HLA class I and/or class II restricted T lymphocyte response.
  • 24. An isolated nested epitope comprising two or more epitopes selected from Tables 13 and 14.
  • 25. A nested epitope according to claim 24, wherein the two or more epitopes are selected from Table A.
  • 26. A nested epitope according to claim 24, wherein the nested epitope consists of an amino acid sequence as identified by SEQ ID NO 2254 to 2278, or a part thereof.
  • 27. A nested epitope according to claim 24 consisting of 9 to 35 amino acids.
  • 28. An isolated polyepitopic peptide comprising at least one peptide or nested epitope according to claim 20.
  • 29. An isolated polyepitopic peptide comprising at least two peptides or nested epitopes according to claim 20.
  • 30. An isolated polyepitopic peptide comprising at least three peptides or nested epitopes according to claim 20.
  • 31. The polyepitopic peptide according to claim 30 wherein the at least three peptides are at least two HLA-B binding peptides in combination with at least one HLA-A binding peptide or at least one HLA-C binding peptide.
  • 32. The polyepitopic peptide according to claim 31 wherein the at least two HLA-B binding peptides are selected from a different HLA-group within the HLA-B locus.
  • 33. The polyepitopic peptide according to claim 30 comprising at least one HLA-A binding peptide, at least one HLA-B binding peptide and at least one HLA-C binding peptide.
  • 34. A polyepitopic peptide according to claim 29, wherein said at least two or three peptides are characterized in that they are present in the HCV consensus sequence of genotype 1a, 1b and/or 3a.
  • 35. The polyepitopic peptide according to claim 28 further comprising a HTL epitope.
  • 36. The polyepitopic peptide according to claim 35 wherein the HTL epitope is selected from Table 14.
  • 37. The polyepitopic peptide according to claim 35, wherein the HTL epitope is a PanDR binding peptide.
  • 38. The polyepitopic peptide according to claim 1 further comprising at least one HLA class I binding peptide, at least one HLA class II binding peptide or at least one HCV derived peptide.
  • 39. The polyepitopic peptide according to claim 1, wherein the peptides are either contiguous or are separated by a linker or a spacer amino acid or spacer peptide.
  • 40. The polyepitopic peptide according to claim 1, wherein the peptides are present as homopolymers and/or heteropolymers.
  • 41. An isolated nucleic acid or polynucleotide encoding the peptide, nested epitope or polyepitopic peptide of claim 1.
  • 42. The isolated nucleic or polynucleotide according to claim 41 further comprising at least one spacer nucleic acid.
  • 43. The isolated nucleic or polynucleotide according to claim 41 further comprising a signal sequence and/or promotor sequence.
  • 44. A vector comprising the nucleic acid or polynucleotide according to claim 41.
  • 45. The vector according to claim 44 wherein said vector is a plasmid.
  • 46. The vector according to claim 44 wherein said vector is viral vector.
  • 47. A host cell comprising the vector according to claim 44.
  • 48. A method for producing the vector comprising introducing the nucleic acid or polynucleotide according to claim 41 into a vector.
  • 49. A composition comprising the peptide, nested epitope or polyepitopic peptide according to claim 1, or the nucleic acid or polynucleotide coding the same, or the vector including said nucleic acid or polynucleotide, or any combination thereof.
  • 50. The composition according to claim 49 wherein the peptides or nucleic acids are present in an admixture.
  • 51. The composition according to claim 49 wherein said composition is a pharmaceutical composition.
  • 52. The composition according to claim 51 further comprising at least one of a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • 53. The composition according to claim 51 wherein said composition is a vaccine composition.
  • 54. The peptide, nested epitope or polyepitopic peptide according to claim 1, or the nucleic acid or polynucleotide coding for the same, or the vector according including said nucleic acid or polynucleotide, or a composition including any of the same, or any combination thereof, for use as a medicament.
  • 55. A method for inducing an immune response in a subject against HCV which comprises administration of the peptide, nested epitope or polyepitopic peptide according to claim 1, or the nucleic acid or polynucleotide encoding the same, or the vector including said nucleic acid or polynucleotide, or a composition including any of the same, or any combination thereof.
  • 56. (canceled)
  • 57. A method for producing the peptide, nested epitope or polyepitopic peptide according to claim 1 comprising the step of synthetic or recombinant production.
  • 58. A method for producing the nucleic acid or polynucleotide according to claim 41 comprising the step of synthetic production.
  • 59. A method of determining the outcome of infection for a subject exposed to HCV, comprising the steps of determining whether the subject has an immune response to one or more peptides, or the nucleic acids encoding them, according to claim 1.
  • 60-63. (canceled)
Priority Claims (3)
Number Date Country Kind
04012951.2 Jun 2004 EP regional
04447239.7 Oct 2004 EP regional
05102441.2 Mar 2005 EP regional
Provisional Applications (3)
Number Date Country
60576310 Jun 2004 US
60622782 Oct 2004 US
60665395 Mar 2005 US